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Abstract A capacity to predict the spread rate of

populations is critical for understanding the impacts of

climate change and invasive species. Despite sophis-

ticated theory describing how populations spread, the

prediction of spread rate remains a formidable chal-

lenge. As well as the inherent stochasticity in the

spread process, spreading populations are subject to

strong evolutionary forces (operating on dispersal and

reproductive rates) that can cause accelerating spread.

Despite these strong evolutionary forces, serial

founder events and drift on the expanding range edge

mean that evolutionary trajectories in the invasion

vanguard may be highly stochastic. Here I develop a

model of spatial spread in continuous space that

incorporates evolution of continuous traits under a

quantitative genetic model of inheritance. I use this

model to investigate the potential role of evolution on

the variation in spread rate between replicate model

realisations. Models incorporating evolution exhibited

more than four times the variance in spread rate across

replicate invasions compared with non-evolving sce-

narios. Results suggest that the majority of this

increase in variation is driven by evolutionary

stochasticity on the invasion front rather than initial

founder events: in many cases evolutionary stochas-

ticity on the invasion front contributed more than

90 % of the variance in spread rate over 30 gen-

erations. Our uncertainty around predicted spread

rates—whether for invasive species or those shifting

under climate change—may be much larger than we

expect when the spreading population contains herita-

ble variation in rates of dispersal and reproduction.

Keywords Expansion load � Genetic drift � Invasive

species � Mutation surfing � Spatial sorting �
Uncertainty � Climate change

Introduction

Predicting the spread rate of biological invasions has

been a longstanding interest of ecologists (Skellam

1951; Elton 1958; Hengeveld 1989). Predicting spread

rate is useful for the management of invasive species,

but is also fundamental to understanding the dynamics

of range shift in response to climate change, both past

and present (Shigesada and Kawasaki 1997; Clark et al.

1998; Sax et al. 2005). Increasingly, it is also appreci-

ated that understanding the dynamics of spread may also

Electronic supplementary material The online version of
this article (doi:10.1007/s10530-015-0849-8) contains supple-
mentary material, which is available to authorized users.

B. L. Phillips (&)

Department of Biosciences, University of Melbourne,

Parkville, VIC, Australia

e-mail: phillipsb@unimelb.edu.au

B. L. Phillips

Centre for Tropical Biodiversity and Climate Change,

School of Marine and Tropical Biology, James Cook

University, Townsville, Australia

123

Biol Invasions (2015) 17:1949–1960

DOI 10.1007/s10530-015-0849-8

http://dx.doi.org/10.1007/s10530-015-0849-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-015-0849-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-015-0849-8&amp;domain=pdf


be important to medicine; in understanding tumour

growth and the formation of biofilms (Orlando et al.

2013; van Ditmarsch et al. 2013). Despite these new

applications, the long-standing interest of ecologists,

and the development of elegant and sophisticated theory

around the dynamics of spreading populations (e.g.,

Hastings 1996), our capacity to forecast spread rate

remains poor (Hastings et al. 2005).

There is, perhaps, little surprise in this observation.

The process of range shift results, after all, from the

interplay of two stochastic processes intrinsic to the

population: dispersal and population growth. These

intrinsic processes are, in turn, affected by spatial and

temporal variation in the environment. Thus, we

should not be surprised that there will always be

fundamental limits to our capacity to forecast spread

rate. Indeed, even in controlled environments, repli-

cated invasions exhibit wildly varying spread rates

(Melbourne and Hastings 2009).

In recent years it has also become apparent that

some of our failure to predict spread rate—particularly

in situations of accelerating spread—is likely the result

of rapid evolution (Travis and Dytham 2002; Phillips

et al. 2008). The process of spread creates powerful

selective forces that favour individuals on the invasion

front with higher dispersal and reproductive rates

(Phillips et al. 2010; Shine et al. 2011; Benichou et al.

