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Abstract Understanding how selection pressures

change during the course of an invasion is a key

question in invasion biology. Shifts to greater repro-

ductive success and output are expected to occur

towards range edges of expanding invasive species as

a means of increasing colonization opportunities and

accelerating further spread. In a glasshouse experi-

ment, we investigated shifts in reproductive traits

(allocation to reproduction, seed number vs. seed size,

capacity for self-fertilization) across multiple popula-

tions spanning the entire range of two coastal exotic

invasive plant species (Gladiolus gueinzii Kunze and

Hydrocotyle bonariensis Lam.) in eastern Australia.

Although there was no significant increase in alloca-

tion to reproduction towards range edges or changes in

seed provisioning, range edge populations displayed

an increased capacity for self-fertilization in the

absence of pollinators for both species. For H.

bonariensis this entailed an increase in the probability

of fruit production towards range edges while for G.

gueinzii it was an increase in the probability of

forming developed seeds towards range edges. Greater

capacity for self-fertilization may facilitate further

range expansion as it alleviates any reliance on

external factors for pollination at the range edge.

Our results suggest that increased capacity for self-

fertilization towards range edges may be a key factor

in promoting range expansion in some invasive

species.

Keywords Autonomous self-fertilization � Invasive
species � Introduced range � Range expansion �
Reproductive traits

Introduction

Invasive species have been implicated in a number of

adverse environmental outcomes such as loss of

biodiversity and ecosystem function (Clavero and

Garcı́a-Berthou 2005; Molnar et al. 2008; Hedja et al.

2009). As such, much research has been dedicated to

studying the key life history traits of successful

invasive species in order to best understand what

makes a species a successful invader. Studies com-

paring trait differences between invasive species from

their native range compared to their introduced range

have found that introduced populations of invasive

species have a suite of different traits including greater

biomass (Siemann and Rogers 2001; Caño et al. 2008),

fecundity (Caño et al. 2008; Correia et al. 2016), and
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plasticity (Davidson et al. 2011). However, many of

our existing ideas regarding successful invasions can

be applied within the invaded range of species as

invasive species rarely remain static in their intro-

duced range, with many still undergoing range

expansion and continually experiencing novel envi-

ronments and selection pressures towards range edges.

As species expand in their range, the process of range

expansion itself may select for advantageous ‘‘inva-

sive’’ traits in range edge populations to facilitate

further range expansion (Phillips et al. 2010).

Increased allocation to reproductive structures and

increased fecundity have commonly been associated

with the success of invasive species when introduced

to novel environments (e.g. Brown and Eckert 2005;

Caño et al. 2008; Masson et al. 2008; Correia et al.

2016). As populations expand, these traits are likely to

be under strong selection towards range edges as a

means of significantly increasing colonization oppor-

tunities, hence facilitating further range expansion.

Increased allocation to reproductive biomass in frontal

populations has been found in a variety of range

expanding invasive taxa (e.g. Lester et al. 2007; Ling

et al. 2008; Gutowsky and Fox 2012; Lopez et al.

2012; Houston et al. 2013; Kambo and Kotanen 2014;

Masson et al. 2016). However, within a given repro-

ductive event, organisms can produce a small number

of large offspring or a large number of small offspring

due to resource allocation trade-offs (Westoby et al.

1992). Although offspring with greater maternal

provisioning have been shown to be more competitive

(Jakobsson and Eriksson 2000, 2003), lower conspeci-

fic density towards range edges of invasive taxa is

expected to drive selection for increased reproductive

rate at the expense of competitive ability (Burton et al.

2010; Alex Perkins et al. 2013). In terms of reproduc-

tion in plants, producing smaller seeds will result in a

greater number of offspring for a given reproductive

event and as such small seed size has been widely

regarded as a key element in ecological strategies that

rely on frequent colonization events (Henery and

Westoby 2001) such as at invasion fronts. Changes in

seed number (Alexander et al. 2007) and seed

provisioning (Huang et al. 2015; Tabassum and

Leishman 2018; but see Kambo and Kotanen 2014)

have been reported towards range edges of many

invasive plants, however a shift towards a greater

number of smaller seeds towards range edges has not

been explored.

