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Abstract Early detection and management of aqua-

tic invasive species requires identification of those

areas most at risk of invasion (i.e., hotspots). Here we

identify present-day and future hotspots of invasion

risk for marine invertebrates and algae in nearshore

habitats of the northwest Atlantic and northeast Pacific

using more than 12 years of monitoring data in

conjunction with other occurrence data and stacked

species distribution models. The stacked species

distribution models predicted the general patterns of

observed invasive species richness in both study areas

(Atlantic: r2 = 0.52, Pacific: r2 = 0.42). In the

northwest Atlantic, we identified hotspots through

much of Massachusetts, New Hampshire and southern

Maine, and in several bays in southwestern New

Brunswick and Nova Scotia. In the northeast Pacific,

much of the southern Salish Sea was identified as a

hotspot, as were a few areas along the outer coast of

Washington and Oregon. Projecting our species dis-

tribution modelling results to 2075 (climate scenario

RCP 8.5), we found that existing hotspots are likely to

expand slightly in the Atlantic, while in the Pacific

existing hotspots are predicted to shift or expand, new

hotspots are likely to appear, and areas with few

invasive species attaining moderate invasive species

richness. Our results suggest that climate change will

have larger effects on the distributions of our focal

invasive species on the Pacific coast compared to the

Atlantic. Resultant hotspot maps provide an integrated

perspective and guidance to managers tasked with

prioritizing locations for monitoring and implement-

ing policy related to marine invasive species, with

projected hotspots making planning for future changes

in invasion risk possible.
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Introduction

Invasive species are a major component of global

environmental change, contributing to biotic homog-

enization and creating threats to biodiversity, ecosys-

tem services, human health, and economic activities

(Vitousek et al. 1997; Pejchar and Mooney 2009;

Pyšek and Richardson 2010). However, knowledge

gaps about the basic and applied ecology of species

invasions and a research implementation gap between

the knowledge generated by ecologists and that which

is used by policy and management practitioners are

persistent problems that impede the monitoring,

management, and scientific understanding of invasive

species (Esler et al. 2010; Bayliss et al. 2013). Tools

that synthesize and transfer scientific knowledge

effectively are needed in order to narrow these

knowledge gaps, and to foster collaboration between

the scientific, management, and policy development

communities (Bayliss et al. 2013; Matzek et al. 2014;

Giakoumi et al. 2016).

The spatial distributions of invasive species are a

key piece of knowledge required for effective mon-

itoring and management, but there is often consider-

able uncertainty about where invasive species do and

do not occur. Unfortunately, few large-scale multi-

species monitoring programs exist, and much of the

information available on the distributions of invasive

species comes from scattered, incidental occurrence

records (e.g. Johnson et al. 2006; Gormley et al. 2011).

Where dedicated surveys or monitoring programs

have been implemented, they are often focused

exclusively on areas of high activity by introduction

and transport vector activity (e.g. ship traffic and

aquaculture; Arenas et al. 2006; Carman et al. 2010).

Surveys that sample beyond hubs of vector activity are

almost inevitably limited to smaller spatial extents

and/or coarser spatial resolutions than are needed for

effective management action by logistical constraints.

The deficiencies of occurrence information are exac-

erbated in marine ecosystems, where observing and

monitoring invasive species is typically more difficult,

and fewer potential observers are active, than on land.

Anthropogenically-induced environmental change

is altering the biophysical properties of the ocean and

has the potential to transform marine ecosystems and

the human systems that rely on them (Cheung 2019).

For example, the distributions of a wide variety of

marine taxa, including important fisheries species, are

already tracking changes in local climate (Pinsky et al.

2013). There is strong scientific and practical interest

in predicting how the distributions of invasive species

are likely to change in response to future climate

change, but present-day and historical occurrence

records alone can tell us little about this (Jeschke and

Strayer 2008; O’Donnell et al. 2012; Lowen et al.

2017). Consequently, reliable information about the

current and future distributions of invasive species

remains a major knowledge gap, and has contributed

to the omission of invasive species from more than

95% of conservation plans, globally (Giakoumi et al.

2016; Mačić et al. 2018).

The limitations of existing occurrence data have

increasingly caused scientists turn to species distribu-

tion models (SDMs), which predict the distribution of

organisms based on the distribution of appropriate

biophysical conditions (Elith and Leathwick 2009).

Species distribution models allow us to use known,

spatially incomplete occurrence locations to predict

comprehensive distributions with spatially variable,

quantitative, estimates of occurrence probability

(Rondinini et al. 2006). When coupled to climate

projections, they also allow us to obtain first-order

predictions of how these distributions might shift in

response to expected environmental change (Jeschke

and Strayer 2008; O’Donnell et al. 2012; Lowen et al.

2017). Moreover, maps derived from individual

species’ distribution models are powerful communi-

cation tools that can be used to support policy

development, guide management decision-making,

inform systematic conservation planning, and opti-

mize monitoring and detection programs (Ball et al.

2009; Venette et al. 2010; Baxter and Possingham

2011; Guisan et al. 2013). However, ecosystems are at

risk of invasion by many non-indigenous species, each

of which is likely to have its own distribution,

environmental requirements, potential impacts and

associations with vectors of introduction and spread,

but understanding and communicating this complexity

and detail is difficult. One way to deal with this

complexity is to identify invasion hotspots, or areas

subject to risk of invasion by multiple invaders

(O’Donnell et al. 2012; Li et al. 2016). Just as

biodiversity hotspots have been used extensively to

focus conservation efforts, the concept of invasion

hotspots can help to provide a focus for policy and

management and support efforts to optimize our

allocation of the limited resources available for
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monitoring and management in ecosystems at risk of

invasion by many species (O’Donnell et al. 2012).

The concept of invasion hotspots has been used

frequently in invasion ecology and management, but

its use has often been vague and instances where it has

been formalized or applied in aquatic ecosystems are

comparatively rare. Hotspots of marine invasions have

been identified via counts of invasive species within

individual embayments, governmental units, or ecore-

gions (e.g., Cohen and Carlton 1998; Ruiz et al. 2011;

Marchini et al. 2015), or by using the intensity of

vector activity as a proxy for invasion risk (e.g. Drake

and Lodge 2004; Tidbury et al. 2016). Recent studies

have combined information on global ship traffic

patterns and the environmental distance between ports

to model invasion risk and identify hotspots at the port

and ecoregion level (Seebens et al. 2013, 2016). An

alternate approach is to integrate (or ‘‘stack’’) multiple

high resolution species distribution models to identify

areas of high invasion potential as indicators of

invasion hotspots and risk, as has been done in some

terrestrial systems (O’Donnell et al. 2012; Li et al.

