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Abstract Invasive trees are a major problem in

South Africa. Many species are well established

whereas others are still in the early stages of invasion.

The management of invasive species is most cost

effective at the early stages of invasion; it is thus

essential to target and contain naturalizing invaders

before they spread across the landscape. Multi-scale

species distribution models (SDMs) provide useful

insights to managers; they combine species-occur-

rence observations with climatic variables to predict

potential distributions of alien species. Applying

SDMs in human-dominated ecosystems is

complicated because many factors associated with

human actions interact in complex ways with climatic

and edaphic factors to determine the potential suit-

ability of sites for species. The aim of this study was to

determine the degree to which a worldwide invader, A.

altissima (Simaroubaceae) has occupied its potential

range in South Africa, to identify areas at risk of future

invasion. To do this we built a set of SDMs at both

global and country scales using climatic, land use and

human-footprint data. Climatic data best explained the

distribution of A. altissima at the global scale whereas

variables reflecting human-mediated disturbances

were most influential at the national scale. Our

analyses show the importance of human-mediated

disturbances at a global scale and human occupancy atGuest Editors: Mirijam Gaertner, John R.U. Wilson,
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a country scale in determining the range limits of A.

altissima. Populations of this tree species are already

present in most parts of South Africa that are

environmentally suitable for the species, and manage-

ment actions need to focus on preventing increases in

density in these areas.

Keywords Biological invasions � Ensemble

models � Invasive species � Early stages of invasion �
Range filling � Species distribution models � Spread
potential � Tree invasions � Urban invasions

Introduction

South Africa has a major problem with invasive alien

plant species (Richardson et al. 1997; Henderson

2007). Many species are well established and many

others are still in the early stages of invasion (Nel et al.

2004; Mgidi et al. 2007; Wilson et al. 2013). Woody

plant species are very well represented in the invasive

flora, and species of Acacia,Hakea, Eucalyptus, Pinus

and Prosopis are the dominant invasive plant species

in many parts of the country (Richardson et al. 1997).

Many other species of alien trees are either recent

introductions or have not enjoyed widespread dissem-

ination. Some of these species are well-known

invaders in other parts of the world, or have attributes

associated with invasiveness, but have not yet

expressed their invasive tendencies in South Africa.

Some have not yet become naturalized, while others

only recently entered the phase of rapid population

growth and spread (Nel et al. 2004; Donaldson et al.

2014); a large invasion debt thus exists (Rouget et al.

2015).

Control of invasive alien species (IAS) is most

effective at the early stages of invasion (Wittenberg

and Cock 2005; Wilson et al. 2016). Early detection

and management mitigates widespread impacts asso-

ciated with the future spread of certain IAS (Wilson

et al. 2013, 2016). Species distribution models

(SDMs) have been widely applied to determine the

potential range of invasive species (Hui and Richard-

son 2017). SDMs are numerical tools that combine

species occurrence observations with environmental

estimates to predict distributions across a variety of

landscapes (Elith and Leathwick 2009). Management

programmes have become increasingly reliant on

SDMs to establish the suitability of given areas for

particular invasive species and their potential to spread

within these areas (Thuiller et al. 2005; Elith and

Leathwick 2009; Richardson et al. 2010; Cabra-Rivas

et al. 2016).

The suitability of SDMs for modelling the potential

ranges of invasive species is however debat-

able (Guisan and Thuiller 2005; Gallien et al.

2010, 2012; Gassó et al. 2012; Cabra-Rivas et al.

2016). This is because SDMs that are used to model

the potential ranges of IAS assume that the environ-

mental conditions in the species’ native range are the

same as those in its adventive range (Gallien et al.

2012) and that the species being modelled is at quasi-

equilibrium with the environment in which it occurs

(i.e. the species is established at all suitable sites and is

absent from all unsuitable sites; Guisan and Thuiller

2005). For this reason, it has been suggested that all

available global data from both the native and invasive

ranges of the invasive species should be used in

determining the ‘‘ecological niche’’ of introduced

species (Beaumont et al. 2009; Ibáñez et al. 2009;

Gallien et al. 2012). The ecological niche refers to

relationships between an invasive organism and its

physical and biological environment, which accounts

for the effects of both time and space (Shea and

Chesson 2002). Such an approach does, however, not

account for particular conditions that characterize

local ranges (e.g. environment, interactions and

human uses; Gallien et al. 2012). Multi-scale mod-

elling that incorporates a variety of distribution drivers

over both the native and adventive ranges is known to

improve the overall accuracy of potential species

distributions (Sutherst and Bourne 2009; Jiménez-

Valverde et al. 2011; Václavı́k and Meentemeyer

2012). With this in mind, Cabra-Rivas et al. (2016)

integrated SDMs from multiple scales to establish the

relative importance of various drivers in shaping the

distribution of two invasive tree species. They found

that climatic variables were the main contributors to

the global and country-scale models for both species,

followed by land use. The prevalence of climatic over

land-use factors in explaining distribution could be

because of the climatic heterogeneity within the

studied region—the opposite situation could exist in

a climatically homogenous region (Cabra-Rivas et al.

