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Abstract Although pest eradications from islands

have been successful and impart biodiversity benefits,

eradications at regional/national scales are more

challenging. Such broadscale eradications incur high

repeated costs (e.g. control and surveillance effort)

because the entire area cannot be treated at one time,

and a progressive ‘treat-evaluate-move on’ approach

must be employed. We describe a two-stage model to

analyse surveillance data for assessing progress and

declaring success of broadscale eradications, and to

identify optimal cost-efficient surveillance strategies.

Stage I modelling coincides or follows population

control within a subset area or management zone

(MZ). Surveillance data are analysed to quantify the

probability of freedom for a treated MZ (i.e. local

eradication), which is used to inform an operational

decision to reallocate resources to other MZs, and

progress across the region. Importantly, freedom

declared individually in all MZs is not necessarily

equivalent to a high probability of eradication over the

broadscale area, because each MZ will have a

probability of being erroneously declared free. After

a MZ has been operationally declared free, Stage II

surveillance commences to detect MZ-level failures,

and to estimate the broadscale surveillance sensitivity

and a corresponding probability of eradication. We

developed a computer algorithm to identify cost-

optimal Stage I and II surveillance strategies for a

hypothetical large area.We assessed the following: (1)

the balance between local surveillance intensity and

spatial coverage; (2) the number of years to declare

success in Stages I and II; (3) the stopping probability

of freedom (Stage I); and (4) the optimal strategy

given variation in the starting-over cost, should a MZ

be erroneously declared free. This two-stage approach

provides an objective basis for decision-making in

wildlife pest/disease eradication, and guidance for

implementing optimal bio-economic surveillance

strategies.
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scale suppression � Optimisation � Pest re-
introduction � Re-invasion � Surveillance

Introduction

Biotic invasions of plant and animal pests and

pathogens pose serious threats to indigenous biodi-

versity, ecosystem functions and services, and agri-

cultural productivity (Gurevitch and Padilla 2004;

Julia et al. 2007; Mack et al. 2000; Pimentel et al.

2005; Vitousek et al. 1997; Yemshanov et al. 2009).

Consequently, large annual investments are made in

the management of invasive species worldwide (Pi-

mentel et al. 2001). Eradication has been demonstrated

to be an effective long-term solution on islands

(Donlan et al. 2003; Keitt and Tershy 2003; Keitt

et al. 2011; Russell et al. 2009; Towns and Broome

2003), but the new frontier in invasive species

management is eradication over ever-larger land

masses (Pennisi 2016; Russell et al. 2015). Broadscale

eradications are expensive and logistically compli-

cated because large areas occupied by pests or

diseased animals cannot all be treated at one time

(Homans and Horie 2011). Broadscale campaigns can

take years or decades of planning and implementation.

A lack of financial resources has been identified as a

major impediment to broadscale eradications for

environmental outcomes, despite their increasing

feasibility (Simberloff 2014). Minimising demands

on funding is contingent on implementing a robust

quantitative methodology for identifying optimal cost-

efficient strategies for allocating resources over space

and time.

Various broadscale eradications are currently

underway or in the planning stages around the world.

Progress made to date in the eradication of bovine

tuberculosis (BTB) fromwildlife and livestock in New

Zealand demonstrates that broadscale eradication is

possible (Livingstone et al. 2015; Nugent et al. 2015).

Significant progress (and some setbacks) have been

experienced in the attempted eradication of red

imported fire ants (Solenopsis invicta) from approx-

imately 380,000 ha around Brisbane, Queensland,

Australia since efforts began in 2001 (Keith and

Spring 2013; Moloney and Vanderwoude 2002). A

further two examples in the planning and proposal

stages, respectively, are the proposed joint venture

between Argentina and Chile to eradicate beavers

(Castor canadensis) from Tierra del Fuego (Menvielle

et al. 2010), and the eradication of mammalian

wildlife pests from New Zealand (Pennisi 2016;

Russell et al. 2015) such as rats (Rattus rattus), stoats

(Mustela erminea) and brushtail possums (Trichosu-

rus vulpecula). All four are ambitious goals requiring

years of investment, but as yet none of them is based

on an analytical framework for assessing success at

regional or country-wide scales that incorporates

rigorous probability theory, biology (including epi-

demiology) and socio-economic constraints. In addi-

tion to providing an objective basis for decision

making, a formal analytical structure for broadscale

eradications would foster realistic and consistent

expectations among managers, funders and the public.

While the above examples and numerous other

eradication programmes differ in many respects, they

are unified by the spatiotemporal complexities they

face and would benefit from a common analytical

decision framework for assessing progress and declar-

ing success.

Large areas subject to eradication plans are fre-

quently sub-divided into management zones (MZ),

often by necessity due to operational constraints over

big areas. In the case of BTB in New Zealand, the

disease management agency, OSPRI, controls the

disease within a MZ by reducing the localised abun-

dance of the maintenance host (brushtail possums;

Coleman and Caley 2000; Jackson et al. 1995; Morris

et al. 1994; Nugent et al. 2015) and conducts surveil-

lance to confirm local disease freedom. This is done

progressively over space and time across *700 MZs,

which typically average*100 km2 in size. In eachMZ,

a quantitative tool is used to calculate a probability that

the disease has been removed from the MZ given no

disease detections (Anderson et al. 2013, 2015). Once a

MZ is declared ‘free’ of disease, financial resources are

reallocated to other MZs, and the operation progresses

over all areas at risk from wildlife vectors. This

approach is depicted in Fig. 1 for the hypothetical

eradication of an invasive pest or disease, on a year-by-

year basis commencing in 2016. Within this approach,

we apply the term ‘freedom’ to refer to the complete

removal of a disease or pests from aMZ; while the term

‘eradicated’ is reserved for the broadscale area of

interest (a ‘region’ or entire country). In general terms,

theMZs of relevance should be defined according to the

operational capacity of the eradication team, and by pest

or vector biology. Each MZ should be several times
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larger than the expected ranging area of the target

species, which should reduce the risk of reinvasion into

MZs previously declared free of disease or pests.

