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Abstract Determining the distribution and potential

ranges of detrimental invasive species has become an

essential task in light of their impacts on the environ-

ment. However, this effort has been challenging,

especially for global invaders. Our goal was to test

whether potential ranges of global invaders can be

predicted, and examine the factors that shape them by

studying the past, current and potential global distri-

bution of a broad-ranging avian invader. We used the

common myna (Acridotheres tristis), one of the most

broad-ranging avian invaders whose range is currently

expanding globally, as a case study. We collected the

first detailed global database of global occurrence

(n = 7990) of the common myna over the past

150 years, including records from the native and the

introduced ranges. We employed MaxEnt to construct

species distribution models (SDM) for the global

database using climatic, anthropogenic and environ-

mental factors. We provide evidence that invasive

species distributions can be predicted from older

records, and that model accuracy requires integrating

data from the introduced range. This first comprehen-

sive distribution for an avian invader indicates an

extensive expansion in the common myna global

distribution, with the potential of large areas world-

wide being at risk of common myna invasion, thus

threatening local biodiversity globally. Range expan-

sion has been facilitated by proximity to urbanized

areas and broad environmental tolerance. Our findings

reflect the major role of anthropogenic impact in

increasing the global distribution of avian invaders

and emphasize the value of using SDMs to inform

global management practices.
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Introduction

Growing human impact on native ecosystems has led

to a range of effects on biodiversity, including a global

rise in the number and range of invasive alien species

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10530-018-1900-3) con-
tains supplementary material, which is available to authorized
users.

T. Magory Cohen � R. Dor (&)

School of Zoology, Faculty of Life Sciences, Tel Aviv

University, 6997801 Tel Aviv, Israel

e-mail: roidor@tauex.tau.ac.il

M. McKinney � S. Kark
The Biodiversity Research Group, The School of

Biological Sciences, ARC Centre of Excellence for

Environmental Decisions (CEED) and NESP Threatened

Species Hub, Centre for Biodiversity and Conservation

Science, The University of Queensland, Brisbane, QLD,

Australia

123

Biol Invasions (2019) 21:1295–1309

https://doi.org/10.1007/s10530-018-1900-3(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8743-9387
https://doi.org/10.1007/s10530-018-1900-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-018-1900-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-018-1900-3&amp;domain=pdf
https://doi.org/10.1007/s10530-018-1900-3


(McKinney and Lockwood 1999; Meyerson and

Mooney 2007; Hulme 2009). Invasive species are

often considered to be a primary threat to the

environment, leading to the decline of native species

and extinctions, negatively affecting human and

animal health, jeopardizing food security, and impos-

ing a deleterious effect on the human economy and

wellbeing (Lowe et al. 2000; Simberloff 2011; Mori

et al. 2018). Understanding the factors that enable

successful invasions and delineate introduced ranges

is essential to managing the geographic spread of such

species (Medley 2010).

The distribution of species is affected by a range of

factors, including environmental conditions, the biotic

environment and the dispersal ability of the species

(Guisan and Thuiller 2005; Soberón 2007). It has been

suggested that when these factors are favorable for

invasive species, they may also establish due to their

lack of natural enemies (Keane and Crawley 2002),

high propagule pressure (Lockwood et al. 2009),

resource availability (Davis et al. 2000), reproduction

intensity (Kolar and Lodge 2001), wide habitat/dietary

preferences (Blackburn et al. 2009), broad physiolog-

ical tolerances (Marchetti et al. 2004), short genera-

tion time (Theoharides and Dukes 2007), ability to

cope with human proximity (Møller et al. 2015), and

high degree of genetic variability (Crawford and

Whitney 2010). However, these factors are generally

difficult to quantify and reliable data are often scarce,

especially in little-studied species, and have therefore

been suggested to reduce the accuracy of the correl-

ative models applied in assessing species distribution

(Elith 2015). Consequently, environmental conditions

is the factor mostly used in delineating or predicting

the distribution of a species (Elith 2015).

The use of species distribution models (SDM,

sometimes referred to as Environmental Niche

Models) has been increasing in recent decades in the

areas of ecology and conservation biology (e.g., Elith

and Leathwick 2009; Hayes et al. 2015; McCune

2016; Young and Carr 2015), and has recently been

used also in invasion biology (Thuiller et al. 2005;

Beaumont et al. 2009; Gallien et al. 2012). SDMs are

often used for predicting the distribution of species

across landscapes, as they allow extrapolation of

spatial data in order to produce predictions in areas

outside of the sampled geographic extent (Sinclair

et al. 2010). This holds great potential for the field of

invasion biology, as estimating where species could

occur in a certain region may be pertinent in assessing

their invasive potential (Elith 2015). In recent years, a

growing number of studies have employed SDMs to

generate predicted distributions for several species of

invasive plants (Beaumont et al. 2009; Gallien et al.

2010), invertebrates (Steiner et al. 2008; Taucare-Rı́os

et al. 2016), vertebrates (Giovanelli et al. 2008;

Buckland et al. 2014), and specifically in birds (Fraser

et al. 2015; Crystal-Ornelas et al. 2017).

One of the most common invasive species world-

wide is the common myna (Acridotheres tristis), a

starling (Sturnid) that occurs naturally in south-east

Asia and the Indian subcontinent. The myna has been

introduced and subsequently become invasive in every

continent except Antarctica (Long 1981; Cramp and

Perrins 1994; Forys and Allen 1999; Holzapfel et al.

