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Abstract Marine protected areas (MPAs) can be an

effective tool for the conservation and management of

marine coastal habitats. MPAs have been shown to

halt habitat degradation, enhance the biomass of

exploited species and diversity in general. Yet, we

still know little about its role in halting the spread of

non-native species. In this study, we assessed the role

of MPAs in the structure of shallow subtidal commu-

nities around São Miguel Island, in general, and

particularly on distribution of the two species of genus

Asparagopsis: A. armata and A. taxiformis. In the

Azores, the former is a well-established invasive

species, whereas the status of A. taxiformis is still

questionable. Overall, there was a significant greater

diversity in terms of both species richness and number

of macroalgal functional groups within MPAs. How-

ever, when considering the relative abundance of the

various macroalgal functional groups, or the assem-

blage as a whole (multivariate analysis), there was no

significant difference between areas within and out-

side MPAs. The cover of A. taxiformis was signifi-

cantly greater within MPAs but not its biomass,

whereas no significant variation was observed for A.

armata. Overall, results suggest that surveyed MPAs

had a positive effect on the diversity of shallow-water

macroalgal communities. However, they have a lim-

ited role on the distribution of both Asparagopsis spp.

and negligible effects when considering the relative

abundances of macroalgal functional groups.

Keywords Macroalgal assemblages � Azores �
Invasion � Spatial distribution � Shallow-water � Rocky

shores

Introduction

Many disturbed marine ecosystems worldwide are

associated with habitat degradation, biodiversity loss,

impairment of ecosystem functionality or with the

spread of non-indigenous species (NIS) (Gianni et al.

2018). Marine protected areas (MPA) are an important
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tool in coastal management, essential for ensuring the

conservation of marine biodiversity and biomass,

protecting or reducing degradation of habitats and

ecosystems and for the maintenance of ecosystem

functioning and resilience (Salm et al. 2000; FAO

2011; Bennet and Dearden 2014). MPAs can also have

a positive impact on the local environment and

economy benefiting local human populations (e.g.

FAO 2011; Russi et al. 2016). MPAs are commonly

used around the world to, via direct and indirect

pathways, restore ecosystem services (e.g. coastal

protection, fisheries, and opportunities for recreation

and education, Leenhardt et al. 2015). MPAs have

been found to be effective at increasing abundances,

sizes, and biodiversity in coastal marine assemblages

(e.g. Fraschetti et al. 2005; Micheli et al. 2005 and

references therein, Alves et al. 2018; Topor et al.

2019) and limit the colonization success of invasive

species (e.g. Ardura et al. 2016; Gestoso et al. 2017).

MPAs can also assist in restoring the herbivory and

maintenance of corals (Leenhardt et al. 2015), or in

recovering sea urchin predators, in turn preventing

overgrazing and leading to the recovery of macroalgal

canopies (Sala et al. 1998; Goriup 2017). In the

Azores, the established MPA network is also of key

importance, providing several opportunities to

enhance marine conservation, reducing user conflicts,

and promoting sustainable development and research,

although it must be effectively implemented and

integrated into a wider marine management strategy

for the region to achieve conservation goals (Abecasis

et al. 2015).

On temperate rocky reefs, macroalgae are the main

biological ecosystem engineers (Steneck et al. 2002;

Neto et al. 2005) and play an important structuring role

in intertidal and shallow subtidal communities by

providing sheltering and substrate for a diverse suite of

organisms (Davidson and Pearson 1996; Jenkins et al.

1999; Neto et al. 2005; Christie et al. 2009). Different

pre- and post-recruitment processes, as well as envi-

ronmental conditions or disturbances (see Sala et al.

1998; Tuya and Haroun 2006 and references therein)

can influence the composition, distribution and struc-

ture of algal assemblages.

In the Azores, shallow subtidal macroalgal com-

munities have been shown to be dominated by species

with warm-temperate affinities (Sangil et al. 2018) and

several NIS have been reported in the Azorean marine

ecosystems (Cardigos et al. 2006). Among

macroalgae, the red alga Asparagopsis armata Harvey

is probably the most conspicuous and widespread

invasive macroalga present across the whole archipe-

lago (Neto 1994; Cardigos et al. 2006; Martins et al.