Another trait associated with successful invasions

in novel environments (particularly with respect to

invasive plants) is the ability to produce offspring

through self-fertilization (Petanidou et al. 2012; but

see Atlan et al. 2015). Plants that are able to self-

pollinate and self-fertilize are likely to be successful

invaders because reproduction is not constrained by

external factors such as mate and/or pollinator limi-

tation (Baker 1974; Pannell et al. 2015). Numerous

studies have found significantly higher numbers of

self-compatible invasive plants than self-incompatible

ones in given regional floras, many of which have also

been found to autonomously self-fertilize (self-fertil-

ize without pollination) (Rambuda and Johnson 2004;

van Kleunen and Johnson 2007; van Kleunen et al.

2008; Hao et al. 2011; but see Sutherland 2004).

Increased capacity for uniparental reproduction is not

only beneficial for initial establishment but also at

range edges of expanding species where individuals

may occur at lower densities (experiencing mate

limitation) and also be less apparent to pollinators

(Pannell and Barrett 1998; Herlihy and Eckert 2005;

Pannell et al. 2015). Many studies have found

increased capacity for self-fertilization in peripheral

populations of native species where local extinction

and continual re-colonisation may be occurring (e.g.

Busch 2005; Herlihy and Eckert 2005; Moeller 2006;

Darling et al. 2008; Griffin and Willi 2014). However,

few studies have examined whether this is a mecha-

nism facilitating range expansion in invasive plants

(Colautti et al. 2010).

Despite ongoing research into understanding traits

of successful invasive species, we still know relatively

little about how selection for traits alters during the

course of an invasion (Gaston 2009; Lankau et al.

2009; Kilkenny and Galloway 2012). Reproductive

traits such as increased fecundity and increased

capacity to self-fertilize are likely to be under strong

selection towards range edges, however few studies

have examined these relationships. Additionally, most

of these studies have sampled from a single range edge

and/or only compared populations from the range

centre and range edge, potentially obscuring our

ability to find consistent patterns (Sagarin and Gaines

2002b; Sexton et al. 2009; Vaupel and Matthies 2012;

Nunes et al. 2016).

In this study, we explored shifts in key reproductive

traits across the entire distribution of two coastal

exotic invasive species growing along the east coast of
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Australia. Coastal species represent an ideal system to

study such questions as their range is essentially linear

with the capacity for spread being on two range edges

only (Sagarin and Gaines 2002a, b; Samis and Eckert

2007). We hypothesised that range edge populations

would: (1) allocate a greater proportion of biomass to

reproduction; (2) display a greater capacity for

autonomous self-fertilization (ability to self-fertilize

without pollination); and (3) produce a greater number

of smaller seeds, compared to populations from where

they were first introduced (range core populations).

Methods

Study species

Hydrocotyle bonariensis Lam. (Araliaceae) is a

perennial plant native to Africa, North and South

America and has become widely naturalized on

coastal dunes along eastern Australia. The first record

of H. bonariensis in Australia was made in 1893 near

Botany Bay, New South Wales. Although H. bonar-

iensis is primarily found on dune systems, it occa-

sionally occurs along rivers and lagoon outlets

(Heyligers 1998). Its distribution in Australia is along

the east coast from southern Queensland to Victoria

(approximately 1200 km). H. bonariensis was acci-

dentally introduced to Australia, possibly through

ballast water (Heyligers 2008; Murray and Phillips

2012). It is facultatively sexual, reproducing clonally

using rhizomes (modified underground stems) and

sexually using flowers. H. bonariensis produces

compound inflorescences containing hundreds of

cream coloured flowers throughout the year, with

each flower potentially producing one indehiscent

schizocarp containing two seeds (Evans 1992). Roots,

leaves and inflorescences arise from nodes along the

rhizome which is generally buried in the sand at a

depth of 2–5 cm (Knight and Miller 2004). The

extensive rhizome systems of H. bonariensis can be

comprised of over a thousand individual ramets that

span many square meters of dune systems (Evans

1991).

