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Abstract Despite debates on the real impact of plant

invasion on native biodiversity, there remain many

situations where exotic invasive plants must be

managed and habitats restored. Restoration practices

that build on plant community assembly principles

could be useful to delay or prevent re-invasion after

control, but there are still few syntheses of the

biodiversity theory, ecological mechanisms and

experimental evidence relevant to invasive plant

management, possibly delaying applications. To

provide such a synthesis, we review current knowl-

edge on three key determinants of invasion success:

biotic resistance, abiotic constraints, and propagule

pressure. We elaborate on the ecological mechanisms

at play for each determinant and emphasize, using case

studies, their relevance for invasive plant management

and ecological restoration. We find evidence that

restoring a plant cover can enhance invasion resis-

tance, but the challenge for both research and field

applications is to understand how multiple determi-

nants interact in relation to species traits in the fields.

Failure to recognize these interactions and their effect

on community assembly processes may explain some

of the mixed species responses observed. While we

need control and restoration case studies with local

species at different sites, the development of a

coherent, dynamic and adaptive framework around

biotic/ecological resistance will have to go beyond the

idiosyncrasy of the many species and systems being

tested. Emphasizing the functional diversity of the

restored community seems a promising approach

when facing potentially multiple invaders and/or

fluctuating abiotic conditions.

Keywords Biodiversity restoration � Invasive
species management � Biotic resistance � Diversity
effect � Resistant plant cover

Introduction

With worldwide trade intensifying, opportunities for

species introduction outside of their native range have

increased (Hulme 2009; Levine and D’Antonio 2003).

In spite of ongoing debates on the impacts of exotic

plant invasion on native biodiversity (Gilbert and
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Levine 2013; Thomas and Palmer 2015), there remain

many situations where invasive plants are considered a

nuisance and have to be managed (Simberloff 2005).

When diverse native plant communities give ways to

dense stands of invasive plant species, habitat quality

and biogeochemical processes are often compromised

(Blossey 1999; Zedler and Kercher 2004). Invasive

plant species can therefore greatly undermine conser-

vation or restoration goals where biodiversity is

valued, for instance in nature reserves or ecologically

significant habitats.

Exotic invasive plants can be controlled by herbi-

cides, mowing, burning or labour-intensive practices

like slashing or hand-felling. If control is not selective,

the resident plant community is disturbed or has

disappeared, and if the invader is still part of the local

species pool, the risk of reinvasion can be high. For

seed dispersed invasive species, the success of

seedlings in the colonization/establishment phase

(Fig. 1) will determine the potential to (re)establish a

self-sustaining population (Catford et al. 2009; Dietz

and Edwards 2006; Van Kleunen and Johnson 2007).

This usually represents the most vulnerable stage for

many invasive plants (Fraser and Karnezis 2005) and

therefore seedling establishment provides a critical

window of opportunity for plant invasion manage-

ment. Restoring a competitive plant cover that can

interfere with invasive plant establishment can be

effective, but synthesis of biodiversity theory, ecolog-

ical mechanisms, and experimental evidence relevant

to biodiversity restoration is lacking, possibly delay-

ing applications (Esler et al. 2010).

The recruitment of invaders depends on three

factors that together determine the outcome of inva-

sion—biotic resistance, abiotic constraints, and

propagule pressure (Catford et al. 2009; Miller et al.

2014). Biotic resistance refers to the ability of species

in a resident community to resist or limit invasion by

plants (Catford et al. 2009; Levine et al. 2004).

Various components of a community, including com-

petitors, consumers and/or pathogens, can contribute

to biotic resistance to invasion (Levine et al. 2004).

The role of biotic interactions has been well-docu-

mented in community ecology (Byun et al. 2013; Fox

1987; Fridley et al. 2007; Levine and D’Antonio 1999;

Pokorny et al. 2005; Prieur-Richard et al. 2000), and is

central to our understanding of how communities at

risk of invasion assemble after disturbances (Clark and

Johnston 2011).

Abiotic constraints refer to environmental condi-

tions, stressors, or filters that can suppress the

recruitment of invaders and/or resident competitors

depending on their tolerance (Melbourne et al. 2007;

Weiher and Keddy 1995). Limited nutrients, low light

level, or unsuitable climatic conditions, for example,

constitute abiotic constraints (Davis et al. 2000; Davis

and Pelsor 2001). Disturbances may release invaders

from abiotic constraints, providing invasion opportu-

nity (Hobbs and Huenneke 1992).