However, it should be small enough for management

to be able to remove pests and conduct follow-up

surveys in a short period of time—relative to the total

duration of the broadscale eradication operation.

Given that the probability of successful freedom in

each MZ will always be less than 100%, there is a risk

that freedom of a MZ could be wrongly declared. On-

going surveillance is required to detect these failures

until the entire broadscale area can be declared

eradicated. Importantly, declaring freedom over many

individual MZs does not necessarily equate to high

confidence that the entire broadscale area has been

successfully eradicated. Consider the following hypo-

thetical situation in which 10MZs were independently

declared free of pests or disease with a 0.95 probability

of freedom. One might be tempted to conclude that—

because all MZs have been declared free with a high

level of confidence—we can be equally confident that

the whole area has been successfully eradicated.

However, assuming a correct probability model, each

MZ has a 0.05 chance of having a surviving residual

population (i.e. erroneous freedom declaration).

Therefore, the probability that at least one of the 10

MZs still harbours a viable population is compounded

to 0.40 (0.40 = 1 - (1 - 0.05)10), equating to an

overall probability that is not much better than a coin

toss.

Existing pest-management optimisation models

have not yet explicitly incorporated the complexities

inherent in broadscale eradications. Prior to an incur-

sion, simulation studies have shown that optimal

resource allocation to incursion-prevention and erad-

ication (at local scales) depends on damage and

management costs, detection and control efficiency,

invasion risk, and pest population growth rates

(Bogich et al. 2008; Epanchin-Niell et al.

2012, 2014; Guillera-Arroita et al. 2014; Hauser and

McCarthy 2009). The optimisation modelling of

incursion detection and eradication of gypsy moth

(Lymantria dispar) in the western U.S.A. is a broad-

scale problem, but eradication is attempted and

declared only at local scales (Bogich et al. 2008;

Liebhold and Bascompte 2003). The additional com-

plexities discussed in our paper would have to be

addressed if management aimed to declare gypsy

moths eradicated from the entire state of California,

which is unlikely to be feasible due to high propagule

pressure (see Bomford and O’Brien 1995). Once an

incursion has occurred, simulation studies have shown

that the optimal spatial and temporal allocation of

control effort will be influenced by the spatial

distribution of the population, and its rates of growth

and spread (Baker 2017; Baker and Bode 2016;

Bonneau et al. 2016).

Within the context of broadscale eradications, there

is a need for an objective decision-making framework

for assessing progress at the MZ level and ultimately

for declaring eradication success over the entire area

of interest. More specifically, after control has

occurred and surveillance is no longer detecting

individual pests, how much additional surveillance

effort is required to be confident that (1) aMZ is free of

pests so that resources can be allocated to other MZs,

Fig. 1 The spatiotemporal progression of a hypothetical

broadscale eradication operation (black arrows), over a

square-shaped region, that begins in the northwest of the region

in 2016 and finishes in the southeast in 2034. Each square

represents a spatial region for control and the number in each

represents the year that the region is controlled. Surveillance

devices or search effort are allocated to the surveillance unit.

Stage I freedom is an operational decision at the management-

zone level that allows re-allocation of resources to other

management zones and progresses the operation across the

landscape. Stage II entails on-going surveillance in management

zones passed out of Stage I to identify erroneous freedom

declarations, and to declare the entire broadscale area eradi-

cated. Confirmation of eradication in Stage II may extend well

beyond 2034
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and (2) the entire broadscale area of interest has been

successfully eradicated so that resources can be

allocated to other environmental issues. Such a

framework could result in large cost savings by

reducing the risks that (1) not enough effort is invested

and freedom/eradication is prematurely declared, or

(2) more money is spent than is necessary to achieve

freedom/eradication, thus detracting funding from the

overall goal.

In this paper we describe a two-stage approach for

analysing surveillance data to assess progress and

ultimately declaring success of broadscale eradica-

tions. This entails quantifying the probability of

disease or pest freedom and declaring success at the

MZ level (Stage I), and over the entire broadscale area

(Stage II). Importantly, the data models are only

applicable when surveillance results in non-detec-

tions. We additionally demonstrate how models can

also be used in the planning of an eradication operation

to identify cost-efficient strategies, and to estimate

operational costs and duration. Integral to planning are

bio-economic models for Stages I and II, because these

identify optimal cost-efficient surveillance strategies

as well as decision points at which to declare success.

The fundamental features can be easily adapted to

meet the specific needs of any broadscale eradication

program.

We developed a computer algorithm that applied

these bio-economic models to a hypothetical region of

1750 km2 (approximately the area of Stewart Island,

New Zealand [(47�S, 168�E)]). A region of this size is

likely to be sub-divided into several individual MZs. A

region of this size is likely to be sub-divided into several

individualMZs. In Stage I we explored 10,000 potential

surveillance strategieswithin a singleMZand addressed

the following four questions: (1) what would be the

optimal cost-efficient balance between local surveil-

lance intensity and proportion of the MZ subjected to

surveillance?; (2) howmany years would be required to

complete Stage I using the optimal strategy?; (3) what

would be the optimal stopping probability of freedom?;

and (4) how sensitive would the optimal strategy to

variation in the re-start cost be (i.e. re-control and re-

survey cost) if MZ freedom was erroneously declared?

Next, we further explored the 10,000 surveillance

strategies and re-addressed questions (1), (2) and (3)

respective to Stage II. In Stage IIwe did not optimise the

stopping probability of broadscale eradication, because

declaration of success will be the final management

decision and the risk of failure must be agreed upon and

fixed in advance. The bio-economic optimisation in

Stage I balances type I and II error rates, whereas in

Stage II the type I error rate is fixed.

The decision framework assumes that eradication is

the chosen management objective, MZs and the total

spatial extent are defined, and that control and

surveillance techniques are established. We do not

address feasibility and the bio-economic trade-offs of

eradication versus sustained control in perpetuity (see

Baxter et al. 2008; Panetta and Cacho 2014; Parkes

and Panetta 2009; Rout et al. 2011). However, the bio-

economic models presented here could be used as

tools to inform a feasibility analysis or the decision to

either eradicate or manage to near-zero density

(control in perpetuity).