Gladiolus gueinzii Kunze (Iridaceae) is a perennial

dune plant native to dune systems in South Africa. The

first record of G. gueinzii in Australia was from the

port of Stockton, New South Wales in 1950, suggest-

ing that the species was accidentally introduced

through ballast water (Heyligers 1999). This species

is solely confined to beach dunes and has become

naturalized nearly 800 km along the east coast of

Australia, from South West Rocks, New South Wales

to Mallacoota, Victoria. G. gueinzii is facultatively

sexual, reproducing clonally by cormels (round,

buoyant, underground growths) and sexually through

self-compatible flowers (Heyliger 1999; Manning

et al. 2011). Flowering occurs between October to

December, with plants producing a single flower stem

containing 1–6 pink flowers that open sequentially

(Heyligers 1999). Fruits ripen through the austral

summer (December–February), with each fruit pro-

ducing up to 40 winged seeds (samaras) (Heyligers

1999). This species typically occurs in dense popula-

tions close to the high-tide mark, with individuals

occurring 20–30 cm apart (Manning et al. 2011).

Field collection

The distribution of H. bonariensis and G. gueinzii

along the east coast of Australia was determined based

on occurrence records from Australia’s Virtual Her-

barium (AVH). From November to December 2015

populations of H. bonariensis and G. gueinzii from

their entire range along the east coast of Australia were

sampled. We travelled 100 km further than the last

recorded occurrence of both species on AVH at each

range edge to ensure accurate sampling. For G.

gueinzii we collected seeds from 23 populations

(Fig. 1a). From each population we collected approx-

imately 100 seeds from up to ten individuals that were

at least 5 m apart. As H. bonariensis was not seeding

throughout its range during fieldwork, we collected

3–4 5 cm long rhizomes from 24 populations

(Fig. 1b).

Plant growth

Hydrocotyle bonariensis rhizomes were wrapped in

moist paper towel and transported back to Macquarie

University, North Ryde, New South Wales. Rhizomes

were lightly buried in shallow trays (20 cm 9 25

cm 9 5 cm) using 100% washed beach sand sourced

from a commercial supplier (Australian Native Land-

scapes, Sydney, New South Wales). Due to space

constraints in the glasshouse, 2–3 rhizomes from each

population were grown together in one tray. For G.

gueinzii, 20 randomly selected seeds from each
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Fig. 1 Maps of the populations of a Gladiolus gueinzii and

b Hydrocotyle bonariensis from which seeds or rhizomes were

collected for this study. Open circles represent sample sites and

closed circles represent the assumed introduction point based on

herbarium records. Dotted lines represent range boundaries
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population were lightly scarified before being set to

germinate on moist filter paper in petri dishes. Seeds

were kept moist using 1% bleach solution to reduce the

chance of mould. Petri dishes were placed in a

temperature controlled growth cabinet set at 20 �C
with a 12 h photo-period until germination (approx-

imately 1–2 weeks). Ten randomly selected germi-

nated seedlings from each population were then

transplanted into separate pots (diameter 17 cm, depth

17 cm) containing 100% washed beach sand sourced

from a commercial supplier (Australian Native Land-

scapes, Sydney, New South Wales). Glasshouse

temperatures were set to 25 ± 3 �C during the day

and 18 ± 3 �C during the night. Temperature was

monitored continuously using a Multigrow Controller

System (Autogrow Systems, Auckland, New Zeal-

and). Plants were mist watered twice daily for two

minutes with additional watering being provided on

hot days. After 2 weeks of growth, plants were

provided with a low concentration (0.15 g dissolved

in 125 mL of water) of liquid fertiliser (Aquasol,

Hortico Nurseries, 23 N:3.95 P:14 K). This was

repeated every 2 weeks to prevent nutrient depletion.