2016). At a finer scale, however, human-mediated

disturbances were more influential than either climate

or land use, a finding supported by a number of other
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authors (e.g. Rouget and Richardson 2003; Lambdon

et al. 2008).

This paper focuses on the tree of heaven (Ailanthus

altissima), a widespread invasive species in the

northern hemisphere (Rejmánek and Richardson

2013) that, for unknown reasons, has yet to become

a widespread invader in South Africa. This species is

unusual among widespread invasive tree species (see

Richardson and Rejmánek 2011 for a global review) in

that it is largely an invader of urban habitats (Kowarik

and Säumel 2007). This means that climate data of the

type typically used to model the range limits of species

in SDMs is probably of limited value, since environ-

mental conditions in urban habitats are influenced in

complex ways by diverse human activities. The use of

human-influenced environmental factors (such as the

human footprint indicator) is likely to be more useful

for predicting the potential distribution of an urban

invader than typical environmental factors (such as

broad-scale climatic variables). It is thus important to

incorporate these into the design of SDMs (Guisan and

Thuiller 2005). We aim to evaluate the degree of range

filling exhibited by this species in South Africa and to

identify areas at risk of future invasion. In a previous

study, the current and potential distribution of A.

altissima was evaluated at a global and country-level

for South Africa using a simple bioclimatic envelope

model generated in MaxEnt (Walker et al. 2017). Such

bioclimatic models usually provide a useful approx-

imation of the potential range of a species (Pearson

and Dawson 2003; Guisan and Thuiller 2005), but

many other factors also influence the distribution of

invasive species (Guisan and Thuiller 2005; Cabra-

Rivas et al. 2016). Understanding the role of such

additional factors is important to inform management

strategies. This is particularly important when mod-

elling the spread of invasive species that are not only

influenced by natural factors (such as climatic vari-

ables) that determine their range limits very broadly,

but are also affected by anthropogenic or non-natural

factors (such as human-mediated disturbances). Accu-

rately establishing the potential range of species like

A. altissima requires integration of all the above-

mentioned factors (Cabra-Rivas et al. 2016) and the

situation with A. altissima in South Africa provides a

good study system for developing such an approach. It

is interesting to examine the relative roles of climatic

and other factors in shaping the potential distribution

of A. altissima in South Africa, where the species—

although having a long residence time in country—is

yet to replicate levels of invasion success seen in other

parts of its adventive range. We address the following

questions: (1) To what degree has A. altissima

occupied its potential range in South Africa?; (2)

Are there noticeable differences between the model

outputs achieved through modelling the potential

distribution of A. altissima at a global scale using

coarse grain variables (10 arc-min resolution), and

modelling at a country scale using finer-grain vari-

ables (5 arc-min resolution)?; (3) What are the most

influential factors that determine the potential spread

of A. altissima at a global and country scale?; (4)

Which areas are at risk of future invasion by A.

altissima in South Africa?

Methods

Study species

Ailanthus altissima Mill. Swingle (Simaroubaceae;

tree of heaven) is a deciduous, dioecious tree species

that is native to China. It has been widely planted

globally and its adventive range now covers all

continents except Antarctica (Kowarik and Säumel

2007). The species is a notorious invader in the

northern hemisphere (Kowarik and Säumel 2007;

Cabra-Rivas et al. 2016), but has yet to replicate such

levels of invasion success in some other parts of the

world, including South Africa. The species has several

characteristics that are typical of successful invasive

plant species, including prolific seed production (ca.

350,000 per female tree/year), rapid juvenile growth

(Burch and Zedaker 2003), the ability to withstand

harsh environmental conditions, including high levels

of atmospheric pollution (Lawrence et al. 1991), and

the ability to reproduce vegetatively after disturbance

(Bory et al. 1991; Kowarik 1995; Kowarik and Säumel

2007; Constán-Nava et al. 2010). It is a popular

ornamental plant in urban centres around the world

and has also been widely used for roadside restoration

(Kowarik and Säumel 2007; Constán-Nava et al.

2010). In its adventive range A. altissima is most

common and abundant in urban areas where it mainly

occurs in disturbed sites, degraded fields, along roads

and in riparian habitats (Kowarik and Säumel 2007;

Constán-Nava et al. 2010). It is also invasive in many

protected areas (Foxcroft et al. 2017). The first record
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of the species in South Africa is from 1834 (Bradlow

1965). Despite the fact that it has been in South Africa

for a long time, it has not been widely disseminated

until fairly recently. Because of the substantial

impacts of this species to urban infrastructure (Ce-

lesti-Grapow and Blasi 2004; Kowarik and Säumel

2007) and human health (Vaz et al. 2017; Potgieter

et al. 2017), strategic interventions to prevent its

further spread in South Africa are needed.