Propagule pressure has also been identified as a key

element in determining invasion outcome (Lockwood

et al. 2005). Pressure depends on propagule size—the

number of individuals arriving at any one time, and

frequency of arrivals. Colonization pressure is also

used to refer to the number of species released into a

single location, a variant of propagule pressure

(Lockwood et al. 2009). An obviously important and

initially underestimated factor in the invasion process,

propagule pressure interacts with other factors (biotic

resistance or abiotic constraints) in ways that need to

be better understood.

In this paper, we review current knowledge on these

three key determinants of invasion success, focusing

on a common field situation in which biodiversity

needs to be restored after disturbances and plant

invaders are part of the species pool. We elaborate on

the ecological mechanisms at play for each determi-

nant and emphasize their relevance for ecological

restoration and exotic invasive plant management.

This synthesis allows us to identify gaps in knowledge

to inform future studies as well as opportunities and

constraints for field applications aiming at the restora-

tion of invasion-resistant habitats.

Mechanisms of invasion resistance and related

ecological concepts

Several mechanisms have been proposed to explain

how biotic resistance, abiotic constraints, and propag-

ule pressure each acts during invasion (Fridley et al.

2007; Funk et al. 2008; MacDougall et al. 2009; Sax

et al. 2007; Shea and Chesson 2002). These mecha-

nisms are not necessarily mutually exclusive, since

several processes may work synergistically or in

alternation, depending on context and scale (Fridley

et al. 2007; Pauchard and Shea 2006). Moreover,

concepts and mechanisms are often related through
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scale, from individual species to community to

ecosystems.

Biotic resistance

Niche and fitness difference

Each species has acquired through natural selection a

set of traits (canopy height, specific leaf area, type of

reproduction, timing of germination, seed size, etc.)

that determines its fitness in a particular environment

and the level of resources (nutrient, light, moisture,

etc.) that it needs or can tolerate. The niche of a species

describes the habitat requirements and ‘behaviors’ (for

a plant, examples could be dormancy or foraging

through deep roots) that may allow for persistence and

reproduction. A functional group framework associ-

ates species in terms of their traits, and consequently

of their niche and fitness similarity (Drenovsky et al.

2012; Eisenhauer et al. 2013; Funk et al. 2008).

Simply put, the way in which a species interacts with

another species depends on their respective traits and

niche requirements and how similar or dissimilar these

traits or niches are.

Biotic resistance can be explained by mechanisms

of niche difference and fitness difference between

resident and invading species. ‘Limiting similarity’,

from classical competition theory (Macarthur and

non-invasive

fail to establish
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Fig. 1 The biological invasion process in which key determinants such as propagule pressure, abiotic constraints, and biotic resistance

determine the invasion outcome
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Levins 1967;Weltzin et al. 2003), postulates that there

is a limit to the similarity in niche overlapping or

resource use between resident species and invading

species. According to this theory, an invading species

will not establish where a resident species occupies a

similar niche or has similar traits. A functional group

interpretation of the concept of limiting similarity can

also be considered: the related ‘Fox’s assembly rule’

hypothesizes that the lack of a certain functional group

in a resident community will make that community

more susceptible to invasion by species from that

particular functional group (Fox 1987; Von Holle and

Simberloff 2004) until niches become saturated.

When niches overlap, the fitness difference

between the resident species and the invader determi-

nes which one will be competitively excluded

(MacDougall et al. 2009). Performance traits such as

plant height (Gaudet and Keddy 1988), biomass

(Gaudet and Keddy 1988; Lulow 2006; Rinella et al.

2007), plant cover (Gerhardt and Collinge 2003) or

plant size (Schamp and Aarssen 2010) can be indica-

tive of potential for biotic resistance. Biomass of

resident communities, in particular, has been identi-

fied as a good indicator of competitive ability (Gaudet

and Keddy 1988) and level of biotic resistance (Lulow

2006). High biomass of resident species could reflect

the way in which available resources are utilized and,

consequently, whether resources are made (or not)

available for potential invaders. Moreover, difference

in the timing of life events can contribute to differ-

ential plant fitness and temporal partitioning of

resources. Early-season emergence, for instance, can

contribute to fitness (Verdú and Traveset 2005) and

biotic resistance at the critical establishment stage

(Firn et al. 2010). Species that establish early and grow

fast benefit from a so-called ‘priority effect’, eventu-

ally inhibiting a subsequent invader from establishing

(Mwangi et al. 2007). Priority effect is expressed as

‘first come, first served’ in terms of available resources

(Byun et al. 2013; Fukami et al. 2005; Stuble and

Souza 2016b; Young 2001).