To help control an outbreak of leaf scale on H.

bonariensis, plants were sprayed with a non-hazardous

insecticide (PestOilTM, Arthur Yates & Company,

Homebush, Australia) every week.

Reproductive traits

After approximately 1 year (H. bonariensis) and

1.5 years (G. gueinzii) of growth, plants began to

flower. For each population, up to 20 inflorescences

were randomly selected to assess fertilization and seed

traits. More inflorescences were sampled for G.

gueinzii due to the significantly lower number of

flowers per inflorescence compared to H. bonariensis.

The number of flowers were counted on each

inflorescence unaided (G. gueinzii) or with a

10 9 magnifying hand lens (H. bonariensis) to deter-

mine autonomous self-fertilization ability. Flower

counting occurred from November 2016 to January

2017 (H. bonariensis) and July 2017 to December

2017 (G. gueinzii), with flowers counted randomly

across populations. As flowers on inflorescences

opened sequentially, for each inflorescence, flowers

and developing flower buds were counted when 75%

of the flowers on the inflorescence were open. Counted

inflorescences were tagged and subsequently bagged

with mesh cloth to prevent the loss of developing fruit

and seeds.

After approximately 1–3 months the bagged inflo-

rescences developed fruit and began to wither or

dehisce. At this stage fruit were harvested and allowed

to air dry in their mesh bags in the lab for 2 weeks. We

then counted the number of fruit produced per

inflorescence for each species. Additionally for G.

gueinzii we counted the number of filled and aborted

seeds within each seed pod on each inflorescence. This

could not be performed for H. bonariensis as the fruit

were indehiscent and therefore did not open to release

their seeds, although each fruit typically contains two

seeds (Evans 1992). Once the seeds were counted they

were then weighed to the nearest 0.0001 g using an

analytical electronic balance (Mettler Toledo,

Switzerland).

Once flowering and seed set had completely

finished, all G. gueinzii plants were destructively

harvested to examine biomass allocation to sexual and

asexual reproduction. For H. bonariensis, ongoing

problems with leaf scale infestation and the frequent

trimming of vegetative growth that was required to try

and control this infestation throughout the experiment

meant that we were unable to adequately measure

biomass allocation for this species. For G. gueinzii,

biomass was separated into vegetative (leaves and

roots), clonal (cormels) and sexual (flower stalks,

flowers, seed pods and seeds) components, dried at

70 �C for 48 h and weighed. As we required the seeds

for future experiments, we left them to air dry to avoid

heat damaging them. Sexual reproductive effort (SRE)

and clonal reproductive effort (CRE) were then

calculated as:

SRE ¼ S= Cþ Vþ Sð ÞCRE ¼ C= Sþ Vþ Cð Þ

where S is the total dry mass of sexual components, C

is the total dry mass of clonal components and V is the

total dry mass of vegetative components.

Statistical analysis

To assess the spread distance of each population from

the site of introduction, we designated the first

herbarium record for each species [Stockton (32 55

00S, 151 46 00E) for G. gueinzii and Lady Robinson’s

Beach (33 58 00S, 151 09 00E) for H. bonariensis] as

the source population and calculated the straight line

distance to each population.
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Due to the clonal nature of both of our study

species, values for all reproductive traits were aver-

aged for each population. To investigate differences in

reproductive effort across the range of G. gueinzii, we

used linear regressions to examine the relationships

between SRE and CRE with distance from source

population and total biomass (as reproductive alloca-

tion has been shown to correlate strongly with plant

size e.g. Samson and Werk 1986). To assess

autonomous self-fertilization ability, we examined

the probability of flowers developing into fruit for

each inflorescence across the range of our study

species using logistic regression with a logit link

function and binomial distribution. Additionally forG.

gueinzii, we assessed the probability of forming filled

seeds by comparing the number of filled and aborted

seeds in each inflorescence using the same analysis.