2006; Saavedra et al. 2015a). It was selected by the

IUCN as one of the ‘‘100 World’s Worst Invasive

Alien Species’’ (Lowe et al. 2000; Luque et al. 2014),

and has been implicated in causing several deleterious

ecological changes to the local environment, such as

impacting populations of native species by competing

for nesting cavities (Grarock et al. 2012; Charter et al.

2016), changing the habitat (Kurdila 1988), and

preying on eggs and chicks (Feare 2010; Orchan

et al. 2013). This omnivore and generalist species has a

wide habitat and dietary range (Cramp and Perrins

1994), and is considered an opportunistic species that

frequently forages in human-dominated areas and

exploits new feeding opportunities (Sol et al. 2012).

Common mynas are mainly sedentary and their

average flight distance is relatively short (3 km; Feare

and Craig 1999). Common mynas often thrive near

humans and are often found in urban or semi-urban

areas (Cramp and Perrins 1994; White et al. 2005;

Grarock et al. 2014). However, it is currently unclear

as to what are the environmental conditions that

facilitate their presence on the global scale. Despite

being an invasive species of international concern,

data pertaining to the current global distribution of the

common myna, and its changes over time, are still

incomplete. In light of its constant range expansions in

newly introduced areas [e.g., in Florida, U.S. (Forys

and Allen 1999), in Israel (Holzapfel et al. 2006), and

in Spain and Portugal (Saavedra et al. 2015b)], this gap

in our knowledge becomes increasingly significant

when considering the potential ecological and eco-

nomic outcomes.
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Here we tested whether potential ranges of global

invaders can be predicted using the past and current

distributions of the common myna, a broad-ranging

avian invader. Determining the current distribution

range of the common myna enables us to analyze the

environmental factors that influence it and predict the

potential distribution of this species. Therefore, in this

study we generated a global range map of this avian

invader and determined the factors that influence it.

We also highlight the regions considered more suit-

able for successful common myna invasion and range

expansion. In addition, we test the use of spatially-

limited (native-only, introduced-only) and tempo-

rally-limited (older, more recent) data-sets in compar-

ison to a comprehensive data-set in order to determine

whether they are sufficient for predicting the distribu-

tion of an avian invader. This enables us to test

whether the current distribution of the common myna

can be predicted, by comparing the actual species

occurrences with the predictions generated by analy-

ses of limited data-sets. In light of the human-

commensal nature of these birds and their exotic

origin, we hypothesized that the predicted distribution

would include many areas around the globe that are

either highly urbanized or are characterized by similar

environmental conditions to those in their original

range. Determining the environmental factors that

enable successful invasion of this species worldwide

can help elucidate the mechanism of dispersal of

already established birds, potentially reflecting similar

predictors of change in the global distribution of

ecologically similar species. The results of this study

are also expected to aid in identifying high-priority

management goals, particularly relating to preventing

or limiting the spread of avian invaders by detecting

potential suitable habitats.

Methods

Data collection

In order to examine and model the distribution of a

global avian invader we collected global occurrence

data of common mynas from multiple sources over the

past 150 years (a full list of resources is provided in

Table S1). The collected records represented both

native and alien records, but had not been corrected for

eradicated populations, as the latter are more

indicative of human efforts than of a natural occur-

rence. Data was cleaned manually by omitting records

that did not contain accurate information on the

location of the record (coordinates or a specific

location), removing of duplicates and omitting single

records that could not be furtherly corroborated by

additional sources or unestablished populations, such

as in the case of records from Italy (E. Mori, personal

communication), France and Germany (GBIF.org,

2015). Initially, the complete data-set comprised

79,923 occurrence records, which were then reduced

to 7990 unique records that had been adequately

processed (see ‘MaxEnt modelling’). In order to

determine the chronological progress in the global

distribution of the common myna, we divided the

complete set of presence records into four subsets and

displayed them spatially as follows: records from the

years 1864–1960 (n = 257); until 1980 (n = 405);

until 1995 (n = 976); and until 2015 (n = 7990). Since

the presence records are spatially filtered so that a

minimal distance of 3 km separates between each two

records, no account of abundance is reflected in the

data-sets (Fig. 1). Additionally, in order to test the

accuracy of the model, we divided the data-set into

two complementary subsets: the first comprised old

records (collected in the years 1864–1960, n = 257,

hereafter ‘Old’) versus newer records (collected in the

years 1995–2015, n = 6836, hereafter ‘New’); and the

second comprised native records (n = 2636, ‘Native’)

versus records from introduced populations

(n = 5354, ‘Introduced’). This was carried out in

order to compare the use of different data-sets for

species distribution modeling, since occurrence data

are often incomplete. Comparing the subsets from

different time periods allowed us to determine whether

our models can predict species distribution well into

the future using the ‘Old’ subset and whether includ-

ing only recent records (‘New’) allowed for the

inclusion of the historical distribution. In addition,

we modeled the complete data-set that comprised all

of the records on a contemporary global scale

(n = 7990, ‘Total’) in order to compare the results of

the partial data-sets with the inclusive data-set.