2012; Kubisch et al. 2013). These selective forces can,

on ecologically-relevant timescales, alter phenotypes

on invasion fronts resulting in accelerating spread

(Perkins 2012; Perkins et al. 2013).

As well as the realisation that rapid evolution can

cause profound shifts in spread rate, we are also

beginning to appreciate that evolution on invasion

fronts can also be highly stochastic (Excoffier and Ray

2008; Excoffier et al. 2009). The process of range shift

creates a situation of serial founder events—only

relatively few individuals make up the invasion van-

guard each generation—that can see even maladaptive

alleles ‘surf’ to high frequency and be smeared across

the invaded range (Klopfstein et al. 2006; Travis et al.

2007). This situation of serial foundering is akin to

genetic drift: it is drift through space rather than time

(Slatkin and Excoffier 2012). The resulting accumula-

tion of deleterious alleles on invasion fronts has recently

been termed ‘‘expansion load’’ and is currently the focus

of intense theoretical interest (Peischl et al. 2013).

Thus, rapid evolution can drive important variation

in spread rate, but the ultimate evolutionary trajectory

of a spreading population is subject to a high degree of

stochasticity through both an initial founder event at

colonisation and then serial founder events happening

on the invasion front every generation. It remains

possible, therefore, that this evolutionary stochasticity

contributes to the variation in spread rates we see in

nature and in replicated invasion in the lab. To test this

idea, I develop an individual-based simulation model

that allows both dispersal and reproductive rate to

evolve. Analysis of this model suggests that evolu-

tionary process can lead to a massive increase in the

variability of realised spread rates.

Methods

To examine the contributions of various stochastic forces

to variation in range shift, I develop a discrete-time

simulation model of population and evolutionary dy-

namics. The model tracks sexually hermaphroditic

individuals that shift and reproduce over time in

continuous space. I use a quantitative genetics model

for the inheritance of two continuous traits: one affecting

dispersal and the other affecting fitness. The model is

developed and analysed primarily in 1-dimensional

space, with a brief extension to the 2-dimensional case.

All numerical procedures were conducted in R (R

Development Core Team 2012), and the code is available

as an online supplement to this paper (Appendix S2).

Individuals express two phenotypes, one relevant to

dispersal zd, and one relevant to fitness zw. Both traits

are continuous (both 2 RÞ with an underlying quan-

titative genetic structure that assumes trait genetic

covariances are zero (there is no genetic correlation

between the traits). By taking the individual-based

approach, demographic stochasticity and the evolution

of trait means and variances can be easily incorporat-

ed. Because it is impractical to completely explore

parameter space in such a model, however, I take the

approach of providing a proof-of-concept; demon-

strating the potential importance of evolutionary

process in generating both rapid and less predictable

invasion speeds. An analytical treatment of these ideas

remains a formidable challenge.

Population dynamics

Generations are discrete and non-overlapping. Local

dynamics are determined by reference to a continuous
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spatial ‘‘neighbourhood’’ whose size remains constant.

Both the density of individuals and the mean and

variance of trait values in an individual’s neighbour-

hood are calculated as a sum or mean across the entire

population weighted for distance from the individual.

The weighting through space is simply a Gaussian

probability density function with a standard deviation

set to one. Thus, local density at location x, nx, is given

as a sum over the p individuals in the population:

nx ¼
Xp

i¼1

Nðdi;x; rÞ ð1Þ

where N() is the Gaussian pdf, di;x is the distance

between individual i and location x, and r is the

smoothing scale (a constant; standard deviation = 1 in

this case). The smoothing scale (the scale of local

dynamics) is independent of dispersal values in the

population. This choice effectively sets up a repro-

ductive phase (in which local interactions matter) and

a dispersal phase (in which local interactions do not

matter). The smoothing scale, in conjunction with the

population carrying capacity ðn�, see below) together

define the approximate neighbourhood size (=4n �r)

of demes within the population.