Methods: Stage I

Stage I operates at the MZ level and begins when the

wildlife pest or disease is either known to be present,

or confidence in its absence is low. In each of the MZs,

pest or disease-vector control is continued until there

is no evidence of survivors or residual disease (Animal

Health Board 2009; Nugent et al. 2015). For BTB in

New Zealand, this is currently accomplished with a

combination of trapping and toxin application to

control populations of the main BTB wildlife main-

tenance host and vector, the brushtail possum (War-

burton and Livingstone 2015). Concurrent or

subsequent surveys are used to detect surviving pests

or residual disease. When surveillance fails to find

pests or disease (i.e. all negative results), those data are

used to quantify the probability of freedom given

negative surveillance (i.e. no detections). When man-

agement declares a MZ free, the MZ is advanced to

Stage II (described below), which may occur in a

spatial and temporal progression (Fig. 1).

Analysis of surveillance data is organised in a

nested fashion (Fig. 1). At the finest scale is the

surveillance unit (SU) for which the probability of

detection of a single individual pest (or infected

animal in the case of disease) is estimated (Pd—the

sensitivity of surveillance at the SU level). The Pd can

be estimated for a non-spatial or spatial SU. Surveil-

lance of disease in wildlife can be used to illustrate a

non-spatial example in which an individual animal is

the SU and multiple animals are tested for disease
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(Oidtmann et al. 2013). In that case, Pd is the

probability of detecting the disease in an individual

with a specific testing regime given that the animal is

infected. For a spatial SU, (e.g. spatially defined area

of 1 ha), Pd is the probability of detecting the presence

of an individual pest or infected animal given that one

or more are present. Pd is a function of search-effort

and may be estimated using a model that quantifies

change in Pd resulting from change in search effort

(e.g. deployment time and number of devices, disease

testing regime, etc). The SU is nested within the MZ

(Fig. 1). There will necessarily be multiple SUs per

MZ when non-spatial units are employed for disease

eradication. However, the number of spatial SUs per

MZ will vary from one (Ramsey et al. 2009) to many

thousands (Anderson et al. 2013) depending on the

modelling framework and the movement attributes of

the target organism relative to the area of the MZ.

Multiple sources of data could be used, when

available, to estimate Pd (Anderson et al. 2013, 2015).

For BTB in New Zealand, this can include direct

surveillance of possums or of non-maintenance wild-

life hosts that can act as sentinels for disease presence/

persistence in the maintenance host (Nugent 2011).

The use of sentinels (or Judas animals) can also be

used for non-disease problems (Ramsey et al. 2009). A

wide range of active and passive detection devices can

also be employed; such as traps, chew-track cards

(Sweetapple and Nugent 2011), camera traps, tracking

tunnels, public reports and citizen surveillance, or

remote sensing (e.g. for beavers on Tierra del Fuego).

From here on we generalise an ‘infected SU’ to

indicate an incomplete or failed removal of a disease

or pest from aMZ. The Pdi for all surveyed SUiwithin

MZj are then aggregated to calculate MZ-level sensi-

tivity (Sej), or the probability of detecting at least one

infected SU given the population of SUs is infected at

a set ‘design prevalence’ P�
u

� �
. We use a binomial

approximation to the hypergeometric sampling pro-

cess with imperfect sensitivity to calculate Sej (An-

derson et al. 2013; Cameron and Baldock 1998;Martin

et al. 2007):

Sej ¼ 1� 1� PdAvejPrpj
� �P�

u ð1Þ

where PdAvej is the average Pdi across surveyed SUs

in MZj, and Prpj is the proportion of SUs surveyed in

MZj.

P�
u is a required parameter for the probability

calculation (Eq. 1) because it defines the number of

infected SUs available to be detected by the surveil-

lance system. Intuitively and quantitatively, it is easier

to detect one of many infected SUs than it is a single

infected SU. P�
u is analogous to the ‘design preva-

lence’ used in disease surveillance (Cameron and

Baldock 1998; Martin 2008; Martin et al. 2007). The

value of P�
u should be set to equal the minimum

expected abundance of infected SUs in a given MZ

that could give rise to a self-sustaining population

(Oidtmann et al. 2013). For example, in the Stage I

removal of BTB from a MZ, the wildlife disease-

vector population is likely to have been controlled to

very low levels. If the disease is present, the absolute

number of infected SUs would be low. Further, given

the goal is to demonstrate freedom, the P�
u in this

context should be set to the minimum number of

infected SUs that could be infected (see Anderson

et al. 2013). To illustrate a pest-species freedom

example, consider that a single surviving pregnant rat

could re-seed an entire population on the 1750 km2

Stewart Island, New Zealand. In this case, the P�
u

should be set to 1 so that Sej is the probability of

detecting a single infected SU in the MZ. The P�
u could

be set at a higher value depending on the time since

cessation of control, and the rates of pest population

growth and spread. For example, in Stage II it could be

justified to set P�
u at higher values or allow an increase

over time because the post-control population would

be expected to increase in size (Bonneau et al. 2016;

Shigesada et al. 1995) (see discussion below).

The spatial distribution of pest populations is not

expected to be uniform and could follow habitat

heterogeneity in the landscape (Hutchinson 1959;

MacArthur and Pianka 1966). Surveillance effort will

also often be distributed heterogeneously due to

habitat selection by individuals in the target popula-

tion (Baker 2017; Baker and Bode 2016), and

logistical constraints. When not all SUs are surveyed

within a MZ, then spatial variation in each SU’s risk of

infection should be incorporated to improve estimates

of Sej (see Anderson et al. 2013; Martin et al. 2007).