Environmental variables

In order to describe the factors that influence the

distribution of the common myna, we selected a set of

26 environmental variables, of potential biological
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importance (climatic, topographic, biotic and anthro-

pogenic; Table S3). Variable selection is described in

details in the Supplementary Information. We

extracted the individual values of every predictor

variable for each occurrence from the original variable

layer, which ranged in resolution (Table S3). In order

to standardize the model sampling, we employed a

unified spatial resolution of 0.022 degrees cell size,

and obtained a global extent (before selection of

background) of (- 49.726455)–58.835963�N and

(- 179.253778)–180.072535�E.
In order to reflect the temporal difference between

the ‘Old’ data-set and the contemporary ones, it would

have been preferable to employ the correct historical

environmental variables. However, because of the

difficulty of obtaining accurate measurements, and

therefore the scarcity of available data-sets, extracting

explanatory variables that could also be compared to

contemporary models without greatly reducing spatial

resolution or excluding important environmental pre-

dictors is currently difficult. Therefore, we used the

same contemporary resources (Table S3) for the ‘Old’

data-set in our main analyses. However, we performed

a similar analysis with historical data for this data-set

in order to confirm that the main trends remain (see

Supplementary Information for details). The results of

this analysis were similar, although of lower accuracy,

and reflected the same trends observed in the compa-

rable model presented in the paper.

MaxEnt modelling

We employed the MaxEnt software package (v.3.3.3,

Phillips et al. 2006) in order to construct species

distribution models. Although MaxEnt was not devel-

oped to estimate the distributions of range-shifting

species, it has been successfully used for evaluating

putative distributions of invasive species (e.g., Gio-

vanelli et al. 2008; Rödder et al. 2008; Ward 2007).

However, MaxEnt, like several other modeling algo-

rithms, is known to be sensitive to sampling bias and

requires careful spatial filtering (Phillips et al. 2009;

Boria et al. 2014).

We constructed all the models with clamping in

order to limit feature variation outside of the training

data range (Elith et al. 2011), and employed cross-

validation as the estimation method of error rate via

100 replicates per model. The smaller subsets (‘Old’

and ‘Native’) were fitted with 25,000 background

points created randomly within the selected back-

ground in the ‘dismo’ R-package (Hijmans et al. 2017)

on R version 3.3.2 (R Core Team 2013), while the

number of background points generated for the larger

subsets (‘New’, ‘Introduced’ and ‘Total’) was

increased to 50,000 (Table 1).

Model tuning comprised primarily three stages;

background selection, correcting spatially auto-corre-

lated sampling, and model fitting. Selecting the correct

background is crucial for model performance and

should be restricted to an area to which the species

could have spread (VanDerWal et al. 2009; Jiménez-

Valverde et al. 2011b; Elith 2015). Therefore, we

Fig. 1 Occurrence records of common mynas distributed

globally and filtered ([ 3 km) used in this study during four

different periods: a until 1960, b until 1980, c until 1995, d until

2015. Area colored grey is the known native range of the species

adapted from (Peacock et al. 2007). Presence records are marked

with black circles
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selected a 200 km radial buffer zone around each

species record based on the largest flight distance

documented for the common myna (Parkes and

Avarua 2006). This produced a background that

allowed for areas with similar conditions to be

included in the model, while considering the biolog-

ical constraints (Figure S1).

We corrected for spatially auto-correlated sampling

by applying a filter to the occurrence records, with the

minimal distance between records being at least 3 km,

a threshold that was selected based on the average

foraging distance observed for common mynas (Pe-

neaux and Griffin 2016). This form of spatial filtering

accounts for both a bias stemming from higher

population densities and for a bias related to a typical

increase in human observations reported near anthro-

pogenic centers, and is generally considered sufficient

in minimizing sampling bias (Kramer-Schadt et al.

2013; Boria et al. 2014). Accounting for both

spatially-biased sampling (background selection) and

spatially auto-correlated sampling (spatial filtering)

has recently been advocated (Phillips et al. 2017).

Percent contribution of each variable was calculated as

detailed in Phillips et al. (2006). Finally, we employed

the R-package ‘ENMeval’ (Muscarella et al. 2014) in

order to optimize model parameters (i.e., regulariza-

tion multiplier and combination of feature classes) and

avoid overfitting for each of the data-sets (Syfert et al.

2013; Boria et al. 2014; Zeng et al. 2016). ‘ENMeval’

executes a set of automated model runs and computes

several estimators, yielding a comparable evaluation

of all possible models.

We carried out the process of selecting the best

model (appropriate predictors, model parameters) in

several stages. First, we ran the full model with all 26

environmental variables in ‘ENMeval’ (Muscarella

et al. 2014) based on a block design with various

regularization multipliers (0.25, 0.50, 1, 1.50, 2, 4, 6)

and feature class combinations (L, LQ, H, LQH,

LQHP, LQHPT; where L = linear, Q = quadratic,

H = hinge, P = product and T = threshold). Second,

in order to reduce model complexity, we chose to

remove variables that were highly correlated and

shown to be of lower significance in variance impor-

tance tests carried out by ‘ENMeval’. The preliminary

percentage contribution of the different variables was

slightly different in each model (Table S4). Therefore,

the final predictors set chosen comprised the highest

ranking variables that were not highly correlatedT
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(Pearson’s |r|\ 0.75; Table 1). Following selection of

the predictors, we employed ‘ENMeval’ again with

the final variables set in a second run of model tuning

in a step-wise manner: i.e., with each tuning round, the

variable with the lowest contribution importance was

removed and the model was run again until only two

predictors were left. This was shown to outperform

both a priori removal of predictors and not removing

highly correlated ones at all (Zeng et al. 2016). Finally,

once all the models had been run for each data-set, we

chose a final model for each data-set based on the

lowest Akaike Information Criterion corrected (AICc)

score. The selected model was then run in MaxEnt

with the optimal set of predictors, regularization

multiplier, and feature class combination using 100

replicates. We generated prediction maps using the

model raw output in order to identify areas with

habitats suitable for common myna occurrence. Sub-

sequently, we created a binary prediction map by

utilizing a threshold-based approach to transform the

continuous results into a binary product. Binary

projections generated by different thresholds may

differ drastically, and choosing the correct threshold

may be arbitrary (Norris 2014; Liu et al. 2016).