Data collation

Distribution data for A. altissima were collected from

many sources and compiled into a global database and

a South African database. Global distribution data

were taken from (1) the Global Biodiversity Informa-

tion Facility (GBIF); (2) Centre for Agriculture and

Biosciences International (CABI); (3) the Global

Invasive Species Database (GISD); and (4) Delivering

Alien Invasive Species Inventories for Europe (DAI-

SIE). Distribution data for South Africa were obtained

from (1) the South African Plant Invaders Atlas

(SAPIA) database (see Henderson 1998); (2) the City

of Cape Town’s Invasive Species Unit; (3) the South

African National Biodiversity Institute’s (SANBI)

Invasive Species Programme (ISP); (4) herbarium

records; and (5) from the online biodiversity website

iSpot (http://www.ispotnature.org/). Additional data

points were collected during random searches in the

Western Cape, Gauteng and KwaZulu-Natal pro-

vinces during 2015. An article in the popular South

African magazine Veld & Flora (December 2015

issue) about the species yielded 12 new occurrence

records.

Since the environmental data were obtained from

different data sources and at different spatial resolu-

tions, both data sets were resampled at the same grid

size to match the occurrence data for each scale (10-

arc min resolution for the global scale; 5-arc min

resolution for the country scale). Data were edited by

removing replicates, records without any co-ordinates,

obviously erroneous records (e.g. in the sea) and those

that appeared to be outliers. This was done using the

biogeo package available in R (Robertson et al. 2016).

Climatic variables were obtained from the World-

Clim database (Hijmans et al. 2005). All 19 variables

were downloaded at 10-min spatial resolution for the

global model, and at 5-min spatial resolution for the

South African model. When compared against each

other (using a correlation test), we determined a high

level of multicollinearity between the WorldClim

climatic variables that were downloaded at both

spatial scales. The utilization of environmental vari-

ables that exhibit high levels of multicollinearity is

known to increase the appearance of errors in the final

model output (Cruz-Cárdenas et al. 2014). Given the

large number of climatic variables and the multi-

collinearity among them, a principal component

analysis (PCA) was performed at both spatial scales

(Cabra-Rivas et al. 2016). For each of the first four

axes (cumulative variation explained was [ 84%),

variables accounting for the highest levels of variabil-

ity were selected and used as climatic predictors. We

selected the following climatic variables to account for

variability at the global scale (in order of importance):

mean temperature of the warmest quarter (Bio_10),

temperature annual range (Bio_7), precipitation of the

driest month (Bio_14), and mean temperature of the

wettest quarter (Bio_8). At the country scale, the

following climatic variables were selected: isother-

mality (Bio_3), temperature annual range (Bio_7),

annual mean temperature (Bio_1) and precipitation of

warmest quarter (Bio_18).

Land cover information was obtained from the

GlobCover 2009 database for the global model (Arino

et al. 2012), and from the 72 Class GTI South African

National Land Cover Dataset (available at: http://bgis.

sanbi.org/DEA_Landcover/project.asp; DEA 2015)

for the South African model. Categories were matched

by grouping land-use data into six new categories for

both the global and country models. We created sim-

ilar land-use classes at both the global and country

scales. However, since land-use data were from dif-

ferent sources, the final land-use classes differed

slightly for the two spatial scales. For the global scale,

we grouped the land-cover information from the

GlobCover 2009 dataset into the following categories:

(1) % built-up areas, (2) % agriculture, (3) % forest,

(4) % mosaic vegetation, (5) % bare areas (no vege-

tation), and (6) % wetlands. These data were then

aggregated to match a 10-min spatial resolution. At the

country scale, we categorized the land cover data as

follows: (1) % human occupancy (urban and rural

areas), (2) % agriculture, (3) % forest, (4) % mosaic

vegetation, and (5) % bare areas (no vegetation).

These data were then aggregated to match a 5-min

spatial resolution. All land-use classes at both spatial
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scales were used to develop species distribution

models.

Human Footprint (HFP) data, which provides an

index of anthropogenic impacts on the environment

(Woolmer et al. 2008), were obtained from the

SEDAC database (Sanderson et al. 2002) for both

the global and country models. These data were then

aggregated to match a 10-min spatial resolution for the

global scale, and a 5-min spatial resolution for the

country scale. HFP is a global dataset of 1-km grid

cells created from nine global data layers that include

human population pressure, human land use and

infrastructure and human access. It indicates the

degree of disturbance in the community ranging from

0 (wild) to 100 (highly disturbed) (Woolmer et al.

2008). For each model, the final set of explanatory

variables included climatic, land use and human

footprint variables (Table 1). None of the environ-

mental variables showed Pearson correlation coeffi-

cients greater than 0.7.