2016). While the other approaches have proved

informative and useful, they produce assessments that

are focused on relatively small scales (e.g. single

embayments), are focused on large scales but provide

spatially homogenous estimates for large areas (e.g.

entire ecoregions), or that provide spatially variable,

but disjunct assessments over large scales (e.g. for

large ports around the world). Stacked species distri-

bution models are a promising tool because they can

provide higher resolution, spatially comprehensive

and variable assessments of present-day invasion risk

over large spatial extents and predictions of how this

risk might respond to environmental change. How-

ever, there are few studies using stacked species

distribution models to assess the risk of multiple

marine invasions or identify marine invasion hotspots

(but see Lowen et al. 2017). In fact, even the number of

studies modelling the ranges of individual marine

invasive species and how they are likely to respond to

climate change has been minimal compared to those

on terrestrial or freshwater ecosystems (13, 314 and 98

studies, respectively) (Bellard et al. 2018).

In this paper, our goals were to use species

distribution models to describe spatial patterns in

predicted invasive species richness, to identify pre-

sent-day and future hotspots as spatial indicators of

risk of invasion, and to describe howmaps of predicted

invasive species richness and invasion hotspots could

be used as simple communication tools to guide

monitoring and management decisions. We coupled

occurrence data of invasive species on the east and

west coasts of North America with high resolution

seasonal climatologies for environmental variables via

species distribution models to predict current and

future distributions of 12 high-risk invasive species

per coast. Integrating these species distribution models

allows us to compare patterns of predicted invasive

species richness to observed patterns, to identify

hotspots and coldspots of invasion risk, and to

examine how these patterns are predicted to change

under climate change scenarios RCP 8.5 by 2075.

Finally, we describe how hotspots of invasion risk can

be used to inform managers and decision makers.

Methods

Study regions

We focused on the northwest Atlantic and the

northeast Pacific for this study, concentrating on areas

where more than a decade’s worth of systematic

marine invasive species monitoring data and high-

resolution marine climate models from Fisheries and

Oceans Canada could be leveraged. Within both

regions, there is significant interest from government

in using information about the present day and

potential future distributions of marine invasive

species in ecosystem management, environmental

protection, and the design of monitoring programs.

In the Atlantic, our model domain was from 32� to 53�
N and 49� to 80� W. In the Pacific, our model domain

was 24�–62� N and 111�–155� W. Although our

present-day species distribution models covered these

broader domains, we focused on smaller domains,

where we were able to use 2075 climate projections

(Atlantic: 41�–53�N, 52�–73�W; Pacific: 45.5�–56�N,
122.25�–135.75�W). A map of each study region and

the places mentioned in the text can be found in Online

Appendix 1.

Species occurrence data

To identify invasion hotspots, we used a subset of 12

invasive species on each coast. We focused on

seaweeds and benthic/demersal invertebrates of
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shallow-water coastal habitats as little information is

available about potential pelagic and offshore invasive

species in our study regions. However, we selected

species covering a range of taxonomic and life history

variation that have already invaded the broader region

(northwest Atlantic or northeast Pacific) and that have

been identified as moderate to high risk of invasion

and impact in Canadian waters (Drolet et al. 2016).We

selected well-established ([ 20 years) species with

occurrence records from at least 30 unique locations to

ensure that our focal species would have had time to

spread within the study region, and that we had

sufficient data for species distribution modelling. For

the Northwest Atlantic, our focal species included

solitary (Ascidiella aspersa, Ciona intestinalis, Styela

clava) and colonial (Botrylloides violaceus, Botryllus

schlosseri, Diplosoma listerianum, Didemnum vexil-

lum) tunicates, a skeleton shrimp (Caprella mutica),

two shore crabs (Carcinus maenas, Hemigrapsus

sanguineus), a colonial bryozoan (Membranipora

membranacea) and a seaweed (Codium fragile). For

the Northeast Pacific, the focal species included six of

the same species used in the Atlantic (B. violaceus, B.

schlosseri, C. mutica, C. maenas, D. vexillum, S.

clava), four bivalves (Mya arenaria, Crassostrea

gigas, Venerupis philippinarum, Nuttallia obscurata),

a gastropod (Ocinebrellus inornatus), and a seaweed

(Sargassum muticum). All these species are algae or

ectotherms that have adapted differently across cold to

warm temperate saltwater environments, and whose

development rates and distributions are expected to be

strongly delineated and constrained by temperature

and salinity.

We compiled occurrence data (latitude and longi-

tude of each observation of each species) primarily

from Fisheries and Oceans Canada’s (DFO) Aquatic

Invasive Species Monitoring, the Ocean Biogeo-

graphic Information System (OBIS 2018), as well as

several other online databases and primary and grey

literature publications (Online Appendix 1), using data

only from the focal region. We chose to exclude data

from other parts of the world to ensure our models

would reflect the environmental responses of the

genetic lineages that have invaded our study regions.

For plots of observed invasive species richness, we

rasterized the occurrence points at a resolution of 0.5�,
counting the number of unique invasive species (from

our focal species) in each grid cell. We did not include

grid cells without observations, as it is often likely that

no sampling for our focal species was conducted in

these areas. Prior to model fitting, we spatially rarified

the occurrence points to a 10 km resolution using

SDMtoolbox 2.0 for ArcGIS to reduce potential

effects of spatial autocorrelation on our results (Brown

et al. 2017).

Environmental predictors

We selected surface water temperature, salinity, and

wave action (i.e., significant wave height, Atlantic

only), which are known to influence the distributions

of coastal marine invertebrates and algae (Burrows

et al. 2008; Lowen et al. 2016), as predictors in our

species distribution models. Our decision not to

include other predictors reflects a lack of available

data (particularly future projections) for potentially

relevant variables when we began this work. We

intentionally excluded variables such as depth, lati-

tude, and distance from shore which are sometimes

used as proxies for factors that control distributions,

but whose relationships to those factors is likely to

change in space and time. These decisions reflect

recommendations to limit variables to functionally

relevant predictors, and the dangers of using distal and

proxy variables, which often make models more error-

prone when they are extrapolated in space or time

(Elith and Leathwick 2009). As our work involves

extrapolation in time, including these proxies might

improve model fit for the present day, but would risk

significantly degrading future projections. Data for

each predictor was averaged into seasonal climatology

rasters, including winter (Atlantic: January to March,

Pacific: December to February) spring (Atlantic: April

to June, Pacific: March to May), summer (Atlantic:

July to September, Pacific: June to August), and fall

(Atlantic: October to December, Pacific: September to

November). The difference in the definition of the

seasons reflect how physical Oceanographers/ocean

climate modellers typically define the seasons in these

regions, and are related to the timing of events like

stratification/destratification, warming, cooling, and

the spring phytoplankton bloom.