Finally, we conducted linear regressions to assess the

relationships between average seed number and seed

size per inflorescence with distance from source

population for each species. For H. bonariensis,

populations that produced seed on less than two

inflorescences (Callala, Dunbogan, Kingscliffe and

Port Macquarie) were excluded from analysis due to

inabilities to obtain average values. For G. gueinzii,

total biomass was included as an additional explana-

tory variable due to the influence of plant size on seed

partitioning (e.g. Jakobsson and Eriksson 2000).

Significance of variables in each model was tested

using likelihood ratio tests. Variables were log trans-

formed to fulfil assumptions of statistical tests where

applicable. All analyses were conducted using R

version 3.2.4 (R Development Core Team 2016).

Results

Reproductive effort

For both G. gueinzii and H. bonariensis, there was no

significant relationship between average number of

flowers per inflorescence and distance from source

population (G. gueinzii: F1,21 = 0.26, p = 0.61,

R2 = 0.012; H. bonariensis: F1,22 = 1.60, p = 0.21,

R2 = 0.068). Additionally, forG. gueinzii there was no

relationship between average number of flowers per

plant and distance from source population

(F1,21 = 1.52, p = 0.22, R2 = 0.067). For G. gueinzii,

there was no significant relationship between clonal

reproductive effort (F1,21 = 0.0818, p = 0.30, Radj
2

= - 0.04, Fig. 2a) or sexual reproductive effort

(F1,21 = 3.13, p = 0.11, Radj
2 = 0.09, Fig. 2c) with

distance from source population. There was, however,

a significant positive relationship between clonal

reproductive effort (F1,21 = 3.97, p = 0.026, Radj
2

= 0.12, Fig. 2b) and total biomass but this was not

found for sexual reproductive effort (F1,21 = 0.38,

p = 0.94, Radj
2 = - 0.03, Fig. 2d).

Autonomous self-fertilization

For G. gueinzii, all populations produced fruit through

autonomous self-fertilization (fertilization in the

absence of pollinators) while for H. bonariensis one

population (Port Macquarie) did not autonomously

self-fertilize. Within populations, the degree of fruit

production through autonomous self-fertilization was

higher for G. gueinzii (60–100%) compared to H.

bonariensis (13–100%). There was a significant

increase in the probability of producing fruit through

autonomous self-fertilization with increasing distance

from source population for H. bonariensis (odds

ratio = 1.0005, df = 1,24, p\ 0.0001, Fig. 3b) but

not for G. gueinzii (odds ratio = 1.0004, df = 1,22,

p = 0.19, Fig. 3a). For G. gueinzii there was a

significant increase in the probability of producing

fully formed seeds with increasing distance from

source population (odds ratio = 1.001, df = 1,22,

p\ 0.0001, Fig. 3c).

Seed size/seed number

Among populations, seed number varied more than

seed size for both G. gueinzii (CV seed num-

ber = 23%, CV seed mass = 9%) and H. bonariensis

(CV seed number = 128%, CV seed size = 24%).

Seed size and number traits were regressed with

distance for both H. bonariensis and G. gueinzii and

also total biomass for G. gueinzii. At the inflorescence

level, there were no significant relationships between

total seed mass, individual seed mass and total seed

number with distance for either species (Table 1a,

Appendix S1, S2), indicating that there was no

increase in biomass investment in seed production

towards range edges. For G. gueinzii, there were no

significant relationships between any of the seed traits

measured at the inflorescence level and total biomass

(Table 1b). For G. gueinzii, seed mass was also
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measured at the whole plant level, with a significant

positive relationship between total plant biomass and

total seed mass (Table 1b), with larger plants produc-

ing a greater volume of seed.