Individual reproduction is a stochastic density-

dependent process. I calculate an expected number of

offspring for each individual EðoiÞ using the Beverton

and Holt (1957) population growth function

EðoiÞ ¼ Ri

1þani;x
. Where Ri is an individual’s expected

density-independent fecundity (determined by its zw
phenotype, see below), ni;x is the density at the

individual’s location, and a is a constant that deter-

mines the strength of intraspecific competition. At the

beginning of simulations, a is set to a ¼ Rmax�1
n� where

Rmax is the maximum expected fecundity achievable

by an individual in the population, and n� is the

carrying capacity that would be achieved if all

individuals achieved a fecundity of Rmax.

A subset of simulations also involved a strong Allee

effect. To achieve the Allee effect, I simply multiplied

Ri by nx
0:5þnx

, which produces inverse density depen-

dence at low population densities (Stephens and

Sutherland 1999). Irrespective, once an expected

number of offspring is calculated, the realised number

of offspring is drawn from a Poisson distribution with

mean of EðoiÞ. Beverton-Holt dynamics have the

useful property that population dynamics remain

stable irrespective of the population growth rate. This

choice of local dynamic ensures that local population

fluctuations are purely due to demographic

stochasticity.

Following reproduction, all parents die and off-

spring disperse. Individuals disperse according to a

draw from a Gaussian distribution with a mean of zero

and a standard deviation given by ezd;i , where zd;i is the

individual’s dispersal phenotype.

Trait evolution

Individuals express two phenotypes, one, zw, that

determines the individual’s maximum expected re-

productive rate , and the other, zd , that determines the

individual’s dispersal propensity. An individual’s

reproductive rate is influenced by how well adapted

it is to the local environment, where the optimum

value for zw is 0. The density-independent fecundity of

an individual, Ri, is a function of an individual’s zw as,

Ri ¼ Rmaxe
�kzw;i

2 ð2Þ

where Rmax is the upper limit on expected individual

fecundity (constant across individuals), and k is a

constant defining the strength of stabilising selection

in the system (here set to a constant value of 2).

The inheritance of traits is determined by a basic

quantitative genetic model in which individuals mate

with a partner drawn at random [with probability

weighted by Nðdi;x; rÞ] from the population. All

individuals reproduce and each individual carries a

‘‘breeding value’’ that contributes to the phenotype of

its offspring. In quantitative genetics, an individual’s

breeding value represents the sum of the additive

genetic contributions to its phenotype and is usually

estimated from the mean of its offspring (Lynch and

Walsh 1998). Instead of estimating breeding values, I

define them here for each individual before its

offspring are produced. Importantly, the variance in

breeding values in a randomly mating population is

identical to the additive genetic variance in that

population (Lynch and Walsh 1998), so initially, each

individual’s breeding value can be determined by a

draw from a normal distribution with mean set to the

trait mean and variance equal to the additive genetic

variance of the population Va (see below). Offspring

breeding values are then centered on the resulting mid-

parent breeding value (the mean of the breeding values
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of the parents), but deviate from this mid-parent value

according to a normal distribution with variance equal

to half the variance in local mean breeding values (i.e.,

half the local additive variance). This distribution of

offspring breeding values is that expected in a

situation with no dominance or epistasis (Roughgar-

den 1979), and largely reflects variance between

offspring driven by segregation (i.e., randomness in

the set of parental alleles inherited by each offspring).

Thus, for example, the breeding value for dispersal of

offspring one from parent one at location x is

calculated as,

bd;o1;x
�N

 
bd;1;x þ bd;2

2
;

ffiffiffiffiffiffiffiffiffiffi
Va;d;x

2

r !
:

Local trait mean breeding values ðbd;x and bw;xÞ and

variances are calculated over the same spatial neigh-

bourhood as that governing local dynamics. For

example (for bdÞ,

bd;x ¼
1

nx

Xp

i¼1

bd;iNðdi;x; rÞ ð3Þ

and local trait genetic variances are calculated as,

Va;d;x ¼
1

nx

Xp

i¼1

ðbd;i � bd;xÞ2
Nðdx;i; rÞ ð4Þ

Thus, I only track standing variation: genetic variances

evolve through space as a consequence of gene flow

(movement of individuals), and are eroded by selec-

tion, but are not subject to the additional inflationary

force of mutation. The modelled scenario focusses on

small population sizes and short-term dynamics in

which mutational contributions to variance are likely

to be negligible. The offspring’s final phenotype

ðzd; zwÞ is determined by adding environmental vari-

ance ðVeÞ to the breeding values again using a random

draw from a Gaussian distribution. For example,

zd;i �Nðbd;i;
ffiffiffiffiffiffiffiffi
Ve;d

p
Þ:

Ve is constant over time and space: when the model is

initiated, the amount of environmental variance added

to offspring breeding value is determined according to

the trait’s heritability h2 and total phenotypic variance,

Vp, where Vp ¼ Ve þ Va and Va ¼ h2Vp.

To keep spread rate modest (and computationally

tractable), I set the initial phenotypic mean of zd to

ln(4) (a root mean square displacement of 4 units) and

the initial total phenotypic variance of zd to 0.2 in all

simulations. At initialisation, then, the average indi-

vidual will leave it’s local neighbourhood (defined as

�2 units from its location). The initial mean zw
phenotype was set to zero (the optimum value) and

again total phenotypic variance was set to 0.2.

The modelled scenario

All simulations begin with the introduction of 20

individuals to a point in space, and the model

examines variation in realised spread distances over

30 generations. For the 1-dimensional case, I exam-

ined values of n� between 10 and 50, and Rmax between

2 and 20. At the end of these 30 generations, the

distance spread (the distance between introduction and

the location of the furthest individual) is recorded for

both invasion fronts (Fig. 1). Recording spread dis-

tance of the twin invasion fronts allows me to calculate

a within-population measure of variation in spread

rate.

For each set of parameters examined, I created 20

founder populations (each containing 20 individuals).

For each founder population of 20 individuals, 20

replicate realisations of an invasion were undertaken:

ten with trait heritabilities set to zero, and ten with trait

heritabilities set to 0.3. For each of these replicates,

spread distance was recorded for both invasion fronts.

Initial trait variances were kept identical between the

evolving and non-evolving scenarios (although trait

variances then evolved in the evolving scenario as Va

evolves). With this arrangement of replicated inva-

sions, I can partition variation in spread distance into

that resulting from,

1. stochasticity in dispersal and demography (the

total variance—within and across populations—

in spread distance in the non-evolving popula-

tions), S0. Noting that founder events do not occur

in the non-evolving scenario, because the traits are

not heritable;

2. initial founder events (the between-population

variance in spread distance in the evolving

populations), Sf ; and

3. stochasticity in the evolutionary process (the

within-population variance in spread distance in

the evolving populations, Se, minus that due to

pure demographic stochasticity, S0.
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The 2-dimensional case was substantially more com-

putationally intensive, so for this case I only examined

one value of n� ðn� ¼ 10Þ, and only examined a

smaller range of Rmax (between 2 and 10). I otherwise

kept the design the same as the 1-dimensional case

(Fig. 2). The other difference for the 2-dimensional

simulations was that measurements of spread distance

were taken along both the x, and y axes: individuals’

locations in ðx; yÞ were collapsed onto each axis

yielding two sets of twin invasion fronts. Other than

generating twice as many within-population measures

of spread rate, subsequent analysis proceeded as per

the 1-dimensional case.