2019a, b). Native to southern Australia and New

Zealand (Horridge 1951), the first confirmed record of

A. armata in the Azores dates back to 1952 (Tittley

and Neto 2005). The species is currently widely

distributed throughout the Atlantic and Mediterranean

coasts from the British Isles to Senegal (Nı́ Chualáin

et al. 2004; Andreakis et al. 2007a). The co-generic

species Asparagopsis taxiformis (Delile) Trevisan was

considered cosmopolitan in warm-temperate to trop-

ical waters (Nı́ Chualáin et al. 2004). However, recent

studies suggest that the highly invasive Indo-Pacific

Mediterranean lineage (Lineage 2 in Andreakis et al.

2016), dominant in the central Mediterranean, has

expanded its range to the southern coasts of Portugal

(Andreakis et al. 2007a, b; Dijoux et al. 2014),

representing a cryptic invasion in the Azores (An-

dreakis et al. 2016), co-existing here with the Atlantic

lineage (Lineage 3 in Andreakis et al. 2016). The

diploid epiphytic tetrasporophyte of both species is

known as the ‘Falkenbergia’ stage, a small ‘‘pompon’’

that can be only distinguished by quantitative mor-

phological features (Zanolla et al. 2014), and therefore

never during field sampling.

Despite the wide distribution and spread rate of the

Asparagopsis complex across the Macaronesian

archipelagos, little is yet known about their potential

ecological and/or economic impact, acting in isolation

or in synchrony (but see Pacios et al. 2011; Guerra-

Garcı́a et al. 2012; Katsanevakis et al. 2014; Martins

et al. 2019a, b). Analyses of its distribution are scarce

(but see Martins et al. 2019a, b), although crucial to

understand the drivers of its distribution (Underwood

1993). Studies of NIS often reveal that the invader

seems to perform better than congeners in the invaded

communities (Colautti et al. 2004), and, moreover,

species with similar patterns of resource use and

habitat requirements (as e.g. A. armata and A.

taxiformis) are expected to increase interspecific

competition.

Quantitative studies can be very useful in detecting

changes in community structure, e.g. regarding the

relative abundance of key species and associated

ecosystem processes (Sangil et al. 2018). In the

present study, a quantitative visual sampling, with a

special focus on Asparagopsis spp., was done to
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investigate the role of marine protected areas in

structuring shallow subtidal macroalgal communities

in general, and the distribution of Asparagopsis spp. in

particular. Considering the effects of MPAs elsewhere

(see description above), we hypothesized a greater

abundance of canopy forming algae and overall

diversity within MPAs, which in turn, would reduce

the invasibility of macroalgal assemblages.

Methods

Study site and benthic community

This study was done in São Miguel Island, Azores

(37�510 to 37�420 N and 25�510 to 25�080 W, Fig. 1).

Rocky shore shallow-water (5 m depth) benthic

assemblages in the Azores are mostly dominated by

macroalgae. The most abundant organisms at this

depth include articulated calcareous (e.g. Ellisolandia

elongata (J. Ellis & Solander) K.R. Hind), encrusting

calcareous (e.g. Lithophyllum sp.), coarsely branched

algae (e.g. Halopteris scoparia (Linnaeus) Sau-

vageau), and corticated foliose algae (e.g. Dictyota

spp.) (Martins et al. 2008). This is also the depth at

which the gametophytic phase of the invasive A.

armata attains its highest biomass during its seasonal

peak in abundance in late spring/early summer (Neto

2000, 2001).