Discussion

This study examined whether there were changes in

reproductive strategies across the course of an inva-

sion, namely whether populations at the expanding

range edge allocated more resources to reproduction,

produced a greater number of small seeds and/or had

an increased capacity for autonomous self-fertilization

compared to longer established populations. We found

evidence for increased capacity to autonomously self-

fertilize towards range edges, however range edge

populations did not invest more resources into repro-

duction nor were there any changes in the seed size/

seed number relationship across the invaded range. To

our knowledge, this is the first study to extensively

examine changes in reproductive strategies across the

invaded range of species.

Previous studies have found shifts to greater self-

fertilization towards range edges of native species to

help buffer against the effects of low population size

(e.g. Busch 2005; Herlihy and Eckert 2005; Moeller

2006; Darling et al. 2008; Griffin and Willi 2014). In

contrast, relatively few studies have examined how

reproductive traits vary across the range of invasive
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species despite similar metapopulation dynamics at

range edges. In this study, both H. bonariensis and G.

gueinzii displayed increased capacity for autonomous

self-fertilization towards range edges. We found an

increase in the probability of fruit production towards

range edges for H. bonariensis and an increase in the

number of developed seeds towards range edges forG.

gueinzii, indicating that range edge populations are

more reproductively assured compared to longer-

established populations closer to the core of the range.

Increased capacity for autonomous self-fertilization

alleviates reliance on pollinators and/or mates for

reproduction as low density populations at the range

edge may be mate limited and less apparent to

pollinators (Moeller 2006; Moeller et al. 2012). This

may allow range edge populations to overcome many

of the barriers to reproduction associated with small

population size, hence facilitating further range

expansion. However, in a similar study Colautti

et al. (2010) found no significant increase in self-

compatibility towards range edges of purple looses-

trife spreading across North America. They speculated

that the unclear history of introduction of purple

loosestrife to North America may have affected their

ability to find a latitudinal trend in reproductive traits.

Although we cannot be certain that our study species

were not introduced multiple times, our results suggest

that these relationships can be observed over large

geographical scales. Interestingly, these shifts in

autonomous self-fertilization were found in as little

as 70 years of range expansion (the first record of G.

gueinzii was in 1950), highlighting the capacity for
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invasive species to rapidly adapt to new environments

within short timescales.

As conspecific density is relatively low in an

expanding range front, increased reproductive effort is

expected to be selected for in edge populations

(Burton et al. 2010). However, for plants this

relationship is made more complicated with the

trade-off between clonal and sexual reproduction.

Many species have been found to reduce investment in

sexual reproduction in favour of clonal reproduction

towards range edges (Eckert 2002). However, for G.

gueinzii, we found no increase in reproductive effort

(either sexual or clonal) towards range edges. Studies

examining allocation to reproduction towards range

edges are equivocal, with studies finding increased

(e.g. Jump and Woodward 2003; Yakimowski and

Eckert 2007; Masson et al. 2016) and decreased (e.g.

Brandner et al. 2013; Courant et al. 2017) allocation to

reproduction towards range edges. This may in part be

due to selection for concurrent traits in range edge

populations that may directly trade-off with reproduc-

tion (Courant et al. 2017). For example, highly

dispersive range edge populations of speckled wood

butterflies had reduced allocation to reproduction

compared to conspecifics at the range core (Hughes

et al. 2003). Hudson et al. 2015 also found a decrease

in the probability of female cane toads laying eggs

from highly dispersive range edge populations

compared to at the range core. However, as plants

are sessile, reproduction and dispersal are not mutually

exclusive, thus any trade-off with reproduction at the

range edge may exist with another unmeasured trait.