In the context of manipulating biotic resistance for

restoration purposes, there is experimental evidence

that establishing native species functionally similar to

potential invaders, or establishing fast growing species

early, may be successful in limiting exotic plant

invasion. Fargione et al. (2003), introducing species

(both native and exotic) into 147 experimental prairie-

grasslands plots at Cedar Creek Natural History,

showed that established species most strongly inhib-

ited introduced species from the same functional

group. In a prairie restoration experiment, Larson et al.

(2013) found that early robust establishment of native

species increased biotic resistance to Cirsium arvense

(more so than functional similarity). Leffler et al.

(2014) examined the ability of monocultures and

assemblages of prairie species (native or non-invasive

exotic) to resist invasion by two exotic invasive

species, Bromus tectorum (cheatgrass; an annual

grass) and Isatis tinctoria (dyer’s woad, a biennal

forb). They found that monocultures of a single growth

form were in general more resistant to invasion by

invasive plants of the same growth form. It must be

noted that applying the limiting similarity concept to

ecological restoration assumes that the identity of the

potential invader is known. To increase biological

resistance to several known potential invaders or to

undetermine invaders, the concept must be extended to

include a diversity of established native species, as we

discuss below.

Diversity effect

At community level, the diversity-resistance hypoth-

esis predicts a positive relationship between species

diversity and biotic resistance (Levine and D’Antonio

1999). Based on the mechanisms previously men-

tioned, diverse communities can have fewer unused

niche spaces and more efficient resource use through

niche partitioning than species-poor communities,

thus resisting invasion (Funk et al. 2008; MacDougall

et al. 2009). Additionally, the more species in a

resident community, the more likely a resident

species’ niche will overlap with that of invaders,

increasing competition through limiting similarity.

Niche partitioning can be demonstrated empirically by

increasing the number of neighboring plants (Kennedy

et al. 2002), canopy complexity (Lindig-Cisneros and

Zedler 2002) or resource uptake partitioning in a

community (e.g., soil nitrogen forms) (Ashton et al.

2010; Booth et al. 2003; Frankow-Lindberg 2012).

When resident species are functionally very different

from each other, functional diversity, through trait

complementarity, can help maintain both community

stability and resistance (Fargione and Tilman 2005;

Funk et al. 2008).

The related hypothesis of ‘insurance effect’ states

that species diversity increases community-wide
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stability under a fluctuating or heterogeneous envi-

ronment (Ives et al. 2000; Loreau et al. 2001; Tilman

et al. 2006), with a potential scale effect in the field

(Balvanera et al. 2006; Fridley et al. 2007). Trait or

functional diversity allows species with suitable traits

to fill available niches when conditions change,

preventing invaders from taking advantage of fluctu-

ating resource availability (Davis et al. 2000). In this

regard, functional group richness (or functional diver-

sity based on trait complementarity) could be a more

direct indicator of invasion resistance than species

diversity alone (Symstad 2000; Pokorny et al. 2005;

but see also Prieur-Richard et al. 2000). All types of

functional groups can be of equal importance (Poko-

rny et al. 2005; Rinella et al. 2007), but others predict

that functional group composition (i.e., ratio of each

functional group) can be equally important (Prieur-

Richard et al. 2000; Tilman et al. 1997).

For any particular community, diversity effect can

be divided into ‘selection effect’ and ‘complementar-

ity effect’ (Loreau and Hector 2001). The effect in

question can be measured in terms of any process of

interest such as productivity, resistance to invasion,

etc. A selection effect is significant if certain dominant

species in a community mainly influence diversity

effects (Emery and Gross 2007; van Ruijven et al.

2003). Complementarity effect is significant when

resources partitioning or positive interaction between

species contribute most to diversity effect (Kennedy

et al. 2002; Levine et al. 2004; Levine and D’Antonio

1999). Empirical evidence indicates that both com-

plementarity and selection effects contribute to a net

diversity effect on invasion resistance (Fargione and

Tilman 2005; Frankow-Lindberg et al. 2009),

although their relative contribution is not always

quantified.

For restoration purposes, ecological theory and

empirical evidence suggest establishing high native

plant functional diversity after disturbance can

increase resistance to invasion by exotic invasive

species. For example, Phragmites australis seed

germination is sensitive to light level and competition,

and seedling recruitment through seed dispersal con-

tributes to invasion of disturbed habitats (Albert et al.