Therefore, we applied five different logistic thresh-

olds: ‘10th percentile training presence’ (‘10th’; Liu

et al. 2005); ‘balance training omission, predicted area

and threshold value’ as previously described for other

invasive species (‘bal’; Giovanelli et al. 2008);

‘minimum training presence’ (‘min’; Phillips et al.

2006); ‘maximum training sensitivity plus specificity’

(‘MAXtr’; Lobo et al. 2008); and ‘equal training

sensitivity and specificity’ (‘EQtr’; Liu et al. 2005).

Model evaluation

We utilized the commonly used threshold-indepen-

dent value of the ‘Area Under the Curve’ (AUC) of the

Receiver Operating Characteristic plot to estimate the

model’s performance of test data. In addition, we

evaluated the accuracy of the model prediction by

comparing known localities with the gridded predic-

tions made using model projection, also known as

model sensitivity (Hanberry and He 2013). This was

calculated as [no. of true positives/total no. of

occurrence * 100], where true positives represent

occurrences that were located within the predicted

range. We evaluated the performance and applicabil-

ity of the five different thresholds used by comparing

sensitivity scores based on each of the thresholds

(Lobo et al. 2008).

Results

Past and current global myna distribution

The proportion of records originating from introduced

areas increased with time: until 1960, 82.1% of the

reported observations were made in the native range,

followed by 64.4% until 1980, 39.9% until 1995, and

33.0% out of all the records used in this study (until

2015). Proportionally, since we had obtained the

previous records for each data-set and did not omit

them from the subsequent one, an increase of 196%,

552%, and 977% can be seen to have taken place in the

number of newly reported observations from the

introduced areas, respectively.

Model performance

The final models included between eight and eleven

explanatory variables for each data-set (Table 1).

Model fit as measured by average AUC values was

high among models of all of the data-sets and ranged

between 0.83 and 0.90, and differences between

training AUC (how well the model explains the data

used to fit it) and test AUC (how well the model

explains independent data) in all data-sets were\
0.001 indicating no overfitting of the model. In

contrast, sensitivity scores differed more among the

models. On average, the highest sensitivity scores

were achieved for the ‘Total’ data-set (Table 1).

Conversely, the model based on the ‘Native’ data-

set alone resulted in the lowest average sensitivity

scores, and in three out of five thresholds received

scores below 60 (Table 1). Models based on the ‘Old’

and ‘Introduced’ data-sets achieved intermediate

scores (average sensitivity 74.44\ x\ 79.32), and

the ‘New’ data-set, which included records from both

the native and introduced ranges from a recent time

period (1995–2015), scored similarly to the complete

data-set (85.96).

The different thresholds we applied generated

inconsistent results, in which the highest sensitivity

value (indicating the percentage of total records that

were successfully predicted to occur within a suit-

able habitat) alternated between data-sets (Table 1).
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The highest sensitivity scores (93.50–97.64%) were

produced by the ‘minimum training presence’ thresh-

old, which was exceedingly nonspecific and predicted

species presence in very large parts of the study area

that are biologically unlikely to be inhabited by

commonmynas, such as the Sahara Desert (Figure S2).

In contrast, the 10th percentile training presence

threshold rendered low sensitivity values for the

‘Native’ (58.42%) and ‘Introduced’ (75.57%) data-

sets, but higher ones for the ‘Old’, ‘New’ and ‘Total’

data-sets (92.83%, 86.28%, and 87.80%, respec-

tively). By applying the ‘balance’ threshold, the model

based on the ‘Total’ data-set generated the highest

sensitivity value (95.33%). Values ranged between

86.42 and 95.20% for the remaining data-sets as well

(Table 1). Sensitivity scores based on applying the

‘maximum training sensitivity plus specificity’ and

‘equal training sensitivity and specificity’ thresholds

were the lowest and ranged between 44.59–78.04%,

and 40.88–75.62, respectively.

The effect of environmental predictors on model

output

Variable contribution differed slightly among the five

models (Fig. 2). In all five, the factor of ‘impervious

surfaces’ was rated highest, ranging from 55.9% to

33.2% (Table S5). Combined with contribution of

human density, anthropogenic factors were the most

influential in determining myna distribution, followed

by temperature-related factors (38.5%–28.5%), espe-

cially temperature seasonality (bio4), and precipita-

tion components in the larger data-sets (‘New’—26%,

‘Introduced’—23.8%, ‘Total’—23.7%; Table S5).

The probability of common myna occurrence

increased rapidly with higher values of both anthro-

pogenic factors, but seemed to have optimal values for

temperature and precipitation related predictors,

beyond of which the probability of presence decreased

(Figure S3). Of the individual temperature compo-

nents, those related to temperature stability (bio4,

which is temperature seasonality or TEMP, interan-

nual temperature variation) had the highest relative

contribution in all data-sets and ranged between 13.1

and 32.6% (Table S5). In subsets where precipitation

was significant (‘New’, ‘Introduced’, and ‘Total’),

precipitation of the driest month (bio14) was the most

important singular module (20.5%, 19.1% and 18.5%,

respectively), and optimal values ranged between 50

and 150 mm/month. Of the remaining features, none

contributed more than 3.6% to explaining common

myna presence.