The risk of an infected SU persisting will vary

across all MZs. Consequently, Bayesian logic is used

and a prior probability of freedom, Priorj,t, (Gelman

et al. 2004) is incorporated to estimate the posterior

probability of freedom given negative surveillance
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(Anderson et al. 2013; Ramsey et al. 2009) for MZj at

time t (P(Freedom | S-)j,t):

P FreedomjS�ð Þj;t¼
P S�jFreedomð Þj;tP Freedomð Þj;t

P S�jFreedomð Þj;tP Freedomð Þj;t þP S�jInfectedð Þj;tP Infectedð Þj;t
ð2Þ

where P S�jFreedomð Þj;t is the specificity,

P Freedomð Þj;t is Priorj,t, P S�jInfectedð Þj;t is 1 - Sej,t,

and P Infectedð Þj;t is 1 - Priorj,t. In modelling the

confirmation of eradication success, the specificity

should be increased to 1 (i.e. no false positives)

because a positive detection should be thoroughly

investigated to confirm the presence of the pest or

disease. If pest or disease presence is confirmed, then

P FreedomjS�ð Þj;t = 0, indicating that control opera-

tions would have to be restarted. Assuming perfect

specificity, Eq. 2 is reduced to the following:

P FreedomjS�ð Þj;t¼
Priorj;t

1� Sej;t 1� Priorj;t
� � : ð3Þ

Given negative surveillance outcomes, the prior is

then updated with each new surveillance period (e.g.

year, season) with the posterior from the preceding

year:

Priorj;tþ1 ¼ P FreedomjS�ð Þj;t: ð4Þ

Because of the potential risk of re-introduction (re-

invasion) or backfill when attempting broadscale

eradications as the operation progresses across the

landscape (Fig. 1), the priors can also be discounted

by an estimated probability of re-introduction (P(In-

tro)j) (Anderson et al. 2013; Martin 2008).

The stopping P FreedomjS�ð Þj;t (Eq. 3) defines the
decision point at which a MZj is declared free.

Assuming the model is correct and the stopping

P FreedomjS�ð Þj;t is less than 1.0, some MZs could be

wrongly declared free, which would entail additional

costs to re-control and survey. The rate of erroneous

declarations corresponds to the complement of the

stopping probability of freedom (1 - stopping prob-

ability). The stopping P FreedomjS�ð Þ may vary

across MZs and should be determined with the Stage

I bio-economic model. The optimal cost-efficient

stopping probability will be highly dependent on a

number of factors, including the cost of control and re-

control, the type of surveillance carried out, the cost of

surveillance relative to the cost of control, and the

surveillance sensitivity (Gormley et al. 2016).

Stage I bio-economic model

The Stage I bio-economic model identifies optimal

strategies for deploying surveillance effort over space

and time that minimises the total expected costs

(Regan et al. 2006). Associated model predictions are

an optimal cost-efficient stopping probability of

freedom (P FreedomjS�ð Þ; e.g. 0.70–0.99) and the

expected years of surveillance to reach the stopping

probability. Stage I may take years to complete in a

MZ and because there are potentially manyMZs going

through Stage I at different times (Fig. 1), it may be

necessary to limit the number of years allowed for

each MZ to achieve freedom. Two fundamental

surveillance/strategy trade-offs, which influence the

cost and time to declare freedom in a MZ, are

integrated into the model. The first is the balance

between the intensity of surveillance within individual

SUs (PdAvej) and the proportion of all SUs in MZj that

are surveyed (Prpj). Increasing both would increase

financial costs but decrease time to freedom declara-

tion. With a fixed budget, an increase in one would

require a decrease in the other. The second surveil-

lance-strategy trade-off is the balance between declar-

ingMZj free at a low stopping probability, or investing

more to attain a high probability of freedom. Decreas-

ing the stopping probability of freedom reduces

surveillance costs but increases the risk of making an

incorrect decision and incurring re-control and addi-

tional survey costs.

We developed a generic computer algorithm in the

Python programming language (Python Software

Foundation 2013; Appendix S1, http://doi.org/10.

7931/J22N506H) to illustrate the Stage I bio-eco-

nomic model over a hypothetical landscape in which a

given MZj was composed of 5000 SUs, each of 1 ha

area. These spatial attributes are provided for context,

however the model is scale-independent. The bio-

economic model was run for 250,000 surveillance

strategies in which each had a unique combination of

surveillance intensities within SUs (500 values of Pdi)

and proportion of SUs surveyed in MZj (500 values of

Prpj). Each surveillance scenario was assumed to

begin immediately following a pest-population

removal operation, (e.g. using toxins and trapping),
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which resulted in a Priorj,t of 0.70. For each scenario,

the model was run for 5 years (after the cessation of

control), which was our imposed maximum time

allowed to declare freedom in MZj. The total expected

cost of declaring Stage I freedom was calculated for

each of the 5 years (details below). The optimal cost-

efficient time to declare freedom and the correspond-

ing probability of freedom was determined by the year

that had the lowest total expected cost. Consequently,

among the 5 years of surveillance, each scenario had a

minimum total expected cost and a corresponding

number of years of surveillance. The optimal

surveillance strategies forMZjwere identified as those

within the 0.10 quantile of the total expected cost (i.e.

lowest cost).

We explored the sensitivity of optimal cost-effi-

cient strategies to the modelled trade-offs, therefore

we present relative rather than absolute costs. Further,

wemodelled mean values of model parameters and did

not incorporate uncertainty. We modelled 500 evenly-

spaced values of the intensity of surveillance within a

SU (Pdi) ranging from 0.05 to 0.99 in combination

with 500 evenly spaced proportions of SUs surveyed

(Prpj) ranging from 0.05 to 0.99. The number of SUs

surveyed was determined by Prpj, and each then

received surveillance with sensitivity Pdi. The rela-

tionship between Pdi and the relative financial cost

was a function of the effort required to achieve a given

Pdi. The Pdi value for a single search-effort unit (e.g.

1 h searching in a single SU) was 0.05 and had a cost-

unit of 1.0 (notionally $1). For each value of Pdi, the

required search effort in SUi (SearchEfforti) and

associated cost (Fig. 2) was calculated with the

following equation:

SearchEfforti ¼
log 1� Pdið Þ
log 1� 0:05ð Þ ð5Þ

The annual surveillance cost (SurveillanceCostj;t)

for MZj was then the product of the Pdi cost

(SearchEfforti; Eq. 5) and the number of SUs sur-

veyed (as determined by the Prpj in the given

scenario).

