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Abstract Biological invasions in forests are grow-

ing in number and importance globally. The best

studied examples are those caused by plants and

animals, including insects. In contrast, forest invasions

caused by microbes, including fungi, have received

much lower levels of attention, particularly in the

invasion biology literature. This can at least to some

extent be due to the large number of these organisms

involved and the fact that the majority of these have

yet to be discovered and described. This is equally true

for tree-infecting fungi, many of which are devastating

pathogens responsible for dramatic invasions in nat-

ural and planted forests. This situation is changing

through the application of molecular genetic tools that

make it possible to accurately identify fungal tree

pathogens, to determine their origins, pathways of

movement, their modes of reproduction and change;

all of which can influence invasions. The role and

relevance of symbioses between tree pathogens and

insects in forest invasions is also gaining increased

attention. So too is our understanding that trees live in

close association with large numbers of microbes that

make up their holobiome. This has substantial rele-

vance to invasion biology (Zenni et al. 2017). This

commentary highlights four emerging issues that need

to be considered regarding the invasions by fungal

pathogens of trees and it emphasizes opportunities to

better understand their relevance and impacts on

natural and planted forests. A call is also made for

plant pathologists to work more closely with ecolo-

gists such that fungal pathogens become more com-

monly integrated into invasion biology programmes.
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(IFP) � Symbioses � Tree disease

Introduction

Invasion Biology was formulated little more than

50 years ago by Charles Elton via the publication of

his monumental 1958 treatise ‘‘The Ecology of

Invasions by Animals and Plants’’ (Elton 1958). Elton,

who is broadly considered the ‘father of the field of

Invasion Biology’ (Williamson 1996), barely consid-

ered microbial invasion in terms of human, animal and

plant health and there were relatively few examples of

insect pests presented in his work. Interestingly, Elton

did include treatments of two North American tree-

invasion problems; those of the devastating Chestnut
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Blight disease caused by the fungal pathogen Endothia

parasitica (now Cryphonectria parasitica) and the

gypsy moth (Lymantria dispar) invasion. From an

ecological standpoint, invasions by plants and animals

have received the bulk of attention. Although forests

and woody ecosystems have become more prominent

in the scientific literature in recent years, it is clearly a

topic that deserves much greater attention, especially

where forest pests and pathogens are concerned.

Four key steps have traditionally been used to

describe the invasion process and these include (1)

Transport, (2) Introduction, (3) Establishment, and (4)

Spread of the invasive (Williamson 1996; Richardson

et al. 2000; Duncan et al. 2003; Lockwood et al. 2008).

Plant and animal ecologists have treated these steps

differently mainly because they deal with very differ-

ent taxa and often work in very different environ-

ments. Plant ecologists have traditionally adopted the

terminologies of Richardson et al. (2000), considering

the barriers that must be overcome before invasions

are established. In contrast, animal ecologists have

typically followed the definitions of Williamson

(1996), that treat the stages of invasion moving from

the native environment to becoming invasive aliens.

These similar, but sometimes confusing approaches,

have been effectively and elegantly consolidated in

what was termed a ‘‘unified framework for biological

invasions’’ by Blackburn et al. (2011). This ‘‘unified

framework’’ sought to integrate the four major stages

of invasion (a stage-based approach) with the barrier

model, providing an effective terminology to describe

the underpinning elements and processes involved in

invasions.

While the Blackburn et al. (2011) ‘‘unified frame-

work’’ can be broadly applied to biological invasions,

it is predominantly focused on animal and plant

examples. Microbiological invasions, caused by

viruses, bacteria and fungi, for example, are men-

tioned, but insufficiently accommodated. In this

regard, the vast diversity amongst the organisms

termed as ‘microbes’ needs to be recognized. Here

for perspective, it is sobering to recognize that the

phylogenetic ‘distance’ between mammals and birds

is equivalent to that amongst species of a single yeast

genus, Saccharomyces (Dujon 2006). This does not

yet include all fungi, and of course also not the even

greater diversity amongst bacteria and viruses. It

would be naı̈ve to believe that the invasion biology of

these organisms will not be significantly different to

that of plants and animals. Lumping these organisms

in a single treatment that is focused on plants and

animals dilutes our opportunity to understand and to

deal with them effectively.