Spatial distribution of predicted suitable habitats

Prediction maps created from all five data-sets indi-

cated that there are multiple locations that are

suitable for common myna presence. However, while

most data-sets yielded similar suitable distribution for

each threshold, the ‘Native’ prediction maps differed

from the other data-sets in detecting different areas

(Fig. 3). Despite generating either the largest or the

second largest predicted distributions, in four out of

five thresholds, models based on this data-set scored

the poorest or second poorest in model accuracy

(Table 1). Additionally, applying different thresholds

generated substantially distinct binary prediction

Fig. 2 Variable

contribution measured in

percentages in each of the

data-sets used in the study.

Predictor abbreviations are

detailed in Table S3

123

Global invasion in progress 1301



maps in all of the data-sets (see Supplementary

Information).

Because of the effect of the type of data-set and

threshold chosen on the generated prediction map, we

also provide a continuous map of probabilities of

suitable areas for current and future common myna

presence based on the ‘Total’ data-set (Fig. 4). This

map indicates large areas outside the currently known

range of common myna distribution as suitable for the

species’ presence, demonstrating that every continent

included in the study potentially offers the appropriate

environmental conditions for a successful introduc-

tion. The map illustrates that the common myna may

Fig. 3 Binary maps delineating areas with suitable conditions

for common myna presence created by applying the balance

training omission, predicted area and threshold on the raw

output of MaxEnt model run for the five data-sets used in this

study: ‘Old’, ‘New’, ‘Native’, ‘Introduced’ and ‘Total’.

Suitable areas for common myna presence are colored dark grey

Fig. 4 A continuous map of average probabilities for suitable areas for current and potential common myna presence based on the

‘Total’ data-set. Legend contains color code representation of probabilities
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occur in a wide range of habitats and environmental

conditions across a broad latitudinal range.

Discussion

In this study of the common myna we have compiled

one of the largest global data-sets for an invasive

species ever used in species distribution modeling,

spanning 150 years (1864–2015), and incorporating

both native and introduced ranges worldwide. We

found that using a temporally-limited data-set of old

occurrences records (\ 1960) was sufficient for ade-

quately predicting the species’ current distribution,

thus validating the use of SDMs as a spatial tool in

invasive species management. Conversely, models

that excluded records from introduced areas did not

perform as well. We found a dramatic increase in the

current global distribution of the common myna,

reflecting extensive introduction events as well as

subsequent range expansions. These changes were

facilitated by urbanization-related factors and the

broad environmental tolerance of this species. Finally,

we identified areas outside the current range that may

be at risk for common myna invasion and subsequent

range expansion. Our findings emphasize the major

role of anthropogenic effects in changing the global

distribution of a globally successful avian invader.

Here, we provide evidence of global range expan-

sions of an avian invader that occurred in areas in

which it was introduced. Introduction events of the

common myna have been documented since as early

as the mid-nineteenth century across a wide range of

areas (Long 1981; Cramp and Perrins 1994). These

introductions were either accidental or intentional

(Hone 1978; Baker and Moeed 1987), occurred over a

continuous period of time, and are still occurring

today. Recent introductions include Israel (Holzapfel

et al. 2006), Florida (Forys and Allen 1999), Spain and

Portugal (Saavedra et al. 2015b), and contain the

possibility of secondary range expansions into neigh-

boring countries (Ramadan-jaradi 2011; Khoury and

Alshamlih 2015). Currently, there is no evidence of

natural range expansions occurring in the native range

of the common myna, albeit probably due to scarce

documentation, and all of the range expansions

reported have been the result of man-made introduc-

tions. As human-mediated range expansions are

becoming more ubiquitous, natural barriers are

becoming less relevant to dispersal capacities

(McNeely 2001; Wilson et al. 2009). In the common

myna, once an introduction event has taken place and

successful establishment has occurred, range expan-

sion then occurs (Fig. 1).

Our results validate the use of SDMs as a tool in

invasive species management, as they confirm—with

actual presence data collectedmore than 55 years after

the records that were used to fit the model—that even

older, outdated data can adequately predict species

distributions. We demonstrate this by comparing

subsets of the data from different times that included

both native and introduced records (‘Old’ and ‘New’).

Whereas the sensitivity scores of the model based on a

newer data-set were higher in four out of five

thresholds (Table 1), the average sensitivity differ-

ence calculated across thresholds between ‘Old’ and

‘New’ models was only 10% (74.44% and 85.96% in

‘Old’ and ‘New’ data-sets, respectively). This differ-

ence may reflect the size of the data-set (n‘Old’ = 257,

n‘New’ = 6836) rather than the time of collection, as

previous studies have demonstrated that small sample

size may affect model performance (Stockwell and

Peterson 2002). Since the ‘Old’ data-set contains

records from both native and introduced areas, we

believe that its relatively high accuracy stems from an

adequate representation of the species and is sufficient

for accurately predicting suitable habitats for this

species. Furthermore, when comparing the results

from the ‘New’ (n = 6836) and ‘Total’ (n = 7990)

data-sets, these were highly similar across all thresh-

olds (Table 1), suggesting that when samples size is

large enough, a substantial addition of record points

may add little to model accuracy. Nevertheless, when

using small sample sizes, caution must be taken in

interpreting the results, especially when applied to

identifying distributions of rare or endangered species,

and should be used in conjunction within a broader

tool-set or for data exploration (Pearson et al. 2007;

Wisz et al. 2008). In the context of invasive species,

overestimation of the range limit of a species may pose

less of a problem, but should still be used with caution.