2015). To test mechanisms of biotic resistance to P.

australis seed invasion in freshwater wetland (Byun

et al. 2013, 2015) first classified 35 wetland plants

from the regional pool of native species within four

functional groups based on trait similarity. An additive

competition design was conducted with P. australis

and different mixtures of native plants and invasion

success (P. australis seedlings) was measured. The

functional group characterised by fast growing

annual plants was most resistant to early invasion by

P. australis, supporting priority effect, followed by the

functional group of tall long lived perennials with

rhizomes. Mixtures of four species were more resistant

than monoculture due to complementarity diversity

effect. Comparing resistance to invasion from three

exotic invasive species of North American grasslands

(Cirsium vulgare, Melilotus officinalis, Bromus iner-

mis), in plots seeded with low and high richness seed

mixtures (15 and 97 species respectively), high

richness plots were more efficient at resisting invasion

(Nemec et al. 2013). Sheley and Half (2006) found that

forb mixtures were significantly more successful

against the invasive Centaurea maculosa than forb

monocultures. A garden experiment by Ammondt and

Litton (2012) showed that combination of two or three

Hawaiian native species had a greater negative impact

than monocultures on biomass and fecundity of the

invasive grass Megathysus maximus, also suggesting

that increased functional diversity may improve

restoration success. Experimental studies conducted

in the context of restoration, however, do not always

show diversity effect. In an experiment with different

planting methods and seed species richness using seed

mixtures commonly used by practitioners, Larson

et al. (2011) found that greater species richness did not

translate into greater resistance to exotic invasion.

Similarly, Leffler et al. (2014) found that a diverse

mixture of grasses was no less, but also not more

resistant to invasion than a monoculture, In such cases,

higher plant functional diversity may still be advisable

if it brings other benefits (e.g., enhance habitat quality)

than biotic resistance alone, or other possibly abiotic

constraints on resistance must be evaluated.

Enemy release hypothesis

Pathogens or herbivory by native organisms may

facilitate exotic plant invasion. For example, the

overabundance of deer in North America facilitates

the success of invasive Alliaria petiolata andMicroste-

gus vimineum (Knight et al. 2009). When pathogens or

herbivores are viewed as important determinants of

plant invasion however, it is more often within the

framework of the Enemy release hypothesis (ERH).
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ERH stipulates that species invading new regions gain

competitive advantage over resident species as they

leave behind their herbivores, pathogens, parasites or

predators (Keane and Crawley 2002). Support for this

hypothesis comes mostly from (1) biogeographical

studies showing that damages from enemies are fewer

on invasive plant species in the invaded range than on

plants from the same species in the native range

(Colautti et al. 2004), (2) from fewer damages on

invasive compared to native species within the same

area (Cappuccino and Carpenter 2005), and (3) suc-

cessful biological control programs (Mitchell andPower

2003). While ERHmay be determinant for some exotic

introduction, it is not universal and several studies failed

to find patterns consistent with this hypothesis (Parker

and Gilbert 2007).

ERH frequently serves as justification for biological

control of exotic species using herbivore insects or

pathogenic fungi specific to their plant host and

originating from its native area.While biological control

rarely eliminates invasive plants, it may reduce their

population size, productivity or fertility, thereby

increasing biotic resistance of restored native plant

communities (Van Driesche et al. 2010). One invasive

plant species that has attractedmuch attention regarding

the effect of biological control using imported exotic

insect herbivores is Lythrum salicaria (purple looses-

trife) and its biological agentsGalerucella calmariensis

and Galerucella pusilla (leaf beetles) (Yeates et al.

2012). In a survey of 36 Lythrum stands in Central New

York 10 years after exposures to the biological control

agents, Grevstad (2006) found that plants were shorter

and showed various signs of beetle damage, but that

stem density and coverage remained unaffected, a

pattern consistent with other surveys. Biological control

for the invasive Ageratina riparia (mist flower) in New

Zealand, on the other hand, was very successful. Within

fiveyears of the introduction of theEntylomaageratinae

(white smut fungus) and Procecidochares alani (gall

fly) as biological agents, mean percent cover of mist

flower in heavy infested sites declined from 81 to 1.5%

(Barton et al. 2007). Biological control of invasive

species can be a valuable tool because it may be

potentially self-sustaining, non-polluting and relatively

inexpensive (Culliney 2005). While this field of

research is actively increasing, biological control

agents, however, exist for only a few species within a

specific area, and development for additional species is

slowed by the risk of damages to non-target native

species. Consequently, it is still very rarely applied in

restoration projects.