In the Atlantic, sea surface temperature and salinity

values were assembled at 0.01� resolution from

AMSR-E Level 3 sea surface temperature satellite

data (Advanced Very High Resolution Radiometer

data, AVHRR Atlantic; 2002–2012; compiled by

Fisheries and Oceans Canada) and global
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oceanographic salinity composites (BioOracle; Tyber-

ghein et al. 2012). Seasonal significant wave height

values were derived from numerical models (Wave-

watch III, Rascle and Ardhuin 2013, 0.167� resolution;
Guo and Sheng 2017, 0.125� resolution). Future

seasonal climatologies of salinity and temperature

matching the resolution (0.01�) of ‘‘present day’’

values were derived from numerical model projections

(BNAM RCP 8.5 2075 monthly anomalies; Brickman

et al. 2016), as were future seasonal significant wave

height climatologies (Wavewatch III driven by Cana-

dian Regional Climate Model, CanRCM4, predictions

for 2070–2071, 0.125� resolution, Guo and Sheng

2017). Lower resolution wave height values (present

and future) were resampled, using the nearest neighbor

value, to match the 0.01� temperature and salinity

values. Our choice of scenario RCP 8.5 2075 reflects

the fact that our oceans are already warming signif-

icantly faster than previously expected (Cheng et al.

2019). It also reflects the availability of ocean climate

projections for this scenario on both the Atlantic and

Pacific coasts produced by models developed by

Fisheries and Oceans Canada (including several of the

authors of this manuscript), and our familiarity with

them.

In the Pacific, we compiled salinity and temperature

values from hindcasts from the University of British

Columbia’s Salish Sea Nucleus for European Model-

ling of the Ocean (NEMO) model (2014–2017 hind-

cast, 0.006� resolution, Soontiens et al. 2016;

Soontiens and Allen 2017), a Regional Ocean Model-

ing System (ROMS) model of the British Columbia

shelf (BC ROMS 1981–2010 hindcast, 0.04� resolu-

tion, Peña et al. 2019), as well as the MARSPEC

database (0.00833� resolution, Sbrocco and Barber

2013). The higher resolution data from the NEMO

model and MARSPEC were resampled using bilinear

interpolation to match the 0.04� resolution of the

ROMS model data. Future climatological scenarios

for salinity and temperature were derived from

projections of the BC ROMS model (RCP 8.5, 2041

to 2070, 0.04� resolution, Peña et al. 2018). Extrap-

olation detection analyses (Mesgaran et al. 2014)

indicated neither novel values for individual predic-

tors (i.e. values that fell outside the range of those in

our present day values), nor novel combinations of co-

variates was present in our future climate scenario for

either the Atlantic or Pacific study area (Fig. A1.3,

Online Appendix 1), indicating that we did not need to

be concerned about our SDM projections involving

extrapolation into non-analogous environmental

conditions.

Although our focal species live primarily in the

intertidal zone or very shallow subtidal areas close to

shore, and the vast majority of our occurrence records

were from depths shallower than 30 m, some focal

species (e.g. C. maenas, C. intestinalis, D. vexillum)

have been observed in deeper waters. We initially

planned to limit our analysis to areas shallower than

100 m on both coasts. In the northwest Atlantic, this

would have caused us to include data from large

offshore banks, stretching up to several hundred km

from shore in the background environmental data used

to fit our SDMs. Our occurrence dataset comprised

records almost entirely from coastal areas (most\ 30

m), possibly because of increased sampling near shore.

Such spatially biased sampling will generally lead to

environmental differences between occurrence and

background datasets that may result in inaccurate

models (Phillips et al. 2009). Restricting the back-

ground environmental data used in SDMs is an

effective way to reduce potential bias in model results

(Kramer-Schadt et al. 2013; Brown et al. 2017). Thus,

we clipped environmental data layers to areas shal-

lower than 30-m depth in order to eliminate thousands

of square km of offshore banks from 30 to 100 m. Of

the 1314 occurrence records remaining after spatial

rarefaction, 11 were from depths greater than 100 m,

and an additional 31 were excluded as a result of this

change. In the Pacific, the 100 m depth contour is

typically much closer to shore than in the Atlantic,

offshore banks do not exist to the same extent, and we

had more records from areas 30 to 100 m deep.

Consequently, we limited our analysis to areas shal-

lower than 100 m, as originally intended.

Species distribution models

We modelled each species distribution using MaxEnt

3.4.1 (Phillips et al. 2017) with seasonal salinity,

temperature, and significant wave height (Atlantic

only) as predictors. MaxEnt is a presence-only method

that estimates species distributions by identifying the

distribution with maximum entropy, subject to con-

straints derived from the values of environmental

covariates at presence locations. This is equivalent to

minimizing the relative entropy between the proba-

bility distribution estimated for the covariates at
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presence locations and that estimated for the covari-

ates for the entire background landscape (Elith et al.

2011; Phillips et al. 2017). Although MaxEnt was

originally developed from a machine learning per-

spective, it is equivalent to an inhomogeneous Poisson

process model (Aarts et al. 2012; Renner and Warton

2013).

We used the default complementary log–log trans-

form option within MaxEnt to produce estimates of

occurrence probability, due to its better theoretical

justification compared to the previously favored

logistic transform (Phillips et al. 2017). To choose

the feature class (i.e. potential response curve com-

plexity) and regularization parameter (i.e. penalty for

model complexity) settings for each species’ model,

we used the ENMeval package (Muscarella et al.

2014) for R version 3.5.2 (R Core Team 2018) to

evaluate a broad range of combinations. We selected

the model settings that resulted in the lowest corrected

Akaike information criterion (AICc) for each species

and fit a model using those settings in MaxEnt using

the maximum possible number of background points

(depending on which study area) and 30-fold random

cross-validation to evaluate the models and estimate

standard deviations for the model predictions. We also

used this model, together with 2075 climate projection

datasets to predict each species’ future distribution.

Stacked species distribution models

We estimated grid cell-level invasive species richness

by stacking our species distribution model predictions

for present day and 2075 projections. We also

calculated the centre of gravity (i.e. weighted centroid)

of our present day and 2075 species richness estimates

to examine the predicted latitudinal shift in the spatial

distribution of invasive species richness within our

study area. Our estimates of species richness are

limited to the richness of our 12 focal species (per

coast), so the potential range of our estimates (and

observations) of species richness ranges from 0 to 12.

Species richness was estimated as the sum of the

occurrence probability predictions from our individual

models (Calabrese et al. 2014):

E Sj
� �

¼
XK

k¼1

pj;k

where E(Sj) is the expected species richness (S) at sitej,

K is the number of species in the dataset (12 per coast),

and pj,k is the occurrence probability prediction for

species k at site j. This is equivalent to summing

species suitability (based on occurrence probability)

maps.