Including occurrences from the introduced range in

invasive species distribution models is still under

debate. Incorporating records from introduced regions

may enable the models to include habitat conditions

that are suitable for the species but were unavailable to

it in its native range, potentially expanding the

modeled niche to the fundamental niche
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(Broennimann and Guisan 2008; Jiménez-Valverde

et al. 2011a). The highest average sensitivity scores

were obtained for the ‘Total’ data-set, which included

data from both the native and the introduced range

(sensitivity = 86.96), and which also had a fairly high

AUC score (see Supplementary Information). In

contrast, the model applied for the data-set that

included only occurrences from the native range

achieved the lowest scores, while results for the

‘Introduced’ model obtained intermediate scores

(Table 1). The difference in the environmental char-

acteristics of the suitable native and introduced

habitats may be due to several reasons, including

abundant resources and a lack of competitors (Strubbe

et al. 2015), historical and geographical constraints

(Beaumont et al. 2009; Elith 2015), release from

enemies and competitors (Broennimann et al. 2007;

Beaumont et al. 2009), and adaptive evolution of the

species in its new environment (Broennimann et al.

2007; Beaumont et al. 2009). However, a species in its

invasion range may still be spreading and is rarely at

equilibrium, thus violating the basic assumption of

species distribution models (Elith 2015). While intro-

duced populations of the common myna are still

spreading (Fig. 1), our results emphasize the need to

incorporate records of invasive species from the

introduced range in order to accurately predict

suitable potential habitats in non-native regions

(Fig. 3, Table 1).

Our prediction models of suitable habitats imply

that invasion may occur in many countries (Fig. 4) in

the event of a new introduction or through natural

expansion from adjacent invasions, as has been the

case in Lebanon and Jordan (Ramadan-jaradi 2011;

Khoury and Alshamlih 2015). Although common

mynas have been introduced into many areas on

virtually every continent, few countries have adopted

official management measures or undertaken popula-

tion control (Millett et al. 2004; Parkes and Avarua

2006; Feare 2010; Saavedra et al. 2010; Canning

2011). By generating prediction maps that illustrate

potential habitats for common myna presence, we

provide precedent knowledge for the appropriate

authorities to incorporate during risk assessment of

this species. Elith (2015) suggests using such knowl-

edge to target areas susceptible to invasion and

improve collaborations among local authorities in

order to combat biological invasions. Since the

successful eradication of an established population

of common mynas is rare and requires continuous

efforts (Feare 2010; Saavedra et al. 2010; Canning

2011), such advance information is highly useful when

considering what preventive measures to take in order

to avoid introduction events altogether.

Elucidating the environmental factors that con-

tribute to an introduced species presence may be of use

when assessing other invasive species. Our results

indicate that a particular anthropogenic factor (imper-

vious surfaces) is a key influence on the distribution of

this species. This echoes the commensal nature of this

bird, which is known to thrive near human activities

(Cramp and Perrins 1994; Grarock et al. 2014), and

may explain its range expansion into areas where

natural environmental variables are not optimal (such

as more arid areas) by using human settlements as

stepping stones into novel environments. This corre-

lation gains additional weight when considering the

invasive potential of commensal species, particularly

those that exploit human-mediated range expansions

(Marambe et al. 2001; Ward et al. 2005; Marzluff and

Neatherlin 2006; Møller et al. 2015). In birds, range

expansion of commensal species associated with an

increase in urbanization was reported in several

species (Marzluff et al. 2001; Crooks et al. 2004),

and ‘human footprint’ (a quantitative measure of

human population size, land use and infrastructure)

was an important factor in explaining the establish-

ment success of some alien species (Strubbe and

Matthysen 2009; Ancillotto et al. 2016). In common

mynas, a strong association with the urban landscape

has also been described (White et al. 2005; Peacock

et al. 2007; Grarock et al. 2014). Our results indicate

that while human density is significantly correlated

with common myna prevalence, it is, rather, the level

of impervious surfaces that was shown to bear the

greatest influence on the species’ current distribution

in all five models. We suggest that this can be

explained by relating common myna presence to the

level of disturbance rather than to the number of

people. That is, even in highly disturbed urban

landscapes such as industrial areas or infrastructures

along major roads where human population density is

relatively low, the appropriate conditions for common

myna presence are present. This implies that the

modification of the landscape in itself affects the

distribution of the species, either directly (i.e., by

creating artificial nesting cavities) or indirectly (by
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creating suboptimal conditions for non-synanthro-

pogenic native species).

Additional factors were also found to be correlated

with commonmyna presence in this study, particularly

temperature. Components related to temperature sta-

bility or range, rather than individual elements such as

maximum or minimum temperatures, contributed

more to explaining the variance observed in the

models (Table S5). This effectively represents the

mynas’ tolerance to temperature fluctuations, as these

predictors are able to differentiate areas with similar

mean temperature but wider minimum–maximum

ranges. Optimal values were relatively similar across

all data-sets, and indicated that the probability of

presence of common mynas is highest in moderately

temperature-stable environments (Figure S3). Addi-

tionally, in models based on larger data-sets (‘Intro-

duced’, ‘New’ and ‘Total’), precipitation of the driest

month was also instrumental in determining the

probability of common myna presence, again display-

ing a moderately flexible scale of their occurrence.