Blackburn and Ewen (2017) provided a broad

consideration of ‘‘parasites’’ in the invasion process

without a specific focus on any particular group of

invaders or their parasites. The added consideration in

that paper is that, in order for invasion to be successful,

pathogens need a host. This host would be either

native or introduced along with the pathogen. Several

implications of this situation are discussed in their

work.

The present commentary adds to the views of

Blackburn and Ewen (2017), specifically with relation

to invasions by fungal pathogens of forests trees. In

this regard, it seeks to extract a single group of

microbes, in recognition of the huge diversity and very

different biological strategies of microbial invaders.

While this is a relatively narrow topic, it is of global

and growing relevance. As mentioned previously,

Elton (1958) included chestnut blight that has devas-

tated naturalCastanea dentate (March.) Borkh. forests

in North America; the numbers of other such tree

pathogens destroying both planted and natural forests

continues to grow annually (Wingfield et al. 2015).

The aim of this commentary is not to present lists of

alien invasive fungal tree pathogens, a topic that has

been well treated elsewhere (Desprez-Loustau et al.

2007; Loo 2009; Müller et al. 2016). Our intention is

rather to highlight four emerging issues that are

important to understand fungal invasions of forests,

plantations and natural woody ecosystems, and that

require more focused research in coming years. We

hope to stimulate a better recognition of the impor-

tance of these issues and their integration with the

invasion biology literature and ongoing research.

Underlying eco-evolutionary processes

It would be fair to argue that we significantly lack a

depth of knowledge regarding all invasions, irrespec-

tive of class of organisms involved. Zenni et al. (2017)

have raised this issue seeking to highlight aspects

concerned with evolutionary mechanisms to be con-

sidered as part of the ‘unified framework’ in addition

to ecological aspects. These influencing factors

include founder effects, epigenetics, population
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genetics, hybridization, genotype-by-environment

interactions and the importance of symbionts (the so-

called ‘second genome’). These evolutionary mecha-

nisms are poorly understood for most invasive aliens

and this is certainly true in the case of fungal

pathogens of forest trees.

The most comprehensively studied fungal tree

pathogens are obviously those that we have known

for the longest period of time and are all of northern

hemisphere origin. These include the already men-

tioned chestnut blight pathogen, C. parasitica (Elton

1958; Hepting 1974; Anagnostakis 1987), the Dutch

elm disease pathogens, Ophiostoma ulmi (Buisman)

Nannf. and Ophiostoma novo-ulmi Brasier (Gibbs

1978; Brasier and Buck 2001), the white pine blister

rust pathogen, Cronartium ribicola J.C. Fisch. (Butin

1995; Kinloch 2003), and Heterobasidion spp.

(Woodward et al. 1998) For these pathogens, we have

some knowledge of their origins, pathways of move-

ment, spread and their population genetics (Et-Touil

et al. 1999; Brasier 2001; Allen and Humble 2002;

Hamelin et al. 2005; Milgroom et al. 2008). Some

more recent invaders in these environments for which

a growing body of knowledge is becoming available

include Phytophthora ramorum and Hymenoscyphus

fraxineus (Drenkhan et al. 2017; Grünwald et al. 2016;

Prospero and Cleary 2017). Against the background of

the large and growing numbers of fungal tree

pathogens, this is a sparse base of knowledge. Yet

we can, at least to some extent, apply this knowledge

to some other tree pathogens and use it to motivate for

studies on them.