For a given Pdi and Prpj scenario, the Sej was

calculated (Eq. 1) using P�
u of 1 SU. For each scenario

we calculated the total expected cost (TECj,t) of

declaring MZj free for each of the 5 years (t = 0–4).

The TECj,t was the sum of the accumulated surveil-

lance costs (from year 0 to year t) and the expected

starting-over cost (ErrorCostj,t) if MZj was wrongly

declared free in year t:

TECj;t ¼
XT

t¼0

SurveillanceCostj;t

 !

þ ErrorCostj;t:

ð6Þ

ErrorCostj,t was the combined expected cost of re-

control and re-surveillance. This will vary across

eradication operations. To assess the influence of

relative error costs across scenarios, it is assumed that

freedom is declared at time t, and if a pest or disease

population persists, it would be detected in Stage II.

We devised the following formulation that incorpo-

rates the relative costs of re-control and re-surveil-

lance that are discounted by the probability of pest or

disease persistence (1� P FreedomjS�ð Þj;t):

ErrorCostj;t ¼ SurveillanceCostj;0 1þ RecontrolFactorð Þ

� 1� P FreedomjS�ð Þj;t
� �

ð7Þ

where SurveillanceCostj;0 was the cost of achieving a

P FreedomjS�ð Þj;t equal to 0.95 in a single year using a
Priorj,t of 0.70. This was the lowest costing combina-

tion of Pdi and Prpj that achieved 0.95. In this

experimental system, the SurveillanceCostj;0 to obtain

0.95 used Pdi and Prpj of 0.90 and 0.98, respectively.

RecontrolFactor is a multiplier that makes re-control

costs relative to surveillance costs. While every

Fig. 2 The relationship between the probability of detection in

SU i (Pdi) and the associated financial cost. It is based on a

single surveillance ‘device’ (or effort unit) resulting in a Pdi of

0.05
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eradication project will have unique surveillance and

control costs, the relative difference between these two

costs will influence the optimal cost-efficient stopping

probabilities of freedom (Gormley et al. 2016). We

used values of 400 and 100 to demonstrate model

sensitivity to high and low re-control costs relative to

surveillance costs. The ErrorCostj,t was weighted by

the probability that MZj is not free of the pest in year t

1� P FreedomjS�ð Þj;t
� �

.

Results: Stage I bio-economic model

In our hypothetical broadscale-eradication modelling,

the Stage I surveillance cost for a single year varied

90-fold across the range of Pdi values (0.05–0.99;

Fig. 2). However, when time to declaration of free-

dom, optimal probability of freedom, and associated

costs of re-control and surveillance ErrorCostjt
� �

were

all factored in, the total expected costs only varied 2.2-

and 2.5-fold when RecontrolFactor was set at values

of 400 or 100, respectively (Fig. 3a, d). To illustrate

the need to optimise the surveillance effort, if the

minimum cost of ‘freedom’ surveillance of a MZ was

$100,000, then the worst-case maximum would be

$220,000 or $250,000 for high or low ErrorCostjt,

respectively.

The first analysis of the potential Stage I surveil-

lance strategies assumed a relatively high cost of

wrongly declaring freedom (RecontrolFactor = 400;

Fig. 3 Two-dimensional images of Stage I bio-economic

analysis of 10,000 potential surveillance strategies, in which

the colour gradient ranges from low (blue) to high (red-brown).

For each value of detection probability (Pdi) and proportion SUs

surveyed (Prpj), the time to freedom and P FreedomjS�ð Þjt are
optimised. Using a high re-control cost (RecontrolFactor =

400), the top row of images are the optimal values for: a the

relative expected costs, b the number of years to declare

freedom, and c the optimal threshold probability of freedom

P FreedomjS�ð Þjt
� �

: The black contour line is the 0.10 quantile

of the total expected cost (a), indicating the range of the most

cost-efficient scenarios. The second row presents results of

scenarios using RecontrolFactor = 100: d the relative total

expected costs, e duration (the number of years taken) to declare

freedom, and f the optimal threshold probability of freedom

P FreedomjS�ð Þjt
� �
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Eq. 7). Results demonstrated that the total expected

cost was lowest when the Pdi was roughly in the range

of 0.36–0.70 and the Prpj was [0.75 (lowest 0.1

quantile; Fig. 3a). The least optimal strategies were

those with very low Pdi and either low or high Prpj (u-

shaped pattern; Fig. 3a). Using the lowest 0.1 quantile

of the relative total expected costs, we determined that

the optimal number of years over which to conduct

surveillance was 2–5 (Fig. 3b). The corresponding

cost-optimal stopping probability of freedom ranged

from 0.94 to 0.98 (P FreedomjS�ð Þj;t; Fig. 3c).
Assessment of the Stage I surveillance strategies

that assumed a relatively low cost of wrongly declar-

ing freedom (RecontrolFactor = 100; Eq. 7) resulted

in optimal Pdi and Prpj ranges of 0.08–0.45 and

[0.70, respectively (lowest 0.1 quantile; Fig. 3d).

The optimal time to freedom with the low

RecontrolFactor ranged from 1 to 5 years (Fig. 3e).

The range of optimal stopping probabilities of free-

dom was 0.80–0.88, which was much lower than when

re-control costs were relatively high.

Methods: Stage II

The objective in Stage II is to provide an on-going

estimate of the surveillance sensitivity in MZs

declared ‘free’ (advanced out of Stage I). Continued

surveillance is needed for two important reasons: (1)

to detect any failures at the MZ level so that re-control

can be implemented (along with re-commenced

surveillance); and (2) to estimate a broadscale-surveil-

lance sensitivity and a corresponding probability of

eradication (given negative findings from surveillance

effort). Ultimately, a probability of eradication of the

entire area can be used to inform a management

decision to declare the entire broadscale effort

successful.