Sampling design

To examine the patterns of distribution of A. armata

and A. taxiformis and associated assemblages across

protected and non-protected areas of São Miguel

Island, 15 exposed locations separated by kilometres

were randomly sampled. Six of them were located

within and nine outside marine protected areas (MPA)

(Fig. 1). Within each location, nine quadrats of

50 9 50 cm were haphazardly placed on the sea

bottom (a few metres apart). The assemblage in each

quadrat was visually sampled using the method of

Dethier et al. (1993) where a score of 0 (absent) to 4

(filled = 4%) was given to each taxa within each of the

twenty-five 10 9 10 cm subquadrats. Organisms fill-

ing less that � (= 1%) of all the twenty-five

subquadrats were recorded as rare and later ascribed

an arbitrary score of 0.5%. The specimens of the

gametophytes Asparagopsis spp. present on the sam-

pling quadrats were then collected for later determi-

nation of dry biomass. At the laboratory, samples were

sorted (A. armata and A. taxiformis), cleaned of

epiphytes, individually oven dried at 60 �C for 48 h

and then weighted. All sampling was done between 22

and 30 June 2017, during the peak of A. armata

abundance.

Fig. 1 Sampled locations across the island. White dots indicate locations included within marine protected areas and black dots

location with no protection status
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Data analysis

The algal assemblage was grouped into 7 morpho-

functional groups (FG) adapted from Steneck and

Dethier (1994): articulated calcareous algae (e.g.

Ellisolandia elongata, Jania spp.), canopy forming

algae (e.g. Sargassum spp., Cystoseira spp.), coarsely

branched algae (e.g. Halopteris spp., Plocamium

cartilagineum), corticated foliose algae (e.g. Dictyota

spp.), encrusting algae (including both calcareous and

non-calcareous species), foliose algae (e.g. Ulva

rigida) and filamentous algae (e.g. Cladophora spp.,

Polysiphonia spp.).

To examine the role of MPA on the species richness

and number of FG of macroalgae as well as on the

abundance of Asparagopsis spp. (biomass and per-

centage cover) and each FG (percentage cover), we

used a 2-way permutational ANOVA, with Protection

as a fixed factor (2 levels) and Location as a random

factor nested in Protection (PERMANOVA, Anderson

2001). PERMANOVA was run on Euclidean distances

with 999 permutations. Prior to analysis, PERMDISP

was used to check data for heterogeneity of variances,

and transformations were applied where necessary.

Differences between protected and unprotected

areas in the structure of assemblages were investigated

as a whole using a similar design by running a
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Fig. 2 Mean (?SE) percentage cover of a Asparagopsis armata and b Asparagopsis taxiformis at the sampled locations both inside or

outside marine protected areas (MPA)
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PERMANOVA using a Bray–Curtis similarity matrix

of fourth-root transformed data (Clarke and Warwick

1994).

All analyses were run on the PRIMER-E v6 ?

PERMANOVA add-on (Clarke and Gorley 2006).

Results

The percentage cover of A. armata and A. taxiformis

varied substantially across the island ranging between

0 and 36.33 ± 5.21 (mean ± SE) for A. armata and

between 0 and 11.01 ± 4.18 for A. taxiformis (Fig. 2).

Similarly, the biomass of A. armata and A. taxiformis

ranged between 0 and 17.15 ± 7.99 g (mean ± SE)

and between 0 and 3.37 ± 1.51 g, respectively

(Fig. 3). Percentage cover of A. taxiformis varied

significantly with levels of protection (inside vs.

outside MPA) and locations (p\ 0.05 and 0.001

respectively; Table 1, Fig. 2) and was, overall, sig-

nificantly greater inside MPAs (Fig. 2; percentage

covers of 5.30 ± 1.03 vs. 1.04 ± 0.41). This differ-

ence between levels of protection, however, was not

statistically significant when considering its biomass

(p = 0.08; Table 1). In the case of A. armata, neither

the percentage cover or its biomass varied signif-

icantly with protection (p = 0.28 and 0.64 respec-

tively), although there was significant variation among
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Fig. 3 Mean (?SE) biomass (g of dry mass per 0.25 m2) of a Asparagopsis armata and b Asparagopsis taxiformis at the sampled

locations, located inside or outside marine protected areas (MPA)
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locations (p\ 0.001 in both cases; Table 1; Figs. 2,

3).

A significant greater number of species and FGs

found were found inside MPAs (mean ± SE, species

richness: inside MPA 7.19 ± 0.28, outside MPAs

4.80 ± 0.19; Number of Functional Groups: inside

MPAs 4.72 ± 0.92, outside MPAs 3.51 ± 0.11;

p\ 0.001 and p\ 0.01 respectively; Table 1, Fig. 4).