Results

1-Dimensional situation

The model deliberately investigated very short time

periods (30 generations of spread) and focussed on

realistic trait heritabilites (usually = 0.3). Despite the

short spread time and the modest heritability (=0.3),

models with heritable traits resulted in greater spread

rates (Fig. 3). When heritability was 0.3, spread rates

were, on average across all simulations, 1.3 times

faster. Although evolution resulted in spread rates 1.3

times faster than the non-evolving scenario, the
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Fig. 1 A typical realisation of the model in 1-dimension

following 30 generations of spread. Grey lines represent initial

trait value (horizontal line) or introduction location (vertical

line). First row: mean and genetic variance of the trait affecting

reproductive output ðzwÞ. Initial trait value in this case is zero,

and the figure indicates substantial drift from this optimum,

moderate erosion of genetic variance at the introduction locale,

and substantial loss of genetic variance towards the invasion

front. Second row: mean and genetic variance of the trait

affecting dispersal ðzdÞ. In this case the two invasion fronts have

evolved very different values for the trait, trait variance has

increased from initial values at the introduction location, but still

decreases strongly towards the invasion front. Third row:

population density through space, and mean individual fitness
�EðoÞ through space. The genetic neighbourhood of each

individual spans an interval of four units along the x-axis
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Fig. 2 A typical realisation of the model in 2-dimensions.

Snapshots at time 5, 15, and 30 generations are shown at each

row of the figure panel. The columns of the figure panel

correspond to the traits for dispersal and fitness respectively.

Colours allow us to observe individual breeding values for these

two traits and how these vary over space and time. Note that, like

the 1-dimensional case, different evolutionary outcomes emerge

on different parts of the invasion front. In the present case higher

dispersal values emerge in the upper sector, and lower fitness

values emerge on both right and left sectors. Together, these

differing evolutionary trajectories lead to differing spread rates

(clearly apparent in the lower panel, in which a circle, and

crosshairs centred on the starting position, have been placed for

reference)
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variance in spread rate was, on average, 4.2 times

larger in the evolutionary scenarios (Fig. 3). Impor-

tantly, much of this additional variation manifested as

variation within a single realisation of spread: i.e.,

large differences in the spread rate between the twin

invasion fronts (see e.g., Fig. 1). That is, there were

typically differences in the evolutionary trajectory on

the twin invasion fronts.

Why did these differences emerge? In this model,

the signal of phenotype surfing (driven by serial

founder events) was evident in the fitness trait, which

often showed substantial deviations from optimal

values (i.e., zero) on the advancing range margins.

That is, serial founder events clearly undermine the

stabilising selection operating on this trait. This same

phenotype surfing must also have occurred for the

dispersal trait, although this trait was subject to strong

directional evolution [driven by spatial sorting and

natural selection, see Phillips et al. (2010)], and so in

this case surfing manifests as differing rates of

evolutionary shift. Acting on both traits together,

serial founder events (‘‘surfing’’) resulted in strong

disparities in the evolved spread rate on each of the

twin invasion fronts. The ‘‘final’’ dispersal and fitness

values on each front will determine the equilibrium

spread rate (Fisher 1937; Benichou et al. 2012), so

these varying evolutionary trajectories caused sub-

stantial variation in spread rate between twin invasion

fronts.

Overall, this evolutionary stochasticity typically

contributed to most (often more than 90 %) of the
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bFig. 3 Spread distances in a 1-dimensional space under

scenarios with and without trait evolution. The top panel shows

spread distance with and without trait evolution across a range of

Rmax (with n� ¼ 50). Shaded areas represent the standard

deviation in spread distance across replicate invasion fronts. It is

clear that allowing dispersal and reproductive rate to evolve both

increases the rate of invasion as well as the variation in that rate

across realisations. The second panel shows variance in spread

distance decomposed into that resulting from demographic

stochasticity, initial founder events, and evolutionary stochas-

ticity. Line thickness in lower two panels represents different

values of infraspecific competition (thick to thin; n� ¼ 50, 25, 10

respectively). The lower panel shows this same decomposition

of variance as a proportion of total variance. At low rates of

population increase ðRmax ¼ 2Þ demographic stochasticity

contributes around 20 % of the variance in spread distances in

the model. Above these low values of Rmax, however, stochastic

evolutionary processes on the expanding range edge (serial

foundering: ‘Evolutionary stochasticity’) accounts for most of

the variation in spread distance
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variance in spread rate in the 1-dimensional model