Assuming pj are exact, known quantities, the

variance of E(Sj) should be estimated as (Calabrese

et al. 2014):

Var Sj
� �

¼
XK

k¼1

ð1� pj;kÞpj;k

However, in reality, pj are estimated with uncer-

tainty. To incorporate this uncertainty, we propagated

the error estimated within our individual models by

summing the estimated variances (Li and Wu 2006)

and adding it to the expected variance, changing the

equation to:

Var Sj
� �

¼
XK

k¼1

ð1� pj;kÞpj;k þ
XK

k¼1

sd2j;k

where sdj,k is the standard deviation of the model

prediction for species k at site j. We used these

estimates to construct Wald-type 95% confidence

intervals for each site.

To check the performance of the stacked species

distribution models we visually and statistically com-

pared their predictions to observed species richness.

For the statistical comparisons we aggregated our

model predictions to the same 0.5� resolution used for
the observed values, taking the mean of the finer

resolution prediction grid cells. We then used linear

regression to examine the relationship between the

predictions and the observations. Ideally, these regres-

sion models would have an intercept near 0 and a slope

near 1, and our predictions would statistically explain

(predict) a significant proportion of the variation in

observed species richness. However, we expected the

proportion of explained variation to be modest and for

model predictions to frequently exceed observed

species richness because we believe some invaders

may not have had the opportunity to disperse all

potentially suitable areas, and that the observed

number of the invaders in many areas is likely to be

an underestimate of the true value because of insuf-

ficient sampling.
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Hotspot/coldspot identification

In many other fields, hotspots and coldspots are

defined using measures of local spatial association,

such as Getis-Ord Gi*, which allow one to identify

clusters of values in weighted point data that are

particularly high, or low, relative to surrounding areas

(Getis and Ord 1992). In order to evaluate invasion

risk and impact, the magnitudes of the predicted

values are more important than their spatial associa-

tion, so we defined hotspots as the areas within the

highest invasive species richness and coldspots as the

areas with the lowest species richness, without con-

sidering spatial clustering. Areas of intermediate

species richness can be considered ‘‘warmspots’’.

Several approaches could be used to distinguish

hotspots and coldspots from other areas. We used

two to demonstrate how and why they might be used.

The first evaluated whether the invasive species

richness estimate in each pixel was significantly above

or below specific thresholds (above 8 for hotspots,

below 4 for coldspots), according to their 95%

confidence interval. This approach takes uncertainty

in model estimates into account and is effective in

communicating how the magnitude and spatial distri-

bution of invasion risk might change through time.We

used this approach to identify hotspots and coldspots

across our entire study regions. The second

approach delineated hotspots and coldspots according

to whether pixels fell within the top and bottom deciles

(i.e. top and bottom 10%) of the estimates. This

approach enables one to focus attention on a fixed

proportion of a focal area, regardless of the actual

values, and whether they change through time or

between different focal areas. It will be useful

in situations where logistical constraints impose a

limit on the area that can be studied, sampled,

monitored, or protected, or where one wants to

produce similar results across changing contexts. We

used this approach to identify hotspots and coldspots

in different ecoregions within our broader study areas

that have different numbers of invasive species. The

species richness and quantile thresholds we set in our

examples were arbitrary but, as for choosing a method

to define or delineate hot- and cold-spots, there may be

legislative, policy-based, scientific, or logistical rea-

sons for choosing thresholds in other instances.

Results

Species distribution models

Our individual species distribution models exhibited

good performance, with the area under the receiver

operating characteristic curve (AUC) ranging from

0.760 to 0.950 and Boyce Index ranging from 0.7 to

0.98 in the Atlantic (Table 1). In the Pacific, AUC

ranged from 0.815 to 0.948 and Boyce Index ranged

from 0.69 to 0.97. Seasonal temperature variables

were generally the best predictors of the distributions

of our focal species in the Atlantic, with salinity and

wave height variables each playing secondary or

tertiary roles for different species (Table 1a). In the

Pacific, seasonal temperature variables also were more

important than salinity for all the species, except for 2

molluscs; Nuttallia obscurata, and Ocinebrellus inor-

natus (Table 1b).

Observed invasive species richness and stacked

species distribution model predictions

In the Atlantic, most coastal grid cells contained

observations of at least one of our focal species, except

in much of Quebec and parts of Newfoundland

(Fig. 1a). Where data were available, the number of

our focal invasive species observed in the 0.5� grid

cells ranged from 1 to 12, with particularly high

numbers of invaders observed in parts of southwestern

Nova Scotia, southern Maine, New Hampshire, Mas-

sachusetts, and Rhode Island. Few invaders were

observed in the inner Bay of Fundy, northern New

Brunswick, Quebec, and most of Newfoundland (see

Figure A1.1 in Online Appendix for map of locations).

Our present-day stacked species distribution model

estimates for invasive species richness ranged from

0.2 to 11.1 of the possible 12 species, (4.0 ± 2.6;

mean ± Std Dev) (Fig. 1b), and exhibited a broadly

similar spatial pattern to observed richness of our focal

invasive species (Fig. 1a). The stacked species distri-

bution model did a good job of predicting observed

species richness, with the intercept and slope close to

their ideal values and more than half the variation in

observed species richness explained by predicted

richness (intercept:- 0.20, slope: 0.91, r2 = 0.52,

Online Appendix 2, Fig. A2.1). As expected (see

Methods), over-predictions of observed species rich-

ness (62% of cells) were more common than under-
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predictions (38% of cells). Our stacked species

distribution model for 2075 predicts the average

number of invasive species present per cell to increase

slightly, from 4.0 to 4.5 (± 2.6; range 0.3–11.0;

Fig. 1c). These relatively small changes in the mean

and range of predicted invasive species richness reflect

pixel-level changes that were mostly small and

positive (range - 1.8 to 2.5) as highlighted in the

anomaly plot (Fig. 1d). The centre of gravity of our

SSDM estimates shifted 33.6 km to the northeast,

from (45.30 N, 64.60 W) to (45.47 N, 64.25 W).