Modelling at a global scale

A set of ensemble models were built to characterize

the full-range niche requirements for A. altissima at a

global scale. A total of 3205 unique global occur-

rences for A. altissima encompassing both the native

and non-native ranges of the species were used. The

choice of algorithm influences the overall model

output (Thuiller et al. 2004; Roura-Pascual et al. 2009;

Cabra-Rivas et al. 2016). However, there is no single

technique that is most affective at predicting potential

species distribution (Pearson et al. 2006). Conse-

quently, four algorithms were selected to model the

potential global distribution of A. altissima. Two

regression methods—Generalized Linear Models

(GLM; Faraway 2016) and Multivariate Adaptive

Regression Splines (MARS; Friedman 1991)—and

two machine-learning methods—Random forest (RF;

Liaw and Wiener 2002) and Generalized Boosted

Models (GBM; Ridgeway 1999)—were selected. All

algorithms were implemented using the biomod2

package (Thuiller et al. 2013) in R. All of the selected

algorithms require presence-absence data to build

models (Elith and Leathwick 2009), our global dataset

included presence-only records. Barbet-Massin et al.

(2012) found that models fitted with a large number of

pseudo-absences that are equally weighted to the

presences (i.e. weighted sum of pseudo-absences

equals the weighted sum of presences) produced the

most accurate predicted distribution models. They also

found that fewer replicates were required when a

larger number of pseudo-absence records were gener-

ated. Therefore, a single set of 10,000 pseudo-absence

records was generated (Barbet-Massin et al. 2012).

Because presence-only data of alien species can suffer

geographical biases due to dispersal limitation of the

species, we restricted the selection of pseudo-absence

points to the grid cells surrounding every presence (no

further than four grid cells distance away from each

presence; Barbet-Massin et al. 2012). We thereby

minimized commission errors in areas that may be

suitable for the species but are not yet colonized

(Cabra-Rivas et al. 2016). We implemented a split-

sample cross-validation procedure where all models

were calibrated on 70% of the initial data randomly

selected, and evaluated on the remaining 30%

(70–30% split) with the area under the ROC curve

(AUC; Fielding and Bell 1997; Cabra-Rivas et al.

2016). Ten cross validations were performed for each

algorithm and pseudo-absence dataset resulting in a

total of 40 different models being calculated for the

species globally (one pseudo-absence dataset 9 four

algorithms 9 ten replications). To improve the over-

all accuracy of SDM predictions, only models with an

AUC score C 0.8 were retained to build a committee-

averaging ensemble model (Crossman and Bass

2008). A single output consisting of the percentage

of agreement among models is created by utilizing this

method (Gallien et al. 2012).

Modelling at a country scale

Presence records for A. altissima in South Africa were

pooled from various databases and sources. Replicates

and unreliable records were removed from the dataset

using biogeo and a maximum of one record was

retained for each 5-min grid cell. This left a total of

539 records. However, to ensure that testing took place

on spatially separated blocks, we set a minimum

distance of 30 km between each presence record,

thereby avoiding biases associated with over sampling

in certain areas and ensuring the accuracy of the final

model output. This further reduced the total number of

unique records to 90. Pseudo-absences were selected

in a way that both minimized the sampling biases from

the occurrence data (Phillips et al. 2009) and

accounted for the dispersal limitations of the species
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in South Africa (Gallien et al. 2012). As a first step, we

mitigated biases due to dispersal limitations by

selecting pseudo-absences within the vicinity of any

of the presence records (no more than four grid cells

distance from each presence record; Cabra-Rivas et al.

2016). Then, as a second step, we used the predictions

of the global models to attribute weights to our

pseudo-absences as a way of avoiding contingent

absences. Weights ranged from 0 (low probability of

being a true absence) to 1 (high probability of being a

true absence) (for further details see Gallien et al.

2012). 1836 pseudo-absence records were selected to

represent all areas surrounding each presence records.

We used the same four statistical algorithms applied

for the global model, followed by 10 cross-validation

repetitions. This resulted in a total of 40 models being

developed for the species in South Africa (one pseudo-

absence dataset 9 four algorithms 9 ten replica-

tions). The same split-sample cross-validation proce-

dure was used as in the global model (70–30%). To

avoid a false inflation of AUC measures due to spatial

autocorrelation, a filtering point approach was selected

(Marcer et al. 2012). A filtering point approach sets a

minimum spatial and environmental distance between

Table 1 Final set of explanatory variables specifying the scale and data source used to develop the species distribution models at the

global and country scale

Variable

type

Variable description Scale Data source

Climate Precipitation of driest

month [bio14]

Global WorldClim database (Hijmans et al. 2005; http://www.worldclim.org/

bioclim.htm) [A] (*A)

Climate Mean temperature of

warmest quarter [bio10]

Global *A

Climate Mean temperature of

wettest quarter [bio8]

Global *A

Climate Temperature annual range

[bio5-bio6] [bio7]

Global,

country

*A

Climate Precipitation of warmest

quarter [bio18]

Country *A

Climate Isothermality [bio2/bio7]

[*100] [bio3]

Country *A

Climate Annual mean temperature

[bio1]

Country *A

Land use % Agriculture Global GlobCover 2009 dataset (Arino et al. 2012; http://due.esrin.esa.int/page_

globcover.php) [B] (Accessed in April 2016) (*B)