(Fig. 3), with much lower levels of variance being

attributable to pure demographic stochasticity and the

initial founder effect (Fig. 3). This basic result appears

reasonably robust to variation in the equilibrium

population density ðn�Þ and maximum fecundity

ðRmax, Fig. 3). Demographic stochasticity did, how-

ever, play a larger role when intrinsic rates of

population growth ðRmaxÞ were low, and when trait

heritability was low (Appendix S1). Interestingly, the

inclusion of a strong Allee effect lowered the overall

stochasticity in spread rate, but did not greatly alter the

proportional contributions of demography, initial

founder effect, and evolution (Appendix S1).

2-Dimensional situation

Here again, models with heritable variation resulted in

faster spread rates (Fig. 4). This increased spread rate

for the 2D case was similar to that for the 1D case. If

we compare the overall increase in spread due to

evolution between the two spaces (bearing in mind

that we can only use a subset of the 1D cases for

comparison: Rmax ¼ f2; 4; 6; 8; 10g and n� ¼ 10Þ then

the ratio of proportional increase in spread rate 1D:2D

is 1.21:1.16. As with the 1D case, overall variance in

spread rate was substantially higher for the evolved

scenario (Fig. 4) but, this increase was more modest in

the 2D case compared with the equivalent parameter

settings in the 1D case: the ratio of proportional

increase in variance, 1D:2D was 2.52:1.84.
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bFig. 4 Spread distances in a 2-dimensional space under

scenarios with and without trait evolution. The top panel shows

spread distance with and without trait evolution across a range of

Rmax (with n� = 10). Shaded areas represent the standard

deviation in spread distance across replicate invasion fronts. It is

clear that allowing dispersal and reproductive rate to evolve both

increases the rate of invasion as well as the variation in that rate

across realisations. The second panel shows variance in spread

distance decomposed into that resulting from demographic

stochasticity, initial founder events, and evolutionary stochas-

ticity (again n� ¼10 throughout). The lower panel shows this

same decomposition of variance as a proportion of total

variance. At low rates of population increase ðRmax ¼ 2Þ
demographic stochasticity contributes around 20 % of the

variance in spread distances in the model. Above these low

values of Rmax, however, stochastic evolutionary processes on

the expanding range edge (serial foundering: ‘Evolutionary

stochasticity’) accounts for most of the variation in spread

distance
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As with the 1D case, much of this increased

variance in spread rate manifested as variation within a

single realisation of spread. That is, there were

substantial differences in spread rate between different

sectors of the invasion and these differences were

driven by differing evolutionary trajectories on

various parts of the invasion front (Figs. 2, 4). Thus,

although, the overall increase in variation in spread

rate was smaller in the 2D case compared with the 1D

case, the proportional contributions of demography,

initial founder event, and evolutionary stochasticity,

were similar: evolutionary stochasticity typically

generated more than 90 % of the observed variation

in spread rate.

Discussion

If we are to accurately forecast rates of spread,

whether for toads, tumours, or trees, it is clear that we

need to account for variation in dispersal and repro-

duction (e.g., Neubert et al. 2000; Schreiber and Ryan

2011). In purely ecological models of spread (i.e.,

those that do not incorporate evolution) demographic

stochasticity can act to either slow (e.g., Lewis 2000;

Snyder 2003) or increase (e.g., Ellner and Schreiber

2012) spread rates relative to deterministic expecta-

tions. Evolutionary models of spread, on the other

hand, typically lead to higher rates of spread than those

predicted by equivalent ecological models because

dispersal and reproductive rates evolve upwards

during range advance (Burton et al. 2010; Phillips

et al. 2010; Perkins et al. 2013). My analysis now

suggests that evolutionary processes not only make

invasions faster, they also make invasion speed more

unpredictable, because very different spread rates can

emerge from identical starting conditions.

It appears that much of this variation in spread rate

might be due to evolutionary stochasticity: evolution-

ary processes pushing through a strong stochastic

filter. This