In the Pacific, occurrence data were available from

almost all the grid cells in our study area and the

number of observed invaders in these grid cells ranged

from 1 to 11 (Fig. 2a). High invasive species richness

was observed primarily in the Salish Sea and some

areas of West Coast Vancouver Island (Fig. 2a), low

richness was observed along the central and northern

coasts of British Columbia (BC), and low to moderate

invasive species richness was observed along the outer

coast of Washington and Oregon (see Figure A1.2 in

Online Appendix for map of locations). Our present-

Table 1 Evaluations of (a) Atlantic and (b) Pacific model performance and variable importance for each species

Species N

occurrence

Mean

AUC

AUC

SD

CV

folds

Continuous

Boyce

index

P
Seasonal

temperature

importance

P
Seasonal

salinity

importance

P
Seasonal

sig. wave ht.

importance

(a) Atlantic

Ascidiella aspersa 89 (22) 0.885 0.21 19 0.92 62.8 10.7 26.7

Botrylloides violaceus 470 (126) 0.856 0.08 30 0.95 67.9 21.7 10.3

Botryllus schlosseri 528 (168) 0.826 0.075 30 0.97 61.5 20.4 18

Caprella mutica 292 (121) 0.834 0.077 30 0.98 61.5 29.2 9.2

Carcinus maenas 1357 (284) 0.805 0.051 30 0.97 68.6 17 14.4

Ciona intestinalis 424 (107) 0.898 0.038 30 0.94 69.5 21.1 9.4

Codium fragile 610 (122) 0.836 0.081 30 0.97 47.3 19.1 33.6

Didemnum vexillum 100 (32) 0.95 0.055 28 0.89 63.4 26.4 10.1

Diplosoma listerianum 57 (28) 0.76 0.3 26 0.70 94.9 4.2 1

Hemigrapsus sanguineus 270 (76) 0.93 0.039 30 0.97 79.2 0.5 20.3

Membranipora membranacea 418 (175) 0.837 0.062 30 0.89 80.7 10.2 9

Styela clava 281 (52) 0.894 0.076 30 0.93 70.8 13.9 15.3

(b) Pacific

Botrylloides violaceus 386 (103) 0.865 0.12 30 0.90 76 23.9 –

Botryllus schlosseri 287 (70) 0.891 0.103 30 0.95 82.4 17.7 –

Caprella mutica 145 (49) 0.815 0.148 30 0.92 91.3 8.8 –

Carcinus maenas 3060 (57) 0.919 0.044 30 0.91 60.8 39.1 –

Crassostrea gigas 541 (129) 0.896 0.057 30 0.95 55.5 44.5 –

Didemnum vexillum 113 (33) 0.883 0.174 30 0.88 100 0 –

Mya arenaria 856 (203) 0.843 0.053 30 0.95 65.2 34.8 –

Nuttallia obscurata 466 (112) 0.928 0.032 30 0.95 40.8 59.3 –

Ocinebrellus inornatus 37 (22) 0.856 0.131 19 0.69 40.1 59.8 –

Sargassum muticum 466 (146) 0.845 0.085 30 0.97 81.9 18 –

Styela clava 210 (41) 0.948 0.057 30 0.91 94.8 5.1 –

Venerupis philippinarum 813 (159) 0.890 0.046 30 0.97 69.8 30.4 –

Mean area under the curve (AUC) and standard deviation (SD) were calculated for the test data from 30-fold cross validation (CV),

except where sample size limited cross validation to fewer folds. The number of occurrences (N) presented here is the number of

unique occurrence locations prior to spatial rarefaction, with the number remaining after rarefaction in parenthesis. For clarity and

brevity we present the sum of the permutation importance scores for the seasonal climatologies of each environmental parameter. The

values of most important environmental parameter are in bold
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day stacked species distribution model estimates for

invasive species richness ranged from 0.4 to 11.6

species, (4.6 ± 2.4). The stacked species distribution

model again exhibited a broadly similar spatial pattern

to observed species richness, though it predicted that

more invasive species would be present along much of

the outer Washington and Oregon coastline (Fig. 2b).

The stacked species distribution model did a similar

job of predicting observed species richness to the one

for the Atlantic (intercept: 0.01, slope: 0.81 r2 = 0.42,

Online Appendix 2, Fig. A2.2), and overpredictions of

observed species richness (69% of cells) were more

common than underpredictions (31% of cells). The

stacked species distribution model for 2075 predicted

the average number of invasive species present per cell

to increase from 4.6 to 6.4 (± 1.5; range 2.8–10. 6;

Fig. 2c). The change in predicted richness (1.9 ± 1.4;

range- 5.8 to 6.2, Fig. 2d) was positive in 90% of the

grid cells in our study area, but there were a few small

areas in the southern Strait of Juan de Fuca, Padilla

Bay, Skagit Bay, Samish Bay, and Bellingham Bay

where the expected number of these invaders was

predicted to fall. The centre of gravity of our SSDM

estimates shifted 95 km to the northwest, from

(50.56 N, - 126.61 W) to (51.14 N, - 127.60 W).

Hotspots and coldspots

Our northwest Atlantic analysis using species richness

thresholds identified hotspots throughmuch of the area

between Cape Cod and southern Maine, in Pas-

samaquoddy Bay, and in several bays in southwestern

Fig. 1 Number of focal invasive species in the northwest

Atlantic according to observations (a), present day stacked

species distribution model (SSDM) (b), and 2075 SSDM

projection (c), and the predicted change in number of invaders

according to SSDMs (d)
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Nova Scotia for the present day (Fig. 3a). Coldspots

were confined to the northern Gulf of St. Lawrence,

around Newfoundland, southeast of Cape Cod, and

small shallow areas far offshore. For 2075, there was

little change in the overall pattern of hotspots and

coldspots, apart from slight expansion of existing

hotspots and contraction of existing coldspots

(Fig. 3b). In the Pacific, much of the southern Salish

Sea was identified as present-day hotspot, as were a

few areas along the outer coast of Vancouver Island,

Washington and Oregon (Fig. 3c). Large areas around

Haida Gwaii, northern BC and southern Alaska were

identified as coldspots. Our analysis predicts that

coldspots will be almost completely eliminated by

2075, replaced by large areas of intermediate invasive

species richness (warmspots), and hotspots will

expand to cover many areas on the western coast of

Vancouver Island, the central coast of British

Columbia, and most of the outer coast of Washington

(Fig. 3d). Conversely, hotspots areas are predicted to

disappear from parts of the southern Salish Sea,

replaced by warmspots.