Land use % Bare areas Global *B

Land use % Built-up areas Global *B

Land use % Forests Global *B

Land use % Mosaic vegetation Global *B

Land use % Wetland Global *B

Land use % Human occupancy

(urban and rural areas)

Country 72 Class GTI South African National Land Cover Dataset (DEA Open

Access 2015) [C] http://bgis.sanbi.org/DEA_Landcover/project.asp;

Accessed in May 2016) (*C)

Land use % Wetland Country *C

Land use % Forest Country *C

Land use % Agriculture Country *C

Land use % Mosaic vegetation Country *C

Land use % Bare areas Country *C

Disturbance Human footprint Global,

country

SEDAC database (Sanderson et al. 2002; http://sedac.ciesin.columbia.edu/

data/set/wildareas-v2-human-footprint-geographic; Accessed in April

2016)
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occurrences and examines these for residual autocor-

relation (Marcer et al. 2012). The smaller number of

species occurrences together with the high restrictions

imposed on pseudo-absence selection lead to a

decrease in AUC scores (Lobo et al. 2008). Only

models with AUC scores C 0.7 were retained to build

the committee-averaging ensemble model.

Statistical analyses

The relative importance of each of the selected

variables was determined at both spatial scales. A

confusion matrix was produced showing: (1) the

number of points predicted as suitable by both the

global and country models; (2) the number of points

predicted as suitable by either the global or the country

models; and (3) the number of points predicted as

unsuitable by both the global and country models

(Fielding and Bell 1997). Using the values obtained

from the confusion matrix, the true skill statistic

(TSS), as well as the sensitivity and specificity values

were calculated (Fielding and Bell 1997; Allouche

et al. 2006). TSS, a measure of predictive accuracy

that is independent of prevalence (Allouche et al.

2006), was used to estimate the level of agreement

between the global and country-level model predic-

tions. TSS integrates sensitivity and specificity values

into a single metric, and is calculated with the

following formula: TSS = (sensitivity ? speci-

ficity) - 1. In this context, sensitivity refers to the

proportion of presences predicted by the global model

that are also predicted present by the country model,

whereas specificity refers to the proportion of absences

predicted by the global model that are also predicted

absent by the country model. These metrics (TSS,

sensitivity and specificity) are usually used to quantify

model performance by comparing the model predic-

tions to independent presence and absence records. In

this study, however, they are used to indicate agree-

ment between the global and country model, and thus

do not indicate model performance.

Results

Relative importance of distribution drivers

Cumulatively, climate variables (50.8%) were the

most influential drivers affecting the distribution of A.

altissima at the global scale. This was followed by

land use (33.8%) and human-mediated disturbances

(15.5%). In contrast, at the country scale, human

footprint (51.1%) was the most influential driver,

followed by land use (30.0%) and then climate

(18.9%) (Fig. 1a).

Individually, percentage of built-up areas (18.3%)

and temperature annual range (17.4%) were the most

influential variables at the global scale, followed by

the mean temperature of the warmest quarter (16.3%)

and human-mediated disturbances (15.4%) (Fig. 1b).

At the country scale, human-footprint (51.1%) was the

most influential variable affecting A. altissima distri-

bution, followed by the land-use category—percent-

age human occupancy (20.9%). Isothermality (mean

diurnal range/temperature annual range) (7.3%) and

temperature annual range (4.7%) were the two most

influential climatic variables at the country scale

(Fig. 1c).

The response curves indicate how the four algo-

rithms used in the models predict the way in which the

species responds to these variables. At the global

scale, all model algorithms show similar responses and

indicate that A. altissima tends to occur: in highly

built-up areas (Fig. 2a), in regions of high human

footprint (Fig. 2d) and of low annual range in

temperature (Fig. 2b). It also appears that the species

tends to occur more in regions hosting intermediate

values of mean temperature during the warmest

quarter of the year (although these curves reveal

partial disagreement between algorithms; Fig. 2c).

Similarly to the results of the global scale, at the

country scale the species tends to occur more

frequently in sites of high human footprint (Fig. 2e),

and high human occupancy (Fig. 2f).

Degree to which A. altissima has occupied its

potential range, and risk maps

Within South Africa, A. altissima is widespread and

abundant throughout the province of Gauteng, where

the country’s largest city, Johannesburg, is situated

(Fig. 3). Projections from both the global and country

models predicted presences in most grid cells through-

out this province (Fig. 4). The species is fairly

widespread in the southwestern part of the Western

Cape, especially in and around the cities of Cape Town

and Knysna. The species has a scattered distribution in

parts of the Eastern Cape, Free State andMpumalanga.
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Both the global and country-scale models predicted

presences in grid cells corresponding with the major

cities of South Africa, including Johannesburg, Cape

Town, Durban, Port Elizabeth, East London, Nelspruit

and Bloemfontein. Global-scale model projections

predicted presences in all of the provinces, but only

very few suitable cells in the arid Northern Cape

Province. The country-scale model also predicted

suitable cells in all provinces but identified more high-

suitability cells across the country than the global

model. Both country- and global-scale models pre-

dicted presences in grid cells surrounding Durban,

where there are currently no records of A. altissima

occurrence (Fig. 5).