No significant variation was found on the abun-

dance of the different macroalgal FGs with protection,

although there was significant spatial variation in their

abundance among locations (Table 2, Suppl.

material).

When considering the macroalgal assemblage as a

whole (multivariate data), there was also no significant

variation in the structure of the macroalgal assemblage

between MPAs and unprotected areas (p = 0.248

considering all taxa and p = 0.426 considering func-

tional groups; Table 3).

Discussion

This study reveals a significant greater diversity, both

in terms of species richness and numbers of macroal-

gal functional groups, inside MPA. This result is in

accordance with the established idea that MPAs can

have a positive effect of the diversity of marine coastal

habitats (Fraschetti et al. 2005; Gaines et al. 2010;

Leenhardt et al. 2015). However, there was limited

evidence, in our study, that MPAs influenced the

relative abundance of macroalgal species. Moreover,

there was limited evidence that MPAs had any effect

on the distribution of species of Asparagopsis. Such a

result is unexpected considering the biotic resistance

hypothesis (Elton 1958), whereby more diverse com-

munities are thought to be less susceptible to invasion

because of a more complete utilization of resources, a

result that has also been experimentally shown by

Arenas et al. (2006). Such lack of effect of MPAs on

the distribution of A. armata however, has also been

documented by other authors (e.g. Blanco et al. 2018).

The role of MPA in preventing biological inva-

sions, especially macroalgae, and the mechanistic

importance of diversity in determining invasion suc-

cess is poorly understood (Stachowicz et al. 2002;

Blanco et al. 2018), when compared to other factors,

e.g. predation, disturbance, productivity or propagule

supply, which can also play an important role in

determining patterns of invader distribution (Stachow-

icz et al. 2002).

Many macroalgal species are vulnerable to her-

bivory, which can have a structuring role in macroal-

gal communities (Ruitton et al. 2000; Gianni et al.

Table 1 Permutational

ANOVA comparing the

percentage covers and

biomass of Asparagopsis

armata and Asparagopsis

taxiformis, and the number

of algal taxa (S) and

functional groups (N FG)

inside and outside marine

protected areas (MPAs) and

locations

Significant p values (\
0.05) are in bold

df degrees of freedom, MS

mean squares

Source df MS F p

Asparagopsis armata cover Protection 1 1814.6 1.307 0.28

P(perm) PERMDISP: 0.084 Location (Protection) 13 1388.3 8.779 0.001

Residual 120 158.14

Asparagopsis taxiformis cover Protection 1 587.4 6.321 0.027

P(perm) PERMDISP: 0.119 Location (Protection) 13 92.94 3.724 0.001

Residual 120 24.95

Asparagopsis armata biomass Protection 1 83.70 0.328 0.64

P(perm) PERMDISP: 0.133 Location (Protection) 13 254.87 3.731 0.001

Residual 120 68.30

Asparagopsis taxiformis biomass Protection 1 23.34 3.188 0.084

P(perm) PERMDISP: 0.062 Location (Protection) 13 7.32 3.043 0.002

Residual 120 2.41

S Protection 1 183.95 15.189 0.001

P(perm) PERMDISP: 0.584 Location (Protection) 13 12.11 4.984 0.001

Residual 120 2.43

N FG Protection 1 47.91 14.384 0.007

P(perm) PERMDISP: 0.160 Location (Protection) 13 3.33 4.355 0.001

Residual 120 0.7648
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2017, 2018; Martins et al. 2019a, b). In this context,

the removal of natural predators may directly or

indirectly influence these macroalgae communities

through trophic cascades (Micheli et al. 2008, Alves

et al. 2018). For example, mass occurrence of sea

urchins, caused by human activities that overexploit

their predators, is responsible for the depletion of

macroalgal communities and the subsequent forma-

tion of extensive barren grounds (Tuya and Haroun

2006; Northerhaug and Christie 2009; Gianni et al.

2017). Although we considered sea urchins in our

sampling, these macro herbivores were recorded in

such low densities that they were not analysed nor

reported here. Worth considering is the herbivore

fishes influence on algal species abundance and

dynamics, facilitating the seasonal dominance of

chemically-defended algal population such as A.

armata (e.g. Sala and Boudouresque 1997), or their

recently highlighted importance of in controlling the

sublittoral algae (Ruitton et al. 2000; Gianni et al.