Using deciles to delineate hotspots at the ecoregion

level, we found similar present-day hotspots in the

same areas of Scotian Shelf as we identified in the

broader-scale species richness-based analysis

(Fig. 4a). Coldspots were identified in offshore areas

around Sable Island, south of Yarmouth, and in the

inner Bay of Fundy. These patterns changed only

slightly for the 2075 projections, with some hotspots

Fig. 2 Number of focal invasive species in the northeast Pacific

according to observations (a), present day stacked species

distribution model (SSDM) (b), and 2075 SSDM projection (c),
and the predicted change in number of invaders according to

SSDMs (d). Note that there are slight differences in the coverage
of present day and 2075 environmental datasets and, thus, the

coverage of associated model predictions. Predicted change is

calculated only for areas with data for both time periods
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and coldspots increasing or decreasing in size

(Fig. 4b). However, new coldspots were predicted to

develop in Minas Basin. In the Gulf of St. Lawrence

ecoregion, hotspots were concentrated around the

eastern Northumberland Straight and northern Cape

Breton Island, with coldspots spread around the

northern Gulf (Fig. 4c). For 2075, new hotspots are

predicted to occur in Port au Port Bay, Newfoundland

and a formerly very small hotspot in St. Georges Bay,

Newfoundland is predicted to expand considerably

(Fig. 4d). A coldspot north of the Magdalen Islands is

predicted to disappear, while new coldspot areas are

predicted to occur in the Saint Lawrence Estuary. In

the Strait of Georgia, hotspots are concentrated in the

middle part of the strait on the Vancouver Island and

mainland coastlines, with coldspots to the southeast

and northwest (Fig. 4e). For 2075, hotspot areas are

largely predicted to move to the northwest while

coldspots are predicted to shrink in the northwest and

expand in the southeast (Fig. 4e).

Discussion

Hotspots of invasion risk based on the history of

invasions and the predicted distributions of invasive

species within an area can help to identify areas where

invasive species might pose the greatest ecological

and socioeconomic threats, and where limited

resources available for prevention, early detection,

Fig. 3 Location of present and future hot and cold spots in the

northwest Atlantic (a, b) and northeast Pacific (c, d). Hot (red)
and cold (blue) spots identified as areas with predicted species

richness significantly higher than 8 and lower than 4,

respectively. Other areas (i.e. ‘‘warm spots’’) are depicted in

yellow
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and management should be focused (Kulhanek et al.

2011; O’Donnell et al. 2012; Bellard et al. 2014; Li

et al. 2016). There is a need to assess where invasive

species are most likely to establish since it is critical

for marine ecosystem management, but a lack of this

information prevents invasive species from being

effectively integrated into biosecurity monitoring

programs and conservation plans (Giakoumi et al.

2016). Previous research has used species distribution

models to examine the current and potential future

distributions of individual marine invasive species

(e.g. de Rivera et al. 2011; Lowen et al. 2016), or

closely related guilds of invasive species that exhibit

differences in their temperature and salinity tolerances

that translate to differences in their potential to spread

across cold to warm temperate and sub-arctic envi-

ronments (Lowen et al. 2017). We advanced this

approach by using species distribution models to

identify areas that are at a high risk of invasion from a

larger, more diverse suite of moderate to high risk

invasive species with well known invasion histories

under present-day and future climatological condi-

tions. Results based on this methodology provide a

broader, more integrative assessment of the spatial

patterns of the threat posed by marine invasive species

in the coastal waters of the northwest Atlantic and

northeast Pacific.

Spatial patterns in invasion risk

Previous work focusing exclusively on invasive

tunicates predicted moderate to high numbers of

invasive species to occur in most coastal areas of

SW New Brunswick, the Atlantic coast of Nova

Scotia, and in the southern Gulf of St. Lawrence, and

few species to occur in most areas around Newfound-

land and the northern Gulf of St. Lawrence (Lowen

et al. 2017). Although we focused on a broader suite of

invasive species, and used slightly different environ-

mental and occurrence different datasets, our results

were broadly similar. Focusing on the full extent of

our study areas, we found that the predicted number of

invasive species generally decreased with latitude,

such that present day invasion hotspots were concen-

trated within the southern portion of our focal area and

coldspots were generally concentrated in the north.

This pattern is related to our choice of species, which

are thought to have been initially introduced to the

south of our focal areas, or towards their southern end,

and subsequently spread northward (Fofonoff et al.

2018). Moreover, conditions in our focal area also tend

to be towards the cooler end of the thermal tolerances

of these species, exceptMembranipora membranacea

(Fofonoff et al. 2018). However, we are not aware of

marine invasive species thought to have been initially

introduced to North America in the northern waters.

Several lines of evidence support the existence of a

latitudinal gradient in marine invasive species rich-

ness, which mirrors the general latitudinal diversity

gradient. The existence of a global latitudinal gradient

in coastal marine invertebrate and plant biodiversity

(Worm and Tittensor 2018) mean that the pool of

potential invasive species declines with latitude.

Although invasive species richness is often negatively

correlated with native biodiversity in experiments, and

at very fine spatial scales, the opposite is typically true

at coarser spatial scales, and latitudinal gradients of

invasive species richness have been observed in other

taxa (Fridley et al. 2007; Sax 2001). Moreover, the

U.S. has a higher concentration of ports, and thus,

greater exposure to shipping as a vector of introduc-

tion and spread. Thus, the southern end of our study

areas have historically experienced a higher likelihood

and number of introductions of marine invasive

species. Finally, southern portions of the study areas

also have a better climate match to European and

Asian source regions than those in the north.

Widely cited global analyses have used the inten-

sity of commercial vessel traffic in major ports (e.g.

Drake and Lodge 2004), or vessel traffic and environ-

mental conditions within major ports (e.g. Seebens

et al. 2013, 2016) to assess regional-scale invasion

risk. Neither patterns of observed marine invasive

species richness, nor predicted hotspots, closely

matched the locations of major ports within our study

area (Figs. 1, 2, 3). Our results suggest that conditions

in large ports do not necessarily reflect regional-scale

invasion risk or experience the highest risk of inva-

sion, despite high levels of vessel activity. Although

bFig. 4 Location of present and future hot and cold spots in the

Scotian Shelf (a, b), Gulf of St. Lawrence (c, d), and Strait of

Georgia (e, f) ecoregions. Hot (red) and cold (blue) spots

identified as areas with top and bottom 10% of predicted species

richness within the ecoregion, respectively. Other areas that are

neither hotspot nor coldspot (i.e. ‘‘warmspots’’) are depicted in

yellow
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the ports of Boston, Seattle, and Vancouver overlap

with hotspots, they have lower observed and/or

predicted invasive species richness (for our focal

species) than nearby non-port areas, as do other large

ports that fall outside hotspots [e.g. Halifax, Saint

John, St. John’s, Prince Rupert, (see Figure A1.1 and

A1.2 in Online Appendix for maps of port locations)].

This underscores the importance of considering where

species can spread via natural dispersal following

initial introduction, as well as the influence of other

vectors of initial introduction and spread, such as

aquaculture (Naylor et al. 2001), recreational vessels

(Clarke Murray et al. 2011), oil platforms (Pajuelo

et al. 2016), and the trade of live organisms for food,

bait, education, research, and public and private

aquaria (Weigle et al. 2005) when assessing local

and regional-scale invasion risk.