Abiotic constraints

Abiotic filtering and fluctuating resources

Studies describing the variation in the levels of

invasion among habitats in different regions and on

different continents have found similar patterns of

invasion for similar habitats. The most and the least

invaded habitats remain the same, despite being in

different regions (Chytrý et al. 2008; Pysek and Chytry

2014), emphasizing the importance of abiotic condi-

tions (Kalusová et al. 2015). Harsh abiotic constraints

suppress intolerant species, including invaders (Mel-

bourne et al. 2007; Parepa et al. 2013; Weiher and

Keddy 1995). Invasion levels therefore tend to be low

in harsh climatic conditions and nutrient-poor habitats

(Chytrý et al. 2008). Field studies have shown that

abiotic constraints play a significant role in determin-

ing invasibility in relation to flooding (Collinge et al.

2011; Gerhardt and Collinge 2003), sediment salinity

(Dethier and Hacker 2005), soil nutrients (Goldstein

and Suding 2013) overstory tree composition (Von

Holle 2005), or extreme climatic events (Collinge

et al. 2011; Goldstein and Suding 2013). A strong

environmental filtering process may lead to trait

underdispersion (traits are more similar to each other

than what would be expected by chance) and phylo-

genetic clustering during community reassembly

(Adler et al. 2013; Procheş et al. 2008).

The ‘fluctuating resource availability’ hypothesis

states that plant communities become more vulnerable

to invasion when the amount of unused community

resources (i.e., resource availability) increases (Davis

et al. 2000). A combination of abiotic and biotic

factors determines resource availability. When the

supply of resources (abiotic factor) is controlled, or if

resource acquisition by resident communities (biotic

factor) increases, invasion will occur less frequently.

The notion that competition is less important in

recently disturbed environments where resident plants

are not sequestering all available resources underlies

this hypothesis (Davis et al. 1998; Grime 1998), which

has been the subject of much debate and is supported

by some empirical evidence (Davis and Pelsor 2001;

Frankow-Lindberg 2012; Iannone and Galatowitsch

2008). Any disturbance event that changes abiotic

18 C. Byun et al.
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constraints to increase resource availability can trigger

an invasion.

One of the most common application of a change in

abiotic conditions in the context of restoration to

manage plant invasion concerns the lowering of

nitrogen availability. N enrichment was found to

stimulate exotic invasive plant species in many

environments. Addition of carbon in the form of

sawdust or sucrose reduces N availability, thus

presumably favouring native species at the expense

of fast-growing exotic species. An example where this

approach was successful is reported by Prober et al.

(2005), who showed that repeated sucrose applications

in grassy woodlands in a temperate region of Australia

significantly increased the abundance of native peren-

nial grasses at the expense of exotic annuals. Creating

a crop plant cover on bare soil (thereby lowering light

availability) controlled 89% of invasion by P. arun-

dinacea, but also suppressed desired species (restora-

tion target communities) by 57% (Iannone and

Galatowitsch 2008). In the same experiment, applying

sawdust (high C:N ratio) lowered available nitrogen in

soil and decreased invasion by 59%,while not affect-

ing the desired target communities. Alternatively,

sawdust addition brought no significant benefits to

native plants of California grassland over a 2-year

period (Corbin and D’Antonio 2004). Despite the

mixed results from the literature, carbon addition or

other modification of the abiotic environment may still

hold promise as a tool for restoration, depending on

habitats, but requires a good understanding of the

response of the invading species involved.

Propagule pressure

The role of propagule pressure in the invasion process

is relatively straightforward: ‘the more you introduce,

the more you get’ (Lockwood et al. 2009). For

example, propagule pressure alone explained 56% of

the variance in exotic species richness in a study

(Lonsdale 1999). In a restoration experiment, Phalaris

arundinacea (reed canary grass) was sown in wetland

mesocosms at different density (0, 10, 50, 100, or 500

seeds/m2) with a mixture of native species (Reinhardt

Adams and Galatowitsch 2008). Increasing the seed

density of the invader increased invasion success

(more shoots, more biomass of P. arundinacea). There

is, however, considerable interest in the relationship

between propagule numbers and invasion success (the

dose–response curve) (Lockwood et al. 2005). It is

uncertain whether there are always increasing inva-

sion benefits from increasing propagule pressure, or

whether saturation occurs beyond a certain threshold

(Byun et al. 2015; Lockwood et al. 2005). If so, it is not

entirely clear what ultimately determines that thresh-

old. For Hieracium lepidulum, an invasive perennial

herb in New Zealand, recruitment varied not only with

propagule pressure, but also with the biotic and abiotic

characteristics of habitats including resident plant

cover and plant richness (Miller et al. 2014). This

suggests taking into account complex interactions

when evaluating the role of propagule pressure and

that the effects of propagule pressure are likely to be

exacerbated in areas displaying poor biotic resistance.