Much of the work concerning fungal tree pathogens

other than those mentioned above, and in other parts of

the world, revolve around the identification, and in

some cases the biology, of these organisms. In terms of

tree health, proof of pathogenicity (Koch’s Postulates)

is a fundamental requirement. New tree pathogens are

being recognized and described increasingly regu-

larly. In some cases, knowledge is provided regarding

host ranges and the environmental factors that allow

infection to occur. This work is heavily skewed to

pathogens of commercial importance such as those of

trees grown for fruit production or forestry products.

But even for these pathogens, there are relatively few

examples where knowledge is available regarding

their origins, population structures or pathways of

spread. Notable examples include those for the pine

needle pathogen Dothistroma (Fig. 1c) (Dorogin) M.

Morelet (Barnes et al. 2014; Drenkhan et al. 2016), the

pine pitch canker pathogen Fusarium (Fig. 1b) Niren-

berg & O’Donnell (Wingfield et al. 2008; Berbegal

et al. 2013; Santana et al. 2016), the Eucalyptus stem

canker pathogen Chrysoporthe cubensis (Bruner)

Gryzenh. & M.J. Wingf., as well as its close relatives

(Gryzenhout et al. 2006; Nakabonge et al. 2006; Chen

et al. 2010; Pegg et al. 2010; Van Der Merwe et al.

2013), and the Eucalyptus leaf pathogen Ter-

atosphaeria nubilosa (Cooke) Crous & U. Braun

(Fig. 1e) (Hunter et al. 2008, 2009; Pérez et al. 2010).

In these four cases, the pathogens are important to

commercial forestry and this has, at least to some

extent, provided the motivation and funding to study

them.

There is a multiplicity of sexual reproductive

systems in fungi (Taylor et al. 1999; Ni et al. 2011;

Heitman et al. 2013; Wilson et al. 2015). These range

from typical mating between strains having different

mating types (heterothallism) to an ability to self

(homothallism) where sexual outcrossing does not

necessarily occur, but with a growing list of variants

between these sexual systems (Lin and Heitman 2007;

Wilson et al. 2015). There are also growing numbers

of examples of fungi that have been shown to outcross

despite the fact that they are also able to self (Perkins

1987; Milgroom et al. 1993; Lin and Heitman 2007),

and these include examples of important tree patho-

gens and common invaders such as those in the

Ceratocystidaceae (Harrington and Mcnew 1997;

Witthuhn et al. 2000; De Beer et al. 2014; Wilken

et al. 2014; Lee et al. 2015). This complexity

complicates the characterisation of fungal reproduc-

tive systems. Sexual outcrossing promotes diversity

and could consequently influence the outcomes of

invasions (Gladieux et al. 2015). Unfortunately these

reproductive systems are poorly understood for many

invading tree fungi. The increasing ease of sequencing

fungal genomes and development of population

genetics markers should help to address this

shortcoming.

Reduced genetic diversity is expected in introduced

populations in the early phases of the invasion as a

consequence of founder effects or genetic bottlenecks

(Sakai et al. 2001; Gladieux et al. 2015). Reduced

genetic diversity can have a negative effect on

populations due to the loss of alleles that might have

adaptive value in a new environment (Sakai et al.

2001; Mcdonald and Linde 2002; Allendorf and
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Lundquist 2003). It can also have a positive effect

through purging of deleterious alleles or maintenance

of particularly successful genotypes. This is evident in

some fungal pathogens of trees, especially where they

are able to reproduce asexually or where clonal

lineages of a single mating type dominates in an area.