Our results suggest that projected change in inva-

sive species richness by 2075 will be far more

dramatic in the northeast Pacific than the northwest

Atlantic, with many species currently confined to

warmer southern waters expected to move north, thus

reducing or eliminating present day coldspots con-

centrated on the northeast Pacific Coast (Figs. 2, 3).

Whereas most Pacific species expanded their range to

the north in our future projections, there is less change

in the Atlantic (Online Appendix 3). This may be due

to differences between the models used to project the

future climate scenario, including the magnitude of the

projected changes in temperature and salinity, which

are larger in the Pacific than the Atlantic (Brickman

et al. 2016; Peña et al. 2018), or to a larger number of

species expected cross thermal thresholds under future

scenarios in the Pacific.

Applications of invasion hotspot maps

Different scientific, management, and communication

objectives require different information, and should

guide how one chooses to define invasion hotspots.

Maps of predicted invasive species richness provide

the best depiction of our results, but discretized

hotspot maps help to simplify communication and

focus attention. In some cases, there may be thresholds

in the number of invaders that we are, or are not,

concerned about. In other cases, resource limitations

might constrain the number of sites or total area we

can monitor, manage, or mitigate, so prioritizing

hotspots (i.e., according to quantiles) make sense. We

focus on applications of hotspots and coldspots

because of the frequent need to prioritize (or deprior-

itize) specific areas for attention. However, this does

not mean that areas of intermediate invasion risk

should be ignored. Moreover, the more detailed

species richness maps and/or the full coldspot-warm-

spot-hotspot rankings can be used when decision

makers have greater capacity to deal with complexity

or to allocate resources more broadly.

Marine invasion hotspots and coldspots are most

directly applicable in invasive species monitoring and

management. Guisan et al. (2013) discuss how species

distribution models can be used in all stages of a

structured decision-making process for dealing with

biological invasions, and the principles they discuss

apply equally to our stacked species distribution

models and hotspot maps. First, the models can help

to identify potential problems, such as increasing

invasion risk in an area due to climate change, and help

to provide a frame of reference to define objectives and

possible actions. By indicating where species are most

likely to become established now and spread in the

future, predictive models facilitate early detection

through optimization of effective, cost-efficient mon-

itoring programs (Honrado et al. 2016), and can allow

one to anticipate and plan regulatory or management

interventions to prevent, mitigate or eradicate inva-

sions. Then, the models can help to assess how

effective different actions might be and trade-offs

between the costs and benefits of different options

prior to a final decision (e.g. Baxter and Possingham

2011). Finally, error associated with model estimates

contribute to uncertainty assessments throughout the

decision-making process.

Marine invasive species intersect with other con-

servation and marine management objectives through

their vectors of introduction and dispersal, and through

their ecological, economic, and social/cultural effects

in affected areas. Vessel traffic (ballast water, hull

fouling) and aquaculture are considered the primary

vectors responsible for the introduction and spread of

marine invasive species (Williams et al. 2013),

including all the species in our study. In recent years,

the threat posed by introduced and invasive species

has been reduced though regulatory measures and

voluntary codes of practice, including ballast water

management (Scriven et al. 2015), and control of

introductions and transfers of aquaculture species, and

movement of aquaculture gear (ICES 2005). However,
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a degree of threat remains. Rates of compliance with

existing regulations are less than 100%, and many

vessels (e.g. recreational vessels, vessels moving

within or between regions within national boundaries)

and aquaculture activities are not yet subject to

regulations (Castro et al. 2018). Moreover, hull

fouling is a major component of the risk posed by

vessel traffic but, unlike ballast water, it is largely

unregulated (Sylvester et al. 2011). Hotspot maps

depicting areas that are at high and low risk of invasion

by multiple species could be used to focus new and

existing regulatory measures in ways that minimize

the risk of introduction and spread of invasive species

by these vectors and the regulatory burden placed on

both industries.

Examining how invasion hotspots intersect with

areas of conservation concern (e.g. habitats of threat-

ened species, marine protected areas, biodiversity

hotspots) or areas providing important economic and

ecosystem service benefits (e.g. ports, marinas,

beaches) is another way to focus biosecurity measures

and guide decisions about conservation and marine

spatial planning. For instance, in addition to being a

vector of marine invasive species, the aquaculture

industry suffers some of their most significant eco-

nomic impacts, through bio-fouling of aquaculture

organisms and gear, as well as losses due to compe-

tition and predation by marine invasive species (Beal

and Kraus 2002; Carver et al. 2003). Maps of invasion

hotspots could be used to assess the current and future

threat to existing aquaculture operations and poten-

tially influence where new aquaculture leases are

located. Aquaculture operations in the southernGulf of

St. Lawrence have been strongly affected by marine

invasions (Locke et al. 2009), but this area has only

moderate invasive species richness relative to the

entire northeast Atlantic study region, and no hotspots

were identified for this area in our broadest scale

analyses (Figs. 2, 3). However, defining hotspots

according to regionally specific thresholds reveals that

hotspots within the Gulf of St. Lawrence ecoregion are

concentrated in the southern Gulf, and that a high

proportion of aquaculture leases are in current or

projected invasion hotspots (Figs. 4, 5). This demon-

strates the value of setting regionally and/or objective-

specific criteria to define and delineate hotspots and

illustrates how potentially serious and significant

impacts on ecosystem goods and services from inva-

sive species exist outside the broadest-scale hotspots.

Our analyses provide information about invasion

risk, in terms of the identity and number of invasive

species that are likely to become established in an area.

However, in many management applications, risk of

impacts may be more important than risk of invasion.

Estimating cumulative invasion impacts requires

information about the abundance of each invasive

species, as well as knowledge of the ecological and

human systems present in an area, and how particular

invasive species affect them. If such information

cannot be obtained, it may sometimes be possible to

use cumulative invasion risk as a proxy for cumulative

risk of impact, but only with great caution.

Limitations

Our analysis of invasive species richness and invasion

risk hotspots is subject to the same limitations as other

analyses using species distribution models. All esti-

mates provided by species distribution models are

subject to errors because of data deficiencies and

uncertainty introduced through imperfect model spec-

ification (Barry and Elith 2006). Predictions will be

imperfect because occurrence data used to fit the

models is incomplete and may be biased towards areas

where observations are more likely; long term clima-

tologies will not capture intra-annual variability’s

effects on species distributions; even the best high

resolution climate data will not perfectly match the

environmental conditions organisms actually experi-

ence; and species distribution models never capture all

the factors that control a species’ distribution (Ron-

dinini et al. 2006).