Managing the propagule pools of invasive species

early in the restoration process could significantly

reduce invasion risk but also poses challenges. Elim-

inating on-site seed bank often requires destructive or

costly approaches (chemical control, tarping). More-

over, managing invasive species populations from the

surrounding matrix that most contribute to seed rain in

the restored site (closest populations, those facing

predominant wind, etc.) is not always possible, and so

nearby propagule sources are commonly ignored in

restoration projects. Evidence suggests, however, that

restoring a plant cover will reduce the effect of

propagule pressure on invasion success.

Interplay between determinants of biological

invasion

Depending on their focus, studies are not always

consistent regarding the importance of each of the main

determinants of biological invasion, but it is also

unlikely that a single mechanism will govern the entire

invasion process in all types of habitats and for all

invaders. Rather, biotic resistance, abiotic constraint,

and propagule pressure interact with each other in ways

that depend on habitat conditions and the species

involved (Berg et al. 2016; Perelman et al. 2007;

Warren et al. 2012). The intensity of abiotic constraints

will determine the relative importance of abiotic versus

biotic factors in invasion resistance (Gerhardt and

Collinge 2003). In stressful and harsh environments,

abiotic constraints may entirely determine the fate of

invaders (Chytrý et al. 2008; Dethier and Hacker 2005;

Wang et al. 2006b). In benign or intermediate
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conditions, in contrast, biotic resistance can become as,

ormore important than abiotic constraints (Gerhardt and

Collinge 2003; Naeem et al. 2000; Perelman et al. 2007;

Thomsen et al. 2006a, b). Abiotic constraints can

modulate biotic resistance in direct as well as indirect

manners (Byun et al. 2015; Collinge et al. 2011;

Perelman et al. 2007). Similarly, environmental hetero-

geneity and biotic resistance can modify invasion

outcome from propagule pressure alone (Eschtruth

andBattles 2011;Miller et al. 2014).Understanding and

manipulating invasion resistance therefore requires a

synthetic approach: evaluating not only the individual

effect of each factor, but also disentangling their

interaction effects (Table 1).

The importance of considering simultaneously

different mechanisms of biological invasion for man-

agement can be illustrated using a well-known

macrophyte invader of wetlands of North America,

Phragmites australis. Experiments showed that abi-

otic constraints can modulate biotic resistance through

direct and indirect effects (Byun et al. 2015). High

water level always directly affected invasion by P.

australis by reducing recruitment success, but also

indirectly affected invader recruitment through the

resident plant cover, reducing or increasing their

ability to resist invasion. For example, Typha latifolia

increased its biotic resistance to invasion with

increased flooding, whereas Lolium multiflorum suf-

fered from flooding, decreasing its biotic resistance

effect. The presence of a dense resident plant cover

also lowered the threshold at which invasion success

occurred even when propagule supply increased and

biotic resistance was most effective under low

propagule pressure of the invader. These results mirror

those of Miller et al. (2014) for Hieracium lepidulum.

We know from the manipulation of species and

functional group richness and composition in resident

communities that they all have a significant impact on

biotic resistance (Byun et al. 2013). Increasing biotic

resistance through the restoration of a resident plant

cover, however, will be most efficient when consid-

ering abiotic constraints and propagule pressure.

Enhancing ecological resistance

Restoring a native plant cover after control can be an

effective measure to prevent or delay invasion. A plant

cover can be self-regenerative, so repeated control

interventions become less necessary although moni-

toring is recommended. Table 2 summarizes the

results of research projects focusing on plant cover

to control invasive plants. This approach, however,

raises many practical issues, including how to select

and combine species and how to determine the

appropriate conditions where ecological resistance

will be enhanced. Invasive plant control programs

usually do not evaluate the role of native revegetation

following removal (Kettenring and Adams 2011) and,

to date, empirical tests have shown mixed results in

terms of the effectiveness of plant restoration for

controlling invasion. This may be because these tests

are more often based on available species than on the

community assembly principles that determine spe-

cies associations. The selection and combination of

plants is crucial as just randomly adding species may

increase diversity but not necessarily enhance resis-

tance, or worse may result in imbalanced competition

amongst certain plant types, which may actually

increase the susceptibility to invasion. Failure to

detect the effect of a plant cover on resistance may also

result from the fact that other modulating factors such

as the ones explored in this study (abiotic constraints,

propagule pressure) are not considered, while in some

cases they may override biotic resistance effect. In any

case, it is unlikely that biotic resistance alone will

completely suppress invasion without complementary

preventive measures such as reducing propagule

pressure from nearby sources or pathways and address,

when possible, site conditions for abiotic filtering.