Cryphonectria parasitica, for example, has been

shown to have colonized south-eastern Europe and it

Fig. 1 Symptoms on trees affected by invasive fungal tree

pathogens a Acacia mangium trees in Indonesia severely

damaged by Ceratocystis manginecans, b Resious canker on

Pinus patula in South Africa caused by Fusarium circinatum,

c Damage to Pinus tecunumanii caused by the needle pathogen

Dothistroma septosporum in Colombia, d Yellow spore masses

of the myrtle rust pathogen Austropuccinia psidii on Backhousia

citriodora in South Africa, e Leaf spots on Eucalyptus globulus
in Uruguay caused by Teratosphaeria nubilosa, f Canker caused
by Chrysoporthe cubensis on Eucalyptus grandis
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is spreading through many adjacent countries (Mil-

groom et al. 2008). These populations are all consid-

ered highly clonal with low levels of genetic diversity

and vegetative compatibility groups, and the presence

of a single dominant mating type (Milgroom et al.

2008; Dutech et al. 2012). Milgroom et al. (2008)

proposed that these ‘‘clones have greater fitness than

others’’ and that they are able to spread because they

are well adapted to the new environmental conditions.

Other examples of aggressive clonal lineages of fungal

tree pathogens invading new areas include the ‘‘pan-

demic’’ strain of Austropuccinia (Puccinia) psidii on

Myrtaceae (Ross-Davis et al. 2013; Mctaggart et al.

2016; Beenken 2017), Dothistroma septosporum on

Pinus spp. in Australasia and South America (Barnes

et al. 2014) and Ceratocystis platani on Platanus

orientalis and P. 9 acerifolia in southern Europe

(Ghelardini et al. 2017; Tsopelas et al. 2017).

The importance of hybridization in plant pathogen

invasions is well recognized and there are growing

numbers of examples of hybrid fungi resulting in

serious tree diseases (Brasier et al. 1999; Brasier 2000;

Newcombe et al. 2000; Brasier 2001; Gonthier et al.

2007; Érsek and Nagy 2008). Hybridisation and

admixture are important sources of novel variation

that could influence the evolution of fungal pathogens

and their invasiveness (Brasier 2000; Allendorf and

Lundquist 2003; Gladieux et al. 2015; Ghelardini et al.

2016). Interspecific hybridisation between two fungal

species can produce hybrid species that have the

ability to infect novel hosts with enhanced pathogenic-

ity leading to greater levels of invasiveness than either

of its parent species (Brasier 2001; Brasier and Buck

2001). For example, the hybridisation of introduced

poplar rust pathogens Melampsora medusae and M.

larici-populina in New Zealand resulted in a hybrid

with a broader host range than that of the parent

species (Spiers and Hopcroft 1994; Burdon et al.

2006). Similarly, the hybridisation of M. occidentalis

and M. medusae that infect only Populus trichocarpa

and P. deltoides, respectively, have hybridised to form

the species Melampsora x columbiana. This pheno-

typically different species is capable of infecting both

hosts mentioned above and hybrid clones of these

hosts (Newcombe et al. 2000). In the oomycetes, an

allopolyploid recombination between hybrids of Phy-

tophthora alni uniformis and Phytophthora alni mul-

tiformis resulted in a new species, Phytophthora alni

subsp. alni (Brasier et al. 2004). This persistent sub-

species is part of a new taxon (P. alni), and is

spreading throughout European riparian forests, kill-

ing Alnus trees (Ioos et al. 2006).

Insect symbioses

In the case of fungal tree pathogens, symbioses are

also fundamentally important for invasion success

(Paine et al. 1997; Kirisits 2004; Six and Wingfield

2011). Symbioses with insects are prominent in this

regard and include some of the most important alien

invasives affecting forests and forestry (Wingfield

et al. 2010; Hulcr and Dunn 2011; Ploetz et al. 2013).

The classic example in this case is that of the Dutch

Elm Disease (DED) fungi, Ophiostoma ulmi and O.

novo-ulmi. The DED fungi are vectored by Scolytine

(Coleoptera: Scolytinae) (Webber and Brasier 1984;

Jacobi et al. 2013) that maturation feed on the twigs of

healthy trees, allowing the pathogens to enter the

vascular tissues and to result in rapid tree death (Gibbs

1978; Sinclair and Campana 1978; Gibbs et al. 1994).