2017, 2018). Herbivore fishes could be therefore

playing an important role in structuring macroalgal

assemblages at our sampled depth, as in the Azores the

hovering herbivore Sparisoma cretense and the sparid
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Fig. 4 Mean (?SE) a number de macroalgal morpho-functional groups (FG) and b number of macroalgal taxa (S) at the sampled

locations, located inside or outside marine protected areas (MPA)
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Sarpa salpa had the highest mean densities at 6 m

(0.11/m2 and 0.09/m2) among herbivores (Bertoncini

et al. 2010). Similar mean densities (between 0.2 ind/

m2 and 0.04 ind/m2) have been recorded in different

areas of the Mediterranean Sea (Gianni et al. 2017 and

references therein), showing that the conservation of

marine vegetated habitats should take into

consideration the role of herbivorous fishes and the

assessment of their densities in space and time (Gianni

et al. 2017, 2018). Changes in fishing pressure acting

on top predators and negatively cascading down the

food web (Sala et al. 1998; Gianni et al. 2013) and

increasing of thermal habitat suitability of S. salpa due

to the rising sea surface temperature (Marras et al.

Table 2 Permutational ANOVA comparing the abundance of each FG inside and outside MPA and locations

Source df MS F p

Coarsely branched algae Protection 1 94.97 0.026 0.862

P(perm) PERMDISP: 0.215 Location(Protection) 13 3697.6 12.074 0.001

Residual 120 306.26

Foliose algae Protection 1 0.02 0.687 0.428 (P(MC))

P(perm) PERMDISP: 0.417 Location(Protection) 13 0.03 1.019 0.455 (P(MC))

Residual 120 0.03

Corticated foliose algae Protection 1 331.39 0.304 0.587

P(perm) PERMDISP: 0.459 Location(Protection) 13 1091.20 4.187 0.001

Residual 120 260.59

Canopy forming algae Protection 1 398.37 0.0593 0.825

P(perm) PERMDISP: 0.446 Location(Protection) 13 6722.70 16.872 0.001

Residual 120 398.46

Filamentous algae Protection 1 4031.2 1.207 0.305

P(perm) PERMDISP: 0.230 Location(Protection) 13 3339.7 18.597 0.001

Residual 120 179.59

Articulated calcareous algae Protection 1 1.84 0.160 0.68

P(perm) PERMDISP: 0.084 (Fouth root) Location(Protection) 13 11.52 44.458 0.001

Residual 120 0.26

Encrusting algae Protection 1 194.43 0.080 0.816

P(perm) PERMDISP: 0.054 Location(Protection) 13 2426.5 12.501 0.001

Residual 120 194.1

Significant p values (\ 0.05) are in bold

df degrees of freedom, MS mean squares

Table 3 Multivariate Permutational ANOVA testing for the effects of protection over the structure of macroalgal assemblage, based

on fourth root abundance data of different taxa and FG

Source df MS F p

Assemblage (Taxa) Protection 1 24,298 1.279 0.248

P(perm) PERMDISP: 0.001 Location(Protection) 13 18,992 27.543 0.001

Residual 120 689.53

Assemblage (FG) Protection 1 8991.6 1.002 0.426

P(perm) PERMDISP: 0.001 Location(Protection) 13 8974.7 24.67 0.001

Residual 120 363.78

Significant p values (\ 0.05) are in bold

df degrees of freedom, MS mean squares
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2015) can also increase herbivore pressure on canopy

forming algae (Gianni et al. 2018).

It is unclear if any such processes could be

responsible for camouflaging the potential effects of

MPAs on the distribution of these invasive species, or

the nature of the relationship between the two

Asparagospsis spp. across time, taking in considera-

tion that they have very different seasonal dynamics.

Such study should as biomass. Further observational

and experimental work, currently underway, may help

shed light on the mechanisms determining the sea-

sonal distribution and potential competition of the

complex Asparagopsis spp. in the Azores.
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