As the ultimate test of ecological theories (Ewel

1987), the control of invasion requires a thorough and

operational understanding of invasion mechanisms

that could apply to a range of environments and taxa.

The complex nature of the invasion process where

abiotic and biotic factors interact in ways that are not

yet fully understood makes not only field applications,

but also research experiments rather daunting. Since

rarely a single mechanism (or factor) governs the

entire invasion process, multiple drivers must be

addressed simultaneously. Even though we know

more about resistance mechanisms and functional

traits of plant species, most restoration studies have

tested the effect of specific local species on an invader

instead of specific resistance mechanisms. The latter

are often inferred a posteriori. Yet, testing the

interaction between species traits (both of the resident

species and the invaders), abiotic condition, and
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Table 1 Hypotheses about determinants of invasion

Hypothesis Prediction Evidence/examples Related hypothesis and additional

remarks

Biotic resistance

Limiting similarity

(Funk et al.

2008; Macarthur

and Levins

1967)

There is a finite limit of

coexisting species in similar

niches/traits

A meta-analysis suggests only a

limited role in invasion (Price and

Pärtel 2013), e.g., support for forb

invader, but not for grass invader

Functional traits (Funk et al. 2008);

Fox’s assembly rule: a functional

group resists invader in same

group

Competitive

ability (fitness

advantage)

(MacDougall

et al. 2009)

Competitive species are most

resistant to invasion

Plant performance traits related with

plant competitive ability (Gaudet

and Keddy 1988)

Species with superior traits are most

resistant (Kunstler et al. 2012)

Priority effect

(Stuble and

Souza 2016a)

Early emergence favors native

over invader (early colonizers

are resistant)

Supported over functional similarity

(Firn et al. 2010; Mwangi et al.

2007); see also (Godoy and Levine

2013)

Priority effect (first come, first

served)

Vacant niches

(Stachowicz and

Tilman 2005)

Invasion occurs where niche

space is not occupied by

species

Pending or no experimental support Niche cannot be defined without a

species in Hutchinsonian view

Diversity-

resistance (Elton

1958)

More diverse communities are

less invasible (via niche

partitioning)

Supportive experiments (Kennedy

et al. 2002; Levine 2000; Tilman

et al. 2006)

Partitioning resource uptake (Booth

et al. 2003) Both complementarity

and selection effects matter

(Fargione and Tilman 2005)

Functional

diversity-

resistance (Funk

et al. 2008)

Functional diversity resists

invasion via trait

complementarity

Supportive experiments (Pokorny

et al. 2005; Symstad 2000)

Functional diversity- ecosystem

functions (Tilman et al. 1997);

Functional composition matters

(Prieur-Richard et al. 2000)

Enemy release

hypothesis

(Keane and

Crawley 2002)

Biological invasion in exotic

region experience less natural

enemy compare to original

habitat

Supportive investigations (Van

Kleunen and Fischer 2009)

Served as justification for biological

control methods.

Abiotic constraints

Environmental

constraints

hypothesis

(= abiotic

filtering)

Stressful or extreme environment

filters out intolerant invaders,

but new benign environment

favors exotic over native

As environmental stress increases,

invasion reduced (Collinge et al.

2011; Gerhardt and Collinge

2003)

Individualistic community

succession (Gleason 1926)

Environmental heterogeneity allows

coexistence and reduces invader

impact (Melbourne et al. 2007)

Fluctuating

resource

availability

(Davis et al.

2000)

Invasion outcome is largely

determined by given resource

availability at a location

Supportive evidence from a field

experiment manipulating resource

availability (Davis and Pelsor

2001)

Resource availability = net balance

between resource supply and

uptake

Altered

disturbance

regimes (Hobbs

and Huenneke

1992)

Any events to alter historical

disturbance regime will

increase risk of invasion

Disturbances enrich N and remove

competitors, promoting invasion

e.g. P. australis (Minchinton and

Bertness 2003)

Inhibition model in succession

theory (Connell and Slatyer 1977)

Propagule pressure

Propagule pressure

(Lockwood et al.