Recall that in Stage I the Sej is estimated for each

MZj under active surveillance and a corresponding

probability of freedom is calculated. In Stage II, a

surveillance sensitivity is also calculated for MZj. The

focus in Stage II is making inference on the likelihood

of eradication over the broadscale area of interest (e.g.

that there are no more beavers on Tierra del Fuego).

Inference on the eradication state of the broadscale

area can only begin once managers are no longer

detecting the pest or disease anywhere and are

reasonably confident that eradication has been

achieved (i.e. after all surveillance effort returns

negative outcomes). At that time, the Stage II surveil-

lance is conducted to calculate MZ-level sensitivities,

which are used to estimate a broadscale probability of

eradication given negative surveillance. Program

funders will likely require a projected eradication

achievement date (e.g. 2055 has been set for BTB

eradication in NZ; Anonymous 2016), therefore a

maximum limit should be set for the number of years

that can pass between the time the last MZ was

declared free and the total area is declared successfully

eradicated.

In Stage II active control of the pest or disease in a

given MZ has stopped because the stopping

P FreedomjS�ð Þj has been reached. Surveillance

methodology will likely differ between Stage I and

II. Compared to Stage I, Stage II surveillance will

usually be less expensive (per unit of area) and cover

much larger areas overall, because all or nearly all of

the MZs should be searched over a relatively short

period of time (e.g. several years). This requires

surveillance models that are capable of incorporating

the biology of the organism (e.g. demographic and

dispersal rates), epidemiology (in the case of diseases)

and multiple sources of low-cost detection data to

support quantification of MZ-level sensitivities. The

following assumption can be made in Stage II that

helps to increase Sej over time: if freedom was

erroneously declared in Stage I, the surviving pests or

remnant pockets of disease would become more

prevalent and widespread with time (Caley et al.

2015, 2017; Ramsey and Efford 2010; Samaniego-

Herrera et al. 2013). The implication is that the value

for P�
u used in the calculation of Sej in Stage II (Eq. 1)

should increase over time as a function of underlying

population or epidemiological models (e.g. Keith and

Spring 2013; Spring et al. 2017). While a pest

population at low density may be expected to grow

exponentially (Shigesada et al. 1995), the P�
u rate of

increase should be conservative when complete erad-

ication is the goal. In each MZ P�
u should begin to

increase at the time of Stage I declaration of freedom,

which will result in varying P�
u values across MZs over

time in Stage II.

Surveillance models in Stage II should take advan-

tage of data that are readily available at low to no cost.

For the example of BTB in New Zealand, regular
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livestock surveillance data (e.g. slaughterhouse

inspection of carcasses for TB lesions) that will be

collected in Stage II as a part of standard animal health

management can be used to inform the likelihood that

disease no longer exists in the sympatric and neigh-

bouring possum populations. Caley et al. (2015) used

foxes killed by cars and hunters in Tasmania to

parameterise an approximate-Bayesian-computation

model (Csilléry et al. 2010) to make inference on the

likelihood that foxes were eradicated given that no

kills were reported in a set number of years. Passive

surveillance is conducted by citizens in the eradication

of red imported fire ants in and around Brisbane,

Australia (Keith and Spring 2013). The sensitivities of

these surveillance systems may be initially low,

however, they will increase with time because a

surviving pest population would be expected to grow

and expand making them easier to detect (Epanchin-

Niell et al. 2014). The consequent increase in sensi-

tivities will result in increasing probability of broad-

scale eradication given negative surveillance. This is

the effect of an increased or temporally increasing P�
u

in Stage II (Eq. 1).

The Sej is estimated for eachMZ (as in Stage I using

Eq. 1), and all Sej are then aggregated up to a system

sensitivity for the entire broadscale area of interest

(SSe). A hypergeometric sampling model to estimate

the SSe (Anderson et al. 2013; Cameron and Baldock

1998; Martin et al. 2007) is calculated as follows:

SSet ¼ 1� 1� SeZoneAvet � Prptð ÞP
�
z ð8Þ

where SeZoneAvet is the average Sej,t across all

management zones in time period t, Prpt is the

proportion of the total number of MZs surveyed at

time t, and P�
z is the MZ-level design prevalence.

Given that the ultimate goal is eradication, the P�
z

should always be set to 1 MZ. The SSet is then used to

calculate the probability of broadscale eradication

given negative surveillance:

P EradjS�ð Þt¼
Priort

1� SSet 1� Priortð Þ ð9Þ

where Priort is the prior probability that the entire

broadscale area of interest has been successfully

eradication. The broadscale prior differs from Priorj,t
(Eq. 3), which is the Stage I prior probability of

freedom in a given MZ.

The stopping P EradjS�ð Þt for the entire area of

interest should be set high (e.g.[=0.95), as it will be

the basis for the final decision to declare eradication

success. Once Stage II eradication is declared the

programme and funding will stop, the probability of

detecting a persisting population will be greatly

decreased, and this is why we advocate that the

stopping P EradjS�ð Þt should be set a priori and not as
a function of our bio-economic model (as in Stage I).

A decision model for setting a stopping P EradjS�ð Þt is
possible (Regan et al. 2006) but problematic for two

reasons. First, it requires monetising the cost of

erroneously declaring eradication, which is difficult

or impossible to ecological or biodiversity costs

(Holmes et al. 2015). Second, systematic surveillance

to detect survivors after eradication has been declared

must be conducted, which defeats the purpose of

declaring eradication and reallocating resources.

Stage II bio-economic model

We next developed a computer algorithm for Stage II

that closely resembled that of Stage I to illustrate the

optimization of surveillance strategies to minimised

the total expected costs to achieve a P EradjS�ð Þ of

0.95 (Appendix S2, http://doi.org/10.7931/

J22N506H). As in Stage I, we modelled local inten-

sity and spatial extensiveness of surveillance effort

(Pdave;j and Prpj in Eq. 1) and associated costs.