We found no relationship between seed number and

seed size with distance from source population, with

neither species producing a greater number of small

seeds towards range edges. A greater number of

smaller seeds at the range edge would greatly increase

colonization opportunities and facilitate further range

expansion. A previous study on G. gueinzii found a

significant decrease in seed size towards range edges

from field collected seeds (Tabassum and Leishman

2018). This reduction in seed size was not associated

with a reduction in the probability of germination; in

fact smaller seeds germinated faster than larger seeds

(Tabassum and Leishman 2018). As G. gueinzii is a

pioneer species (Heyligers 1999), production of many

small seeds may be a viable strategy to increase spread

rate. However, range edge populations did not produce

smaller seeds in this study when grown in controlled

glasshouse conditions, suggesting that smaller seed

sizes towards range edges may not have been due to a

seed size/number trade-off but rather a reflection of the

quality of the maternal environment (Wulff 1986).

Furthermore, although strong negative relationships

between seed number and seed size have been found

between species (e.g. Jakobsson and Eriksson 2000;

Table 1 Linear regressions for the effect of (a) spread distance

on total seed mass, individual seed mass and total seed number

at the inflorescence level for H. bonariensis and G. gueinzii

(b) total biomass and spread distance on total seed mass,

individual seed mass and total seed number at the inflorescence

and whole plant level for G. gueinzii

Total seed mass Individual seed mass Total seed number

df F p df F p df F p

(a)

H. bonariensis

Distance 1.18 0.0073 0.93 1.18 0.0024 0.96 1.18 0.0007 0.98

G. gueinzii

Distance 1.21 1.76 0.30 1.21 1.05 0.25 1.21 3.45 0.090

(b)

Inflorescence level

Total biomass 1.21 1.47 0.37 1.21 0.11 0.53 1.21 1.10 0.11

Whole plant level

Distance 1.21 3.84 0.24 – – – – – –

Total biomass 1.21 21.1 < 0.0001 – – – – – –

Significant p values (p\ 0.05) are highlighted in bold
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Henery and Westoby 2001; Leishman 2001), many

studies examining this relationship within species

have found no relationship (e.g. Shaal 1980; Wulff

1986; Michaels et al. 1988). This is because seed size

is a highly conserved trait within species compared to

between species (Westoby et al. 1996; Weiner et al.

1997). Instead, individual plants are more likely to

express reproductive differences through variation in

seed number rather than individual seed size (Weiner

et al. 1997; Leishman et al. 2000). In support of this we

did observe greater variation in seed number com-

pared to seed size between population for both G.

gueinzii and H. bonariensis however this was not

significantly related to spread distance.

An important caveat of glasshouse studies is that

they may not be directly related to advantages in the

field. Although we found an increase in the propensity

for autonomous self-fertilization towards range edges

in our experiment, it is not entirely clear whether this

leads to fitness benefits in range edge populations of

our study species in the field. Investigating the

advantageous of autonomous self-fertilization in nat-

ural populations of our study species would therefore

be a useful next step. Furthermore, this study only

examined the propensity for populations to produce

seeds using ‘self’ pollen and did not investigate how

‘self’ versus ‘non-self’ pollen affected fruit/seed set

across the range of our study species. Low density

range edge populations have been observed to shift

towards a greater propensity for self-pollination to

increase reproductive assurance (Moeller and Geber

2005; Griffin and Willi 2014). Therefore another

interesting future direction would be to compare fruit/

seed set of selfed and outcrossed individuals to

investigate whether range edge populations have

shifted away from an outcrossing system.

Overall, this study revealed some differences

between reproductive traits between range edge and

range core populations of G. gueinzii and H. bonar-

iensis. In general, although range edge populations did

not invest more resources into reproduction or alter

seed number or partitioning, edge populations were

more reproductively assured due to greater capacity

for autonomous self-fertilization. This is an important

finding as increased capacity for autonomous self-

fertilization in range edge populations allows estab-

lishment of new populations quickly after dispersal

without reliance on external factors such as mate and/

or pollinator availability, hence facilitating further

range expansion. Understanding how selection varies

in range edge populations has important implications

for not only expansion of invasive species but also

range contractions of endangered species and range

shifts due to climate change (Hargreaves and Eckert

2014). Because of this, studies such as our own will

become increasingly valuable for understanding

species’ range shifts in the face of future global

change.
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