2005; Simberloff

2009)

Invasion outcome is largely

determined by propagule

pressure

Propagule pressure overwhelms

ecological resistance (Holle and

Simberloff 2005)
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Table 2 Research relevant to plant cover restoration to control invasion

Invasive plants Research projects;

ecosystem/context

Treatments; research questions Main results

Arundo donax (a gaint

reed)

Field experiment of

riparian restoration

(Quinn and Holt

2009)

Community compositions including

two densities of monoculture and all

possible mixtures of a sedge, a shrub,

and a tree species

The invasion was the least in a mixture

of a shrub and a tree; The effects in

the first year do not continue in the

second year

Cardaria draba,

Cirsium arvense,

Bromus tectorum,

and Bromus

japonicas

Greenhouse

experiment (Perry

et al. 2009)

Sowing seeds of annual cover crops Some of annual cover crops (Ragweed

and Sunflower) control less than 50%

of invasion of Cirsium arvense, and

Cardaria draba, but facilitate invasion

by other species (Bromus tectorum,

Bromus japonicas)

Centaurea diffusa

(knapweeds)

Field experiment in

grassland (Meiman

et al. 2009)

Native grass stem density (interspace

between plant stems: 0, 5, and 15-cm)

More emergence in 0 cm than in 5 and

15-cm opening. Four individuals

emerged out of 3600 seeds input in

control plot (8 m-2)

Persicaria perfoliata

(annual Mile-a-

minute weed)

Field experiment

(Cutting and Hough-

Goldstein 2013)

Sowing native seeds and biocontrol

weevils (Rhinoncomimus latipes)

Reduce 75% of invasion synergetic

effects by combining the natural

enemy of the plant and competitors

Phalaris arundinacea

(reed canarygrass)

Wetland mesocosm

experiment

(Reinhardt Adams

and Galatowitsch

2008)

Sowing density of the invader (0, 10,

50, 100, or 500 seeds m-2) and a mix

of native species (3000 or 15,000

seeds m-2)

High quantity of native seeds

suppressed invader biomass, but did

not block its invasion completely.

Wetland mesocosm

(Lindig-Cisneros

and Zedler 2002)

Applying seed mixtures in combination

of six native species and a matrix of

Glyceria striata

High canopy complexity hindered P.

arundinacea’s growth

Field experiment in

wetland (Iannone

and Galatowitsch

2008)

Applying sawdust (high C:N ratio) to

lower available nitrogen in soil

Treatment delayed establishment and

decreased invader by 59%

Phragmites australis

(common reed)

Field experiment in

salt marsh (Peter and

Burdick 2010)

Transplanting of shoots of P. australis

with plots with four native halophytes

(*1200 shoots m-2)

Inhibited 60% of root-mediated

invasion there is diversity effect

Spartina alterniflora was most resistant

Pot experiment in

freshwater

mesocosm (Byun

et al. 2013)

Additive competition experiment with

P. australis and wetland plants based

on functional group

Fast growing annual (Functional group

1) was most resistant to invasion by

P. australis

Pot experiment in

freshwater

mesocosm (Byun

et al. 2015)

Under flooding and moist

soil\condition, additive competition

experiment with P. australis and

wetland plants

Flooding inhibited P. australis while

wetland plants respond differently to

flooding (e.g., flooding assisted

Typha’s biotic resistance but flooding

inhibited Lolilum sp.’s biotic

resistance

Field experiment in

salt marsh (Wang

et al. 2006a)

Clearing P. australis and planting

tissue culture regenerant of native

plants

Spartina patens established dense stems

in a salt marsh

Field observation

along highway

(Albert et al. 2013)

Observe the relationship between tree

cover and P. australis present/absent

Tree cover well explains presence and

absence of the invader

Rapistrum rugosum

(annual bastard

cabbage)

Field experiment

(Simmons 2005)

Sowing native Indian blanket

(Gaillardia pulchella) at different

sowing densities

The highest sowing density (10 g m-2)

reduces 83% of invasion from seeds

and 72% of aboveground biomass
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propagule pressure could lead to useful generalisation.

While we need control and restoration case studies

with local species at different sites, the development of

a coherent, dynamic and adaptive framework around

biotic/ecological resistance will require going beyond

the idiosyncrasy of the many species and systems

being tested. Developing such a coherent framework

would be beneficial as many current managerial

frameworks quickly become obsolete or are applied

incorrectly or out of context. This will require

identifying and sharing emerging principles at the

crossroad between community ecology, invasion

ecology, and ecological restoration. Given the evi-

dence uncovered, emphasizing the functional diversity

of the restored community seems a promising

approach when facing potentially multiple invaders

and/or fluctuating abiotic conditions and could inform

species selection for restoration.
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