However, the value of Pdi for a single search-effort

unit (e.g. 1 h searching in SUi) was 0.01 (as opposed to

0.05 in Stage I). This was done to model the likely case

that low cost surveillance would be utilised in Stage II,

which correspondingly would have a relatively low

sensitivity. As noted above, this would increase the

financial feasibility of conducting surveillance over

most of the full area of interest in a relatively short

period of time.

We modelled 500 values of Pdi ranging from 0.01

to 0.99, and 500 proportions of SUs surveyed (Prpj)

ranging from 0.01 to 0.99. All MZs were surveyed and

received identical surveillance, as defined by the

scenario. To demonstrate the model, the prior prob-

ability of eradication over the entire area was set at a

deliberately low initial level of 0.25. The initial P�
u was

1 SU but increased with the following logistic growth

model:
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dP�
u

dt
¼ rP�

u

K � P�
u

K

� �
ð10Þ

where the rate of increase (r) was set to 1 cell year-1,

and the maximum level of P�
u (K) and was set to 2% of

the total number of SUs in a MZ (i.e. 5000

SUs 9 0.02 = 100 SUs). Any growth model could

be applied to P�
u, or it could remain constant. We used

parameters to illustrate a fast growing and dispersing

population, such as Rattus rattus or Mustela erminea.

The number of infested cells should plateau at a

conservatively low level because eradication is the

goal. To simplify the bio-economic optimisation

modelling, all MZs began Stage II at the same time

resulting in equivalent P�
u values across MZs. In

reality, MZs will vary in the initiation time of Stage II,

and P�
u values will differ across MZs.

We set a maximum of 15 years for the time

between all MZs declared free and the achievement

of the stopping probability of broadscale eradication

of 0.95. The optimal time to the stopping probability

was a trade-off between high-cost surveillance (high

Pdi and Prpj) resulting in quick declaration of

eradication, versus low-cost surveillance which

requires repeat surveillance over multiple years.

The bio-economic model in Stage II identifies the

surveillance effort (Pdi and Prpj) and time to eradi-

cation declaration that minimises costs. Because it

does not optimize the P EradjS�ð Þt (sensu Regan et al.
2006), the ErrorCostt in Stage II is not the expected

cost of erroneously declaring eradication success over

the broadscale area of interest. The ErrorCostt in Stage

II adds to the expected Stage I error costs across all

MZs as a function of time to achieve the set

P EradjS�ð Þt. In Stage II, as the time to eradication

increases, the expected costs of re-control and re-

surveillance associated with erroneous declarations of

MZ freedom in Stage I would be expected to increase

due to the surviving population expanding in size and

area (Guillera-Arroita et al. 2014; Spring et al. 2017).

The ErrorCostt for the entire area of interest in

Stage II will likely vary depending on the eradication

operation, but it should estimate the time-dependent

re-control and re-surveillance costs not accounted for

in Stage I. To illustrate, we estimated the additional

expected costs due only to growth and spread of the

population with increasing time until the broadscale

area is declared eradicated. The total error cost across

all MZs for Stage II was calculated as follows for a

given number of years t to declare eradication success:

ErrorCostt ¼
XnMZ

j¼1

SurveillanceCostj;0
�

1þ RecontrolFactorð ÞÞ 1� PoFj

� �
Spreadj
� �

ð11Þ

where SurveillanceCostj0 and RecontrolFactor were

the same as in Stage I, PoFj was the probability of

freedom in MZ j in Stage I, nMZ was the total number

of MZs (35), and Spreadj discounted the error cost for

MZ j so that it estimated only the increase in control

and surveillance costs due to pest-population expan-

sion. Importantly, the Stage II ErrorCostt is additive to

but does not repeat the cost applied in Stage I. The

bioeconomic model in Stage I would likely result in

varying values of PoFj across MZs; however, to

simplify the simulation of Stage II, (for illustrative

purposes), we used a value of 0.96 for all MZs. Spreadj
increased with increasing years until eradication was

declared:

Spreadj ¼ yearsj � 0:01 ð12Þ

where yearsj ranged from 0 to 14. For example, in the

first year following freedom declaration in a given

MZ, Spreadj would equal 0 and the additive costs of

population spread would also be zero. In our Stage II

error cost model (Eqs. 11, 12), ErrorCostt increases

linearly each year; however non-linear models could

be applied.

Results: Stage II bio-economic model

The first analysis of the potential Stage II surveillance

strategies to achieve a 0.95 P EradjS�ð Þ used a high

RecontrolFactor (400) to illustrate an eradication

system with high financial costs of Stage I errors.

Results demonstrated the total expected costs ranged

more than 4.5 fold (Fig. 4a). The optimal cost-efficient

strategies, as indicated by the 0.10 quantile of the total

expected costs (black contour lines), were generally

when the Pdi was between 0.1 and 0.6 and the

proportion of the SUs surveyed in a MZ were[0.2

(Fig. 4a). The corresponding optimal cost-efficient
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period over which to conduct surveillance ranged from

2 to 5 years after all MZs had been declared free in

Stage I (Fig. 4b). Optimal surveillance effort (in the

0.1 quantile) resulted in P EradjS�ð Þ values that were
equal to or just above 0.95. Values of P EradjS�ð Þ that
greatly exceeded 0.95 are good probabilistically, but

they required excessive effort and financial invest-

ment, and were therefore sub-optimal. Due to the

discrete time periods over which surveillance occurred

(i.e. years), optimal strategies appeared as ‘carved-

out’ areas of the parameter space that equals or slightly

exceeds 0.95 (Fig. 4). This effect is an artefact of the

annual time step, which would be eliminated in

practice by stopping surveillance on the month that a

0.95 P EradjS�ð Þ was achieved. The effect of increas-
ing either re-control costs or rate of spread (Spreadt)

was that optimal strategies required very high surveil-

lance effort and achieved a 0.95 P EradjS�ð Þ within

years one and two (results not displayed).