An interesting aspect of the invasion of these fungi in

Europe and North America is that the pathogens have

acquired native insect vectors in their invasive ranges

(Wingfield et al. 2016; and see Ghelardini et al. 2017

this issue). This has come about by these insects

infesting pathogen infected wood that probably

entered the invaded areas in untreated timber. In terms

of invasion biology, the dangers of the movement of

untreated timber and the emergence of diseases such

as DED are increasingly being recognized (Roy et al.

2014; Wingfield et al. 2015).

The recent appearance of the dramatic wilt disease

known as Laurel Wilt caused by the fungus Raffaelea

lauricola T.C. Harr., Fraedrich & Aghayeva provides

another dramatic example of a symbiotic relationship

between a wood-infesting beetle and a pathogenic

fungus. The disease is devastating natural stands of

Persea borbonia (L.) Spreng. (redbay) in the south-

eastern USA (Fraedrich et al. 2008; Hanula et al. 2008;

Harrington et al. 2011). Neither the insects nor the

fungal pathogen would most likely cause significant

tree damage in the absence of the other, but rather it is

their novel associations that are driving the epidemic.

The red turpentine beetle provides another example

where the introduction of an invasive insect, along

with its symbiont, is responsible for a dramatic forest

disease outbreak. In its native range in North America,
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Dendroctonus valens Le Conte is not known as an

aggressive pest and attacks only stressed or dying

trees. In China, however, where D. valens was

introduced into the country in the 1980s, beetle attack

of healthy native pines has resulted in millions of trees

being killed (Sun et al. 2013). Based on population

genetic analyses, eastern North America appears to be

the likely source of the introduction (Taerum et al.

2016), most probably due to the intercontinental

anthropogenic movement of woody material. The

aggressive nature of the beetle in China is hypothe-

sized to be due to the presence of its fungal symbiont

Leptographium procerum (W.B. Kend.) M.J. Wingf.

that most likely has been introduced from Europe

(Taerum et al. 2013, 2017). Although L. procerum is

considered a commensalist fungus in North America

and Europe (Jacobs and Wingfield 2001), it is

apparently an aggressive pathogen of Asian pine and

is only found in association with D. valens. The

introduction of a non-aggressive pest and its associ-

ation with a fungus in an area where together they form

an aggressive beetle-fungal association highlights the

complexity and risks associated with introductions

linked to fungus beetle symbioses.

The role of insects as ‘drivers’ of fungal tree

pathogen invasions is well recognised for the symbio-

sis involving bark and wood-boring insects mentioned

above (Wingfield et al. 2016). But there are growing

numbers of tree-health problems where the relation-

ship between the insect vector and fungal pathogen is

apparently ‘casual’ with a range of insects. Cerato-

cystis pathogens of trees provide some of the best

contemporary examples. For example, Ceratocystis

albifundus M.J. Wingf., De Beer & M.J. Morris, is

native to southern Africa where it occurs on many

native woody plants (Barnes et al. 2005; Roux and

Wingfield 2013; Lee et al. 2016). The pathogen is

vectored by sap-feeding nitidulid beetles (Coleoptera:

Nitidulidae) that visit freshly made wounds on trees

(Heath et al. 2009). These wounds provide the

infection points for the pathogens to invade. In the

case of C. albifundus, the fungus has become a serious

pathogen of non-native Acacia mearnsii De Wild.

(Roux et al. 2007; Roux and Wingfield 2009) and it

now threatens to become an alien invasive in other

parts of the world (Roux et al. 2001, 2005). A similar

situation has recently emerged in South East Asia

where the related C. manginecans M. van Wyk, Al-

Adawi & M.J. Wingf. (Van Wyk et al. 2007) has

emerged as an important pathogen of non-native

Acacia mangium (Fig. 1a) (Tarigan et al. 2011;

Brawner et al. 2015). While the origin of C.

manginecans remains to be determined, preliminary

evidence suggests that in some areas where disease

occurs, the pathogen appears not to be native (Al

Adawi et al. 2014; Fourie et al. 2016), but is vectored

by bark beetle Hypocryphalus mangiferae Stebbing

(Scolytinae) that has co-evolved with mango (Al

Adawi et al. 2013).