These factors indicate that common mynas can occur

in a relatively wide range of environments, thus

potentially enabling successfully introduced birds to

establish in diverse new environments. These findings

match previous findings that correlated invasiveness

with a broad environmental tolerance (e.g., (Dukes

andMooney 1999; Peterson et al. 2005; Zerebecki and

Sorte 2011). The relative flexibility related to mini-

mum environmental precipitation in the common

myna may be caused by a broad diet, heavily based

on human discards in introduced areas (Machovsky-

Capuska et al. 2016), thereby circumventing the need

to rely on net primary production which depends

greatly on precipitation. A tendency for invasive

species to broaden their adaptability to environmental

conditions in comparison with their native range has

been previously reported (Oduor et al. 2016), and

emphasizes the need to incorporate data from the

introduced range when predicting potential global

distribution.

Creating binary maps has been the final step in

many distribution modeling studies, as it is commonly

used for various model applications such as delineat-

ing range expansions (De Marco et al. 2008), identi-

fying areas susceptible to species invasion (Ward

2007), preliminary detection of suitable areas for

biological surveys or reintroductions (Graham et al.

2004) and mapping areas for conservation

management (Graham et al. 2004; Waltari and Gural-

nick 2009). However, binary predictions require an

appropriate threshold, which may change due to the

purpose of the study, sample size, previous knowledge

of species characteristics and life history, and more

(Nenzén and Araújo 2011; Norris 2014). Previous

studies have obtained fundamentally different results

using different thresholds, and supporting empirical

data are still scarce (Liu et al. 2005, 2016; Norris

2014). Our results indicate that threshold selection

dramatically affects the size and spatial shape of the

binary maps generated, and resonate some of the

findings previously shown by others (see Supplemen-

tary Information).

Carrying out a large-scale global study required us

to confront several limitations. While the data-set we

compiled is extensive, it reflects a bias in sampling

effort, probably towards recent years due to increasing

awareness of the significance of data collection, and

towards areas that were more accessible to those

submitting the reports. However, we feel confident in

stating that this is the most comprehensive and

updated data-set of common myna occurrence to have

been collected and analyzed to date with regard to the

distribution of the species. In addition, while SDMs

may benefit from more accurate resources (e.g.,

climatic data), and from including other biologically

relevant information (e.g., local biotic interactions),

this is difficult to implement in a global study such as

the present one (see Supplementary Information).

Another important caveat of applying a species

distribution model to a species that is in a state of

on-going invasion is that it inherently violates the

basic assumption of these models, according to which

they may only be applied to species that are at quasi-

equilibrium with their environment (Guisan and

Thuiller 2005; Elith 2015). Since common mynas

are clearly still expanding their range in their conti-

nental introduced areas (Fig. 1), the reliability of the

distributional data (presence records and pseudo-

absences) may be questionable. However, in a world

of constant change due to rapid urbanization and

global warming, few species are at true equilibrium

with their environment. We advocate SDM’s as an

important tool in the study of the distribution potential

of invasive species; and, despite these potential

drawbacks, they should be a part of the tool-box for

addressing this key subject.
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Evidence of climatic niche shift during biological invasion.

Ecol Lett 10:701–709. https://doi.org/10.1111/j.1461-

0248.2007.01060.x

Buckland S, Cole NC, Aguirre-Gutiérrez J et al (2014) Eco-

logical effects of the invasive giant madagascar day gecko

on endemic Mauritian geckos: applications of binomial-

mixture and species distribution models. PLoS ONE.

https://doi.org/10.1371/journal.pone.0088798

Canning G (2011) Eradication of the invasive common myna,

Acridotheres tristis, from Fregate Island, Seychelles.

Phelsuma 19:43–53

Charter M, Izhaki I, Ben Mocha Y, Kark S (2016) Nest-site

competition between invasive and native cavity nesting

birds and its implication for conservation. J EnvironManag

181:129–134. https://doi.org/10.1016/j.jenvman.2016.06.

021

Cramp S, Perrins CM (1994) Handbook of the birds of Europe,

the Middle East and Africa. The birds of the western

Palearctic vol VIII: crows to finches. Oxford University

Press, Oxford

Crawford KM,Whitney KD (2010) Population genetic diversity

influences colonization success. Mol Ecol 19:1253–1263.

https://doi.org/10.1111/j.1365-294X.2010.04550.x

Crooks KR, Suarez AV, Bolger DT (2004) Avian assemblages

along a gradient of urbanization in a highly fragmented

landscape. Biol Conserv 115:451–462

Crystal-Ornelas R, Lockwood JL, Cassey P, Hauber ME (2017)

The establishment threat of the obligate brood-parasitic

Pin-tailed Whydah (Vidua macroura) in North America

and the Antilles. Condor 119:449–458. https://doi.org/10.