Evaluation of the Stage II surveillance strategies

that assumed a relatively low cost of wrongly declar-

ing freedom at the MZ level (RecontrolFactor = 100)

suggested that total expected costs would range more

than 10-fold (Fig. 4c). Optimal cost-efficient strate-

gies were predicted to have Pdi values ranging from

0.05 to 0.60 and Prpj between 0.05 and 0.9 (i.e. lowest

0.1 quantile; Fig. 4c). The corresponding optimal

cost-efficient time to eradication with the low

RecontrolFactor ranged from 5 to 8 years (Fig. 4d).

As with the high-cost re-control scenario (above), the

‘carved out’ optimal parameter space is due to cost-

efficient strategies achieving, but not greatly

Fig. 4 Two-dimensional images of Stage II bio-economic

analysis of 10,000 potential surveillance strategies, in which

the colour gradient ranges from low (blue) to high (red-brown).

For each value of detection probability (Pdi) and proportion SUs

surveyed (Prpj), the time to eradication is optimised. Using a

high re-control cost (RecontrolFactor = 400), the top row of

images are the optimal values for: a the relative total expected

costs, and b the number of years to declare eradication. The

black contour line is the 0.10 quantile of the relative total

expected costs (a), indicating the range of the most cost-efficient

scenarios. The second row presents results of scenarios using

RecontrolFactor = 100: c the relative total expected costs, and

d the number of years to declare eradication. The fragmented

black contour line indicates the isolated scenarios, or small

groups of scenarios are within the 0.10 quantile of expected

costs
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exceeding, the 0.95 P EradjS�ð Þ in a given year. When

re-control costs or rate of spread decreased, the

optimal strategies favoured low-effort surveillance

that took up to 15 years to declare eradication.

Discussion

In this paper we present an analytical framework for

analysing surveillance data for assessing progress and

success of eradication of pests or diseases at regional

or country-wide scales. The framework incorporates

probability theory, ecology (and epidemiology in

disease cases) of the target organism(s), and economic

constraints. The formal analytical process aims to

provide structure to broadscale eradication pro-

grammes so that surveillance can be used strategically

in conjunction with population control to progres-

sively advance the operation in a step-wise fashion

across a broadscale area, and ultimately support a

declaration of eradication success. In addition to

providing an objective basis for decision-making

through analysis of actual surveillance data, our

proposed process will enhance the ability of managers

and funders to better conceptualise an eradication

problem, thereby fostering realistic and consistent

expectations among managers, funders and the public.

When eradication is under consideration, our approach

provides the crucial evidence base for formulation of

policy and for future investment in, and ongoing

public and private sector support for, invasive species

management activities.

Our primary intent was to describe and demonstrate

the two-stage process, therefore the input parameter

values in our demonstration of the two-stage bio-

economic modelling were relatively arbitrary and

illustrative rather than real. In addition, we modelled

mean parameter values and did not incorporate uncer-

tainty in our analysis. Clearly, a real-world application

ofourmodelswould require the integrationofparameter

uncertainty into scenario exploration and analysis of

existing surveillance data. To apply the two-stage

approach to identify optimal bio-economic surveillance

strategies or to analyse data from a particular broadscale

operation, users would need to identify system-specific

parameter distributions and apply the logic and

sequence of equations described here.

The demonstration of the bio-economic optimisa-

tion process showed critical elements to incorporate

and important patterns of sensitivity, which were

consistent with our experience with BTB eradication

from New Zealand (Gormley et al. 2016). The

difference in relative costs between low- and high-

cost management scenarios ranged up to 2.5 and 10

fold in Stages I and II, respectively (Figs. 3, 4). This

demonstrates that over the course of a broadscale-

eradication programme, surveillance data modelling

has the potential to save many millions of dollars.

Queensland, Australia spent $AU250 million between

2001 and 2011 in the continued eradication efforts

against red imported fire ants, and it has been

evaluated since that still much more work and

investment will be required to achieve eradication

(Keith and Spring 2013). The New Zealand BTB

management programme has spent approximately

$1.2 billion since 2000 (to first control, and more

latterly to eradicate disease) but eradication of the

infectious micro-organism that causes BTB is not

projected to be achieved before 2055 (TBfree New

Zealand 2015). Clearly, these are expensive opera-

tions and optimisation is required to make them

economically feasible.

Applying the analytical framework described here

to specific broadscale eradication programmes will

require estimating detection probabilities and surveil-

lance costs, and the costs of re-control and re-survey in

the case of erroneous declarations of MZ freedom.

However, general patterns emerged from our study

here showing that as the cost of surveillance increases

relative to error costs, the expected optimal stopping

thresholds will decrease and the optimal time to

declare freedom or eradication will increase (i.e. more

years to eradication). In Stage I, high error costs will

require high-cost surveillance to achieve a high

P FreedomjS�ð Þ to reduce the risk of failure at the

MZ level. This is also true in Stage II, but error costs

have already been accounted for in Stage I and

increase only with the passage of time to eradication

(Eqs. 10, 11). This is because in Stage II a surviving

pest population/disease will grow and expand with

time, which will increase the cost of remediation at a

later date. A practical example of this happened in

New Zealand in the 1980s, with the rapid spread of

BTB through re-emergent possum populations when

initial (1970s) vector control operations were reduced

due to funding cuts (Livingstone et al. 2015).

Broadscale eradications in mainland areas are

becoming an increasingly recognised strategy to
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enhance connectivity of threatened species to protect

genetic diversity (Carroll et al. 2015), reduce the

impacts of stochastic environmental events on threat-

ened biota (McCreless et al. 2016) or to mitigate the

impacts of unwanted diseases (Bellard et al. 2016;

Livingstone et al. 2015). With cost being a significant

factor in decisions to attempt eradication of estab-

lished pests (Simberloff 2014), our two-stage analyt-

ical approach to optimise cost-efficiency could

become an important tool for decision-support use in

complex, multi-year eradication campaigns. The

potential savings run into several millions of dollars

over the course of a broadscale eradication, which

demonstrates the over-riding need for bio-economic

optimisation.

Supplemental material

Python computer scripts are available at the Landcare

Research DataStore: http://doi.org/10.7931/J22N506H
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