The global model identified approximately 3% of

South Africa as being suitable for the species, whereas

the country-scale model predicted approximately 6%

of South Africa as suitable. There was a reasonable

agreement in the predictions between the two models

(Fig. 5). Sixty-five cells (out of a total of 3941 cells

across South Africa) were identified as being suit-

able for the species by both models (ca. 1.5%). The

country-scale model predicted 155 cells (3.9%) to be

suitable that were not predicted to be suitable by the

global model. These cells are scattered throughout the

central part of South Africa (including Free State and

Eastern Cape provinces) and along the coast of the

Eastern Cape and KwaZulu-Natal. Fewer cells (52;

1.3%) were predicted to be suitable by the global

model but not by the regional model. Overall, the

global and country-scale models identified broadly

similar regions as being potentially suitable for this

species. The most important difference between these

predictions is the large number of cells in the Eastern

Cape and KwaZulu-Natal provinces predicted to be

suitable by the country-scale model but not by the

global model. Both models suggest that the species is

capable of surviving across a broad range of climatic

conditions. The sensitivity was 0.55, specificity was

0.96, and True Skill Statistic was 0.52.

Discussion

Relative importance of predictor variables

The potential distribution of invasive species is

influenced by many factors whose relative importance

varies according to spatial scale (Rouget and Richard-

son 2003; Guisan and Thuiller 2005; McGill 2010;

Cabra-Rivas et al. 2016). Factors such as climate

(Hijmans and Graham 2006; Hellman et al. 2008),

land use (McKinney 2008) and anthropogenic effects

Fig. 1 Relative importance of the variables for predicting the

distribution of Ailanthus altissima for both the global and

country models for a variables grouped into three classes, b for

individual variables in the global model, and c for individual

variables in the country model. Variables: Built-up = % built-

up areas, TempAR temperature annual range,MeTempWQmean

temperature of the warmest quarter, HFP human footprint,

PreDM precipitation of the driest month, Forest % forests,

MeTempWeQ mean temperature of the wettest quarter, Agric%

agricultural areas, Mosaic % mosaic vegetation, Wetld %

wetlands, Bare % bare areas, Hum % human occupancy, Isoth

isothermality, AnMTemp annual mean temperature; PptWQ

precipitation of the warmest quarter
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(Hulme 2009) clearly have important effects on the

distribution of invasive species globally. This study

(and others; see Guisan and Thuiller 2005; Gallien

et al. 2010; Cabra-Rivas et al. 2016) highlights the

importance of incorporating these multiple factors into

models to determine the potential range of an invasive

Fig. 2 Changes in the probability ofAilanthus altissimapresence

along environmental gradients as predicted by the (a–d) global
and (e–f) country levelmodels. The response curves show species

response to the main predictors of the global (Builtup, TempAR,

MeTempWQ, HFP) and regional models (HFP, Hum), as

estimated by the four algorithms: Generalised Linear Model

(GLM; red line), Generalised Boosted Regression (GBM; blue

line), Random Forest (RF; black line), and Multivariate Adaptive

Regression Splines (MARS; purple line). Variables: Builtup %

built-up areas, TempAR temperature annual range (in �C),
MeTempWQ mean temperature of the warmest quarter (in �C),
HFP human footprint index, Hum% human occupancy

Fig. 3 Current distribution

of Ailanthus altissima in

South Africa. Provinces

(WC Western Cape, EC

Eastern Cape, KZN

KwaZulu-Natal, MP

Mpumalanga, LP Limpopo,

GP Gauteng, FS Free State,

NW North West, NC

Northern Cape) and selected

cities (Cpt Cape Town, Kny

Knysna, Pel Port Elizabeth,

Eln East London, Dur

Durban, Ric Richards Bay,

Har Harrismith, New

Newcastle, Kim Kimberly,

Bfn Bloemfontein, Jhb

Johannesburg, Nel

Nelspruit, Pol Polokwane)

are shown in red dots
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species. Our analysis showed that climatic factors

were most important for explaining range limits of

Ailanthus altissima at the global scale. This result is in

line with several other studies that concluded that, at a

global scale, climate has the greatest effect on the

broad range limits of invasive species (see Hellman

et al. 2008; Jeschke and Strayer 2008). The next most

important factors for explaining A. altissima

distribution globally are land use and then human-

mediated disturbance. At a national scale, for South

Africa, human-mediated disturbance (human footprint

and percent human occupancy) were the most influ-

ential drivers of A. altissima distribution. The current

distribution of the species in South Africa coincides

with large cities and towns, suggesting that the

historical planting of the species occurred in urban

Fig. 4 Maps showing areas

predicted suitable for

Ailanthus altissima in South

Africa in global-scale (top)

and country-scale models

(bottom). Black shading

indicates highly

suitable areas; shades of

grey indicate less

suitable areas; unshaded

areas are unsuitable for the

species. Cities in which A.