1650/CONDOR-16-150.1

Davis MA, Grime JP, Thompson K et al (2000) Fluctuating

resources in plant communities: fluctuating resources a

general of invasibility theory. J Ecol 88:528–534. https://

doi.org/10.1046/j.1365-2745.2000.00473.x

De Marco P, Diniz-Filho JAF, Bini LM (2008) Spatial analysis

improves species distribution modelling during range

expansion. Biol Lett 4:577–580

Dukes JS, Mooney HA (1999) Does global change increase the

success of biological invaders? Trends Ecol Evol

14:135–139. https://doi.org/10.1016/S0169-

5347(98)01554-7

Elith J (2013) Predicting distributions of invasive species. 1–28

Elith J (2015) Predicting distributions of invasive species. In:

Walshe TR, Robinson A, Nunn M, Burgman MA (eds)

Risk-based decisions for biological threats. Cambridge

University Press, Cambridge

Elith J, Leathwick JR (2009) Species distribution models: eco-

logical explanation and prediction across space and time.

Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.

1146/annurev.ecolsys.110308.120159

Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation

of MaxEnt for ecologists. Divers Distrib 17:43–57. https://

doi.org/10.1111/j.1472-4642.2010.00725.x

Feare CJ (2010) The use of Starlicide � in preliminary trials to

control invasive common myna Acridotheres tristis popu-

lations on St Helena and Ascension islands, Atlantic

Ocean. Conserv Evid 7:52–61

Feare C, Craig A (1999) Commonmyna,Acridotheres tristis. In:

Starlings and mynas. Princeton UniversityPress, Princeton,

pp 157–160

Forys EA, Allen CR (1999) Biological invasions and deletions:

community change in south Florida. Biol Conserv

87:341–347. https://doi.org/10.1016/S0006-

3207(98)00073-1

Fraser D, Aguilar G, Nagle W et al (2015) The house crow

(Corvus splendens): a threat to New Zealand? ISPRS Int J

Geo-Inf 4:725–740. https://doi.org/10.3390/ijgi4020725

123

1306 T. M. Cohen et al.

https://doi.org/10.1007/s10530-015-1032-y
https://doi.org/10.1007/s10530-015-1032-y
https://doi.org/10.1111/j.1472-4642.2008.00547.x
https://doi.org/10.1111/j.1472-4642.2008.00547.x
https://doi.org/10.1111/j.1365-2486.2008.01841.x
https://doi.org/10.1111/j.1365-2486.2008.01841.x
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://doi.org/10.1111/j.1461-0248.2007.01060.x
https://doi.org/10.1111/j.1461-0248.2007.01060.x
https://doi.org/10.1371/journal.pone.0088798
https://doi.org/10.1016/j.jenvman.2016.06.021
https://doi.org/10.1016/j.jenvman.2016.06.021
https://doi.org/10.1111/j.1365-294X.2010.04550.x
https://doi.org/10.1650/CONDOR-16-150.1
https://doi.org/10.1650/CONDOR-16-150.1
https://doi.org/10.1046/j.1365-2745.2000.00473.x
https://doi.org/10.1046/j.1365-2745.2000.00473.x
https://doi.org/10.1016/S0169-5347(98)01554-7
https://doi.org/10.1016/S0169-5347(98)01554-7
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1016/S0006-3207(98)00073-1
https://doi.org/10.1016/S0006-3207(98)00073-1
https://doi.org/10.3390/ijgi4020725


Gallien L, Münkemüller T, Albert CH et al (2010) Predicting

potential distributions of invasive species: Where to go

from here? Divers Distrib 16:331–342

Gallien L, Douzet R, Pratte S et al (2012) Invasive species

distribution models—how violating the equilibrium

assumption can create new insights. Glob Ecol Biogeogr

21:1126–1136

Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting

the potential distribution of the alien invasive American

bullfrog (Lithobates catesbeianus) in Brazil. Biol Inva-

sions 10:585–590. https://doi.org/10.1007/s10530-007-

9154-5

Graham CH, Ferrier S, Huettman F et al (2004) New develop-

ments in museum-based informatics and applications in

biodiversity analysis. Trends Ecol Evol 19:497–503

Grarock K, Tidemann CR, Wood J, Lindenmayer DB (2012) Is

it Benign or is it a pariah? Empirical evidence for the

impact of the common myna (Acridotheres tristis) on

Australian birds. PLoS ONE. https://doi.org/10.1371/

journal.pone.0040622

Grarock K, Tidemann CR, Wood JT, Lindenmayer DB (2014)

Are invasive species drivers of native species decline or

passengers of habitat modification? A case study of the

impact of the common myna (Acridotheres tristis) on

Australian bird species. Austral Ecol 39:106–114. https://

doi.org/10.1111/aec.12049

Guisan A, Thuiller W (2005) Predicting species distribution:

offering more than simple habitat models. Ecol Lett

8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.

00792.x

Hanberry BB, He HS (2013) Prevalence, statistical thresholds,

and accuracy assessment for species distribution models.

Web Ecol 13:13–19. https://doi.org/10.5194/we-13-13-

2013

Hayes MA, Cryan PM,WunderMB (2015) Seasonally-dynamic

presence-only species distribution models for a cryptic

migratory bat impacted by wind energy development.

PLoS ONE 10:1–20. https://doi.org/10.1371/journal.pone.

0132599

Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo:

species distribution modeling. R package version 1.1-4.

https://CRAN.R-project.org/package=dismo

Holzapfel C, Levin N, Hatzofe O, Kark S (2006) Colonisation of

the Middle East by the invasive Common Myna Acri-

dotheres tristis L., with special reference to Israel. Sand-

grouse 28:44

Hone J (1978) Introduction and spread of the common myna in

New South Wales. Emu-Austral Ornithol 78:227–230

Hulme PE (2009) Trade, transport and trouble: managing

invasive species pathways in an era of globalization. J Appl

Ecol 46:10–18
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