Another significant issue affecting our understand-

ing of invasions by fungi and their vectors in tree

systems is the depth and coverage of sampling. The

example of ambrosia beetles and their symbioses with

fungi provides an apt example. With low or poor

coverage, patterns of co-evolution have failed to

emerge. However, these patterns become very obvious

as sampling intensity is increased (Farrell et al. 2001;

Kostovcik et al. 2014). Because there are increasing

numbers of serious tree diseases caused by fungi

associated with ambrosia beetles, for example the

devastating Laurel wilt disease (Fraedrich et al. 2008;

Hanula et al. 2008; Harrington et al. 2011), the role of

novel fungal-insect associations in tree disease war-

rants much greater attention.

The fungal hologenome of trees

There is a growing realization that organisms consti-

tute complex systems that are sometimes referred to as

the holobiont or hologenome (Bordenstein and Theis

2015). Consequently invasions are more complex than

simply including the most prominent organism

involved. For example, most tree invasions are closely

linked to symbioses with microbes (ranging from

parasitic to mutualistic, but with many not understood

yet) although the microbes in these relationships have

received much less attention than their plant hosts

during invasions (Hayward et al. 2015; Blackburn and

Ewen 2017; Zenni et al. 2017). For pines and many

other trees, obligate mycorrhizal relationships are the

most prominent of these symbioses (Chu-Chou 1979;

Richardson et al. 1994; Dı́ez 2005; Dickie et al. 2010;

Hayward et al. 2015). In the case of the many legume

tree invasive species, notably Acacia spp., their

relationships with nitrogen fixing bacteria (rhizobia)

is a requirement for establishment and consequently

successful invasion (Rodrı́guez-Echeverrı́a et al.
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2009; Ndlovu et al. 2013). While these topics have

been studied in some detail, their role in invasion

biology requires considerably better understanding

(Blackburn and Ewen 2017; Zenni et al. 2017).

It has been known for a number of decades that

trees (and other plants) harbour large numbers and a

great diversity of fungal endophytes (Ganley et al.

2004; Sieber 2007; Pirttilä and Frank 2011). Our

understanding of these fungal tree microbiomes is

cursory at best. This is both in terms of the compo-

sition, as well as the role (if any) of these organisms. It

is evident from the few studies that have been

undertaken that there are large numbers of fungal taxa

resident in healthy tree tissues and these far exceed

those that can be isolated using conventional micro-

biological methods. For example, Kemler et al.

(2013), showed that single Eucalyptus trees poten-

tially harbour thousands of fungal taxa and that many

of these reside in fungal groups known to include tree

pathogens (eg. the Mycosphaerellaceae and Ter-

atosphaeriaceae). Molecular genetic tools to charac-

terize the metagenomes of plants including trees are

becoming increasingly available. Our knowledge of

tree microbiomes and their role in both fungal and tree

invasions is likely to grow rapidly.

Some endophytes, such as members of the

Botryosphaeriaceae, are well known latent pathogens,

existing for long periods of time in asymptomatic

tissue, but able to cause disease under conditions of

stress (Slippers and Wingfield 2007; Marsberg et al.

2017). In this regard, movement of trees harbouring

asymptomatic latent pathogens to areas where the

trees are poorly suited to the prevailing environmental

conditions can result in serious disease problems.

Other than for the Botryosphaeriaceae, important

examples are emerging for members of the Cry-

phonectriaceae that include some of the most aggres-

sive pathogens of trees (Gryzenhout et al. 2009).