The differences between observed species richness

and model-based estimates can be informative. These

differences can be caused by shortcomings of either

the SDMs or the observation data (e.g. underestimates

due to insufficient sampling). Where model predic-

tions are higher than observed species richness three

scenarios are worth investigating. First, some inva-

sion(s) may have gone undetected due to insufficient

sampling. Second, although our focal species are

likely to have had many opportunities to spread to

representative (in terms of environmental suitability)

habitats in the 20-plus years since each invasion

began, they may not have reached or established in all

suitable areas. In suitable areas where species are not

yet established there may be an opportunity for

preventative management. Third, there may be a
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limiting environmental factor or biotic interactions in

that area that has not been captured in the model.

Underpredictions of observed species richness were

half as common as overpredictions in our results.

Underpredictions could be indicative of source-sink

dynamics, where repeated introductions or on-going

dispersal (via natural or anthropogenic vectors) help to

support populations in marginal habitats (Lockwood

et al. 2005; Franklin 2010). Future research combining

predictions of invasive species richness and informa-

tion about currents and vector activity could help to

identify areas where high dispersal maintains higher

than predicted species richness, as well as environ-

mentally suitable areas that go uncolonized due to

dispersal limitation.

Including additional environmental parameters

(e.g. nutrients, pH, etc.) might have further improved

our models. We did not include additional predictor

variables, either because we did not have access to

environmental projections that would allow us to

project our models, or because no appropriate pre-

sent-day data exist. For example, most of the species

we investigated rely on hard substrates (Fofonoff et al.

2018). To our knowledge, high resolution substrate

data throughout our study areas do not exist. Without

it, our models are likely to over-estimate invasive

species richness in sandy or muddy areas, unless

sufficient rocky outcrops or anthropogenic structures

are present within each of the grids to which a

probability is assigned. Thankfully, the accessibility

of high resolution, historical and present-day data for

Fig. 5 Existing aquaculture sites (green diamonds) in relation

to present day and future invasion risk hotspots and coldspots in

the southern Gulf of St. Lawrence, demonstrating a projected

increase in the severity of invasions near aquaculture sites in the

Magdalen Islands. Hotspots (red) and coldspots (blue) are

delineated as top and bottom 10% of predicted invasive species

richness in the Gulf of St. Lawrence ecoregion (as in Fig. 4).

Other areas that are neither hotspot nor coldspot (i.e. ‘‘warm-

spots’’) are depicted in yellow
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an increasingly wide array of environmental param-

eters that can be used to model the distributions of

marine species is steadily increasing (e.g. Bio-

ORACLE v2.0, Assis et al. 2018). Acquiring projec-

tions for environmental parameters under future

climate scenarios is more difficult, and remains an

impediment to further improving predictions of the

future distributions of invasive and native species.

Distribution models based on species’ environmen-

tal responses typically do not account for biotic

interactions, or how they might change in response

to environmental change (Davis et al. 1998), and

simple stacking of distribution models involves an

implicit assumption that species occurrence probabil-

ities are independent after accounting for the effects of

the environmental predictors (Calabrese et al. 2014).

Nor do species distribution models typically capture

the influence of genetic variability, phenotypic plas-

ticity, or evolutionary changes (Elith and Leathwick

2009). Accounting for genetic population structure,

such that all local populations are not assumed to have

the same physiological responses and environmental

tolerances, significantly improves model predictions

(Lowen et al. 2019). Thus, a lack of information about

the plasticity, genetic structure, and evolutionary

responses of populations, along with the uncertainty

associated with climate projections, will constrain the

predictability of species’ future distributions.

Predicting species distributions in the context of

biological invasions and climate change can cause

additional difficulties because the models assume that

species are at equilibrium with their environment and

that the relevant environmental gradients have been

well sampled, yet such contexts can involve predic-

tions for novel and non-equilibrium conditions (Elith

and Leathwick 2009). We have tried to reduce the

challenges posed by invasions by selecting species

that were well established and have already spread

over broad spatial and environmental ranges, but it is

not possible to know if they have all reached

equilibrium.

Despite these limitations, correlative species dis-

tribution models remain one of the few practical

approaches to predicting past, current, and future

species distributions, and their ability to use incom-

plete data to produce spatially comprehensive esti-

mates for the present day and future distributions is a

major advantage (Elith and Leathwick 2009; Ron-

dinini et al. 2006). With today’s high-resolution

oceanographic data and models, these estimates can

be made for a broad range of spatial extents and

resolutions that are useful in the context of manage-

ment applications. These estimates are likely to

improve as data for more factors that control species

distributions’ become available and existing oceano-

graphic models are refined further. Finally, like any

analysis of cumulative invasion risk or impact, our

findings are also limited by the set of species included

in the analysis. Although we chose to select invasive

species covering a broad range of taxonomic and life

history diversity in hopes of making our results more

representative, they may not reflect the patterns of the

species we could not include due to lack of data or

logistical constraints.

Local adaptation can cause distribution models for

different populations and genetic lineages to differ

markedly from one another, and for combined models

to differ markedly from models based on the occur-

rence data for the entire species (Hällfors et al. 2016;

Lowen et al. 2019). Our study uses occurrence data

from within each of our focal regions to model the

species distributions within each of those regions. We

chose not to include occurrence data from other parts

of the species’ global distributions so that our models

would reflect the potential distributions and environ-

mental responses of the genetic lineages that have

established populations in each our focal regions.

However, this means that our models may not capture

the entire range each species could potentially achieve

if secondary introductions bring additional genetic

lineages with different responses to temperature,

salinity, and wave action to our shores.

Conclusions

Understanding, managing, and monitoring species

invasions are complex, difficult tasks. There are many

established and potential invaders to consider, each

associated with environmental requirements, dispersal

vectors and pathways, potential impacts and mitiga-

tion measures. Additionally, environmental change is

altering the susceptibility of native ecosystems to

invasion (Stachowicz et al. 2002; Bellard et al. 2018).

Tools that synthesize across this complexity are

needed to clarify our thinking, to identify where the

cumulative risks (and thus potential impacts) of

invasive species are greatest, and to shape
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management responses. By stacking species distribu-

tion models for 12 invasive species in the northwest

Atlantic and northeast Pacific to identify invasion

hotspots, this study demonstrates that there is signif-

icant spatial heterogeneity in cumulative invasion risk

in the coastal northwest Atlantic and northeast Pacific,

and that these patterns are likely to change over the

next 55 years in response to climate change, particu-

larly in the Pacific. Stacked species distribution

models and the hotspot maps they generate provide

an integrated perspective that can help focus attention

and provide guidance to those tasked with generating

new scientific knowledge, prioritizing locations for

monitoring and implementing policy around marine

invasive species, typically with limited resources.

Acknowledgements We thank the editor, two anonymous

reviewers, P. L. Thompson and A. M. Gehman for comments on

a previous version of this manuscript.We also thankM. Sizer for

help with occurrence data, and M. E. Auger-Méthé and R. R. E.
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