altissima is abundant (Cpt

Cape Town, Kny Knysna,

Pel Port Elizabeth, Eln East

London, Dur Durban, Ric

Richards Bay, Har

Harrismith, New Newcastle,

Kim Kimberly, Bfn

Bloemfontein, Jhb

Johannesburg, Pol

Polokwane, Nel Nelspruit)

are shown as red dots in both

figures
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and suburban areas. Ailanthus altissima has spread

throughout its adventive range due to its introduction

and dissemination as an ornamental plant in urban

settings (Kowarik and Säumel 2007), and the species

is still most common and abundant in cities and towns.

The first record of A. altissima in South Africa is from

Cape Town in 1834 (Bradlow 1965), but very little is

known about the subsequent history of dissemination

and spread of the species throughout the country.

Female trees were clearly selected for cultivation in

urban areas in preference to male trees because the

flowers of male trees emit a foul-smelling odour. The

regeneration biology of the species in South Africa has

not been studied but it is likely that the preference of

female trees in plantings has increased seed produc-

tion, ultimately promoting the spread of the species.

Relevant determinants of species distribution

Although A. altissima tolerates a wide range of

climatic conditions, it is most common and abundant

in temperate climatic zones (Knapp and Canham

2000; Kowarik and Säumel 2007; Clark et al. 2014).

The climatic variables that were identified as key

drivers were consistent with the climatic requirements

reported in the literature (see Kowarik and Säumel

2007). In agreement with the findings of Cabra-Rivas

et al. (2016), we found that at the global scale, the

distribution of A. altissima is characterized by inter-

mediate temperature conditions. Invaded areas

experience warm temperatures during the day

(21–27 �C) that drop slightly at night (13–18 �C) with
extreme fluctuations seldom being recorded (Shaver

et al. 2000). Cabra-Rivas et al. (2016) found annual

mean temperature to be the most influential distribu-

tion driver at the global scale (35.3%) whereas we

found the percentage of built-up areas to be the most

influential variable (18.3%), closely followed by

temperature annual range (17.3%) and mean temper-

ature of the warmest quarter (16.3%). Precipitation

also influenced the distribution of the species at the

global scale (precipitation in driest month, 10.4%);

although A. altissima is fairly drought tolerant, it does

not grow well in areas with pronounced droughts

(Albright et al. 2010). This could explain why it is not

predicted to occur in the most arid province, the

Northern Cape, although this province also has a low

human population density with few large urban areas

(low human footprint). In contrast, at the country

scale, human footprint (51.1%) and the percentage

human occupancy (20.9%) were the most important

environmental predictor variables, and had a com-

bined contribution of more than 70%.

At both global and country scales the percentage of

built-up or human occupied areas, and zones with high

levels of human-mediated disturbance (human foot-

print indicator) have a large influence on the distribu-

tion of A. altissima. A high level of human influence is

linked to high propagule pressure (Cabra-Rivas et al.

2016) which has likely facilitated the spread and

Fig. 5 Combined model output and confusion matrix showing

areas predicted to be suitable for Ailanthus altissima in both the

global- and country models (green), areas that are predicted as

suitable by just the global model (blue) or country model (pink)

and areas that are predicted as unsuitable by both the global- and

country models (grey)
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establishment of this species in its adventive range.

This high human footprint (human-mediated distur-

bances) in conjunction with the anthropogenic influ-

ences that are characterised by various transportation

pathways and dispersal corridors in built-up areas have

clearly acted as efficient mechanisms for promoting

the spread of A. altissima throughout urban ecosys-

tems in South Africa. This agrees with findings from

other parts of the world where A. altissima is most

common and abundant in urban areas (Huebner 2003).

It is therefore not surprizing, human influences have a

large effect on the distribution of this species in South

Africa.

In summary, we conclude that A. altissima tolerates

of a broad range of climatic conditions and that high

levels of human-mediated disturbances are particu-

larly important drivers of the distribution of this

species at both a global and a country scale.

Degree to which the potential range has been

occupied, and risk maps

Many areas identified as being suitable for A. altissima

occurrence in South Africa already have established

populations, but some uninvaded areas appear to be

suitable for this species. As the species appears to

invade urban areas, further extensive spread into

natural areas is not expected under current climatic

conditions. Further spread of the species in the Eastern

Cape and KwaZulu-Natal provinces is likely. In

particular, the city of Durban and other urban areas

along the coast between this city and Richards Bay are

likely to be invaded in the future, as are cities such as

Port Elizabeth and East London in the Eastern Cape.

Increases in population density in and around urban

centres areas where the species is already established

is inevitable in the absence of management.