These fungi can have a negative impact on the

establishment of potentially invasive tree species

(Wingfield 2003; Crous, et al. 2017). But there are

also examples where the fungi are moved via traded

plants or plant material to new environments where

they become invasive aliens in their own right

(Anderson et al. 2004; Santini et al. 2013; Marsberg

et al. 2017). It is clear that future considerations on

how we might tackle invasions by tree microbes that

do not have any direct obvious effects on their hosts

has been neglected and needs to be addressed.

Taxonomic conundrums

Accurate and thus meaningful identification of fungi

as a whole, including those that cause diseases of trees,

has been a challenge for many years (Crous et al.

2016). Until only 30 years ago, the identification of

fungi was based almost entirely on the morphological

features of these organisms. Their relatively simple

morphologies have consequently meant that the iden-

tification of many tree pathogenic fungi has been

incorrect. The availability of DNA-based sequence

technologies and thus phylogenetic inference has for

the first time in centuries given rise to what will

become a natural classification of these organisms.

This technology has revolutionized fungal taxonomy

not only providing universal bar-coding genes

(Schoch et al. 2012; Stielow et al. 2015), but also the

manner in which fungi are named (Hawksworth et al.

2011; Hawksworth 2015). Thus, the confusing ‘dual

nomenclature’ system where the same fungi could

have different names has now been replaced by the so-

called ‘One Fungus = One Name’ (1F1 N) classifi-

cation (Taylor 2011;Wingfield et al. 2012). This alone

will simplify fungal taxonomy and it will also

substantially advance studies in fungal invasion

biology.

The incorrect identification of fungal tree patho-

gens prior to the availability of DNA-based techniques

has caused considerable confusion in the plant

pathology literature, including for some of the most

important tree pathogens. For example, the canker

pathogens in the Cryphonectriaceae are now known to

include very distinct groups; those in the northern

hemisphere that include the chestnut blight pathogen

Cryphonectria parasitica (Murrill) M.E. Barr and

those in the tropics and Southern Hemisphere in

Crysoporthe including the Eucalyptus pathogen

Chrysoporthe cubensis (Fig. 1f) and its various sibling

species (Heath et al. 2006; Gryzenhout et al. 2009).

Likewise, tree pathogens previously treated in Cera-

tocystis including the DED pathogens are now known

to reside in two different Orders of fungi. Moreover,

they represent distinct genera and species complexes

with significantly different ecologies (Hausner et al.

1993a, b; Spatafora and Blackwell 1994; Seifert et al.

2013; Wingfield et al. 2017). Understanding these

differences is already providing an improved knowl-

edge relating to invasions caused by these fungi, and

the picture that emerges is that fungal invasions are
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much more complex and frequent than previously

realized.

One of the most vivid recent examples of problems

relating to the identification of tree pathogens has been

that concerning the myrtle rust pathogen A. psidii

(Fig. 1d). This pathogen is considered native to

Central and South America and it is unusual amongst

the rusts (Uredinales) in having a very broad range of

hosts within Myrtaceae (Coutinho et al. 1998; Glen

et al. 2007; Zhong et al. 2008; Carnegie et al. 2010;

Giblin and Carnegie 2014). Austropuccinia psidii has

been one of the most feared tree pathogens in Australia

(Coutinho et al. 1998; Glen et al. 2007), a continent

that has an extensive natural diversity in the Myr-

taceae. When A. psidii reached Australia in 2010, it

was argued that the invasion was of a different fungus

known as Uredo rangelii J.A. Simpson, K. Thomas &

Grgur. (Carnegie et al. 2010). This fungus was

believed to differ from A. psidii based on minor

morphological difference in the urediniospores but

mainly on the presence of a tonsure on this spore type

(Simpson et al. 2006). This taxonomic confusion led to

dissent regarding a tree disease that was spreading

rapidly in Australia’s natural environment and one that

has now accumulated more than 232 different tree

hosts (Carnegie et al. 2016). A more rapid identifica-

tion of the pathogen applying the techniques that were

commonly available at the time (Glen et al. 2007;

Mctaggart et al. 2016), might not necessarily have

reduced the impact of A. psidii in Australia, but it

would at least have provided an impressive example of

‘best practices’ in dealing with invasive fungal

pathogens.

Conclusions

In this paper we have highlighted some emerging

issues pertaining to invasive fungi associated with

trees. The topic, however, also has relevance to fungi

as invasives in other ecosystems, such as agricultural

systems, and also invasions by other microbes. We

highlight four issues that are of particular relevance to

understanding these invasions, but that are relatively

poorly understood, and that are typically poorly

considered in general invasion biology literature.

These include biological issues relating to emergence

of novel diversity through complex recombination and

hybridization processes, as well as symbionts of

fungal pathogens that are essential to their spread

and host associations. We have also raised practical

considerations such as the uncontrolled global move-

ment of the endophytic fungal community with

healthy plants, and the taxonomic issues that hamper

the accurate identification of tree pathogens.

In eco-evolutionary terms, biological invasions

have not been studied for particularly long time

frames. Thus, seriously invasive alien organisms could

cease to remain dominant over longer periods of time.

As an example, trees that are invasive tend to be

genetically uniform and in this respect they are not

much different to those cultivated in uniform planta-

tion environments. There is growing evidence to

suggest that both native, as well as accidentally

introduced pests and pathogens could eventually

‘catch up’ with these invasive plants and consequently

reduce their impacts (Burgess and Wingfield 2017;

Crous et al. 2017; Hurley et al. 2016). This might, for

example, be considered the ‘sting in the tail’ of

commercial tree-planting programmes that are clearly

significantly threatened by pests and pathogens. It

could also, at least partially, account for what is known

as the ‘boom and bust cycles’, which are poorly

understood and where invasive alien organisms sud-

denly cease to be invasive or disappear entirely.

Invasion biology is beset by numerous conflicts of

interest. These conflicts tend to obscure or even retard

our understanding of them. For example, there are

many tree species that are important commercially,

but that are also considered noxious weeds. Invasion

biologists seek to manage these problems using

biological control strategies (Desprez-Loustau et al.

2007; Wood 2012; Hajek et al. 2016) but many of

these can involve the introduction of tree pathogenic

fungi. While these fungi might, on the one hand,

reduce the invasiveness of the weed tree species, they

also threaten commercial enterprises that rely upon

these trees growing vigorously, as well as potentially

the surrounding native systems. What is clearly

required is common ground between parties seeking

to grow trees and those that see the same tree species

as a serious threat to the natural environment. This will

require sober debate and a mutual understanding of

often significantly opposing points of view.

Most studies dealing with invasion biology are

dominated by zoologists and plant scientists with a

strong interest in ecology. It is our view that most of

these researchers have been trained in ecological
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theory and that this is a field that is not typically

included in the curricula of plant pathologists. The

education of microbiologists and pathologists tends to

be more strongly focused on local and micro-pro-

cesses, and individual organisms and their interac-

tions. This is in contrast to a more complex and holistic

community-environment interactions, and broad spa-

tial scales. Although this might be an over-simplifica-

tion, it is our impression that there remains a great

need for deeper levels of communication and collab-

oration between invasion biologists and microbiolo-

gists that study, for example, fungal pathogens that are

alien invasives.

Tree diseases caused by invasive alien fungal

pathogens are increasing in number annually. These

are seriously damaging to economies where the trees

are grown for commercial purposes and they are

destroying natural ecosystems, ultimately impacting

negatively on general human well-being. There is

clearly a great need for research to better understand

these invasions and thus to provide opportunities to

reduce their impact. In many cases, the technologies

are already available to accurately identify the

pathogens, to understand their pathways of introduc-

tion and to potentially manage their means of spread.

What we lack is a considerably expanded effort to deal

with these growing threats and to have the funding to

apply these technologies.
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