Although the global and country models show

reasonable agreement (number of grid cells where

presences were predicted by both the global and

country model = 65; number of grid cells where

absences were predicted by both models = 3669),

there are certain areas that are identified as suit-

able only by either the global (number of grid cells

where presences were predicted by only the global

model = 52) or country-scale models (number of grid

cells where presences were predicted by only the

country model 155). Areas that were identified as

suitable in the country model but not in the global

model could be because of the coarseness of the

environmental variables that were used (Guisan et al.

2007). It is clear that 5-min spatial resolution cells had

generally higher human footprint values compared

with corresponding 10-min cells containing South

African presence records (Fig. 6). As the human

footprint variable has been shown to be particularly

influential in limiting the distribution of the species

(Fig. 1), many of the 5-min cells were identified as

being potentially suitable for the species due to high

human footprint values (country model) but due to the

generally lower values for many corresponding

10-min cells (global model) these cells were predicted

to be less suitable. The difference in human footprint

values could occur because one of the four 5-min cells

nested within a 10-min cell has a high human footprint

value while the other three have low values, resulting

in a lower overall value for the 10-min cell.

Our model comparison yielded a higher specificity

value (Sp = 0.95) compared to the sensitivity value

(Sn = 0.56). This suggests that our projected model

outputs were largely in agreement about where

absences (95%) were predicted. Most of South Africa

is not suitable for invasion by A. altissima, so this high

specificity value makes sense. The lower sensitivity

scores indicate that our global and country-scales

models were only partly in agreement regarding where

predicted presences for the species may occur. The

greater number of cells predicted as being suitable by

the country model than the global model largely

explains the relatively low sensitivity. These differ-

ences between the twomodels may partly be explained

Fig. 6 Human footprint values associated with South African

presence records for Ailanthus altissima that were extracted

from the 5- and 10-min spatial resolution human footprint

predictor variable map
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by the different weight they attributed to the human

footprint variable. As sensitivity influences the True

Skill Statistic, a relatively low TSS value

(TSS = 0.52) results from the relatively low sensitiv-

ity value.

Management of A. altissima in South Africa

In South Africa, the country model predicts that most

of the urban areas in South Africa are suitable for A.

altissima. The species has a broad climatic range and

climate does not appear to have a major role in

shaping the distribution of the species in South

Africa. Considering the areas already invaded in

South Africa, it is clear that the species can survive

and flourish in a wide range of climatic conditions,

from a Mediterranean-type climate in the Western

Cape (Cape Town) to a highly seasonal environments

with summer rainfall in the central regions of the

country (e.g. Bloemfontein). It can survive cold

winters (e.g. Bloemfontein and eastern Free State

Province) and warm humid conditions, as indicated

by records around Nelspruit in the subtropical Low-

veld on the eastern border of South Africa. Towns and

cities where this species is likely to be able to survive

but where it has yet to be recorded include Durban,

Richards Bay, Port Elizabeth, East London, Kimber-

ley and Polokwane. For most of these cities, both the

global and country models predict high environmen-

tal suitability. If this species has not reached these

cities (as suggested by the occurrence records used in

this study) then early-detection and rapid-response

plans should be developed for these cities. Another

region where the species is predicted to be able to

invade is along the eastern coastal region between just

south of Durban and Richards Bay. This area has

many coastal towns and villages where disturbance

and thus human footprint is high. Similarly, this

region should be prioritised for early detection and

rapid response.

Species distributional models, especially when the

roles of a range of climatic and other factors are

explicitly assessed (as was done in this study), can

assist in identifying areas where early detection, rapid

response (EDRR) initiatives and other management

efforts should be implemented. Containment and

reducing the size of established A. altissima popula-

tions nationally will limit further spread and impacts

(Wilson et al. 2013). EDRR initiatives in areas with

low densities of A. altissima will improve the possi-

bility of species eradication with follow-up control

measures preventing future re-establishment of the

species. Methods for producing risk maps to guide

such operations were proposed for another emerging

invasive tree species in South Africa (Acacia stricta;

Kaplan et al. 2014) and a similar approach could be

applied for A. altissima. Insights from this study

provide a starting point for the development of a

national-scale strategic plan for managing A. altis-

sima, along the lines of plans developed for other

invasive trees in South Africa (e.g. van Wilgen et al.

2011; Shackleton et al. 2017).

Conclusions

Effective management of invasive species requires the

accurate assessment of the potential geographical

range of the invasive species and an understanding of

the factors that promote their spread. This study

indicates that although A. altissima can spread further

in South Africa, extensive spread throughout the

country is very unlikely, given the species’ preference

for urban conditions. Delimiting potential areas of

invasion in relation to current areas of establishment

ultimately reduces management costs. We found

distinct differences in the model outputs at global

and country scales, with climate being the prevailing

factor influencing the spread of the species globally,

whereas factors relating to human-mediated distur-

bances were most influential explanatory variables at

the country scale. This study highlights the impor-

tance of incorporating different environmental vari-

ables at various spatial scales to identify areas of high

invasion potential. This multi-scale approach facili-

tates the early detection of invasive species ultimately

preventing their spread and introduction into high-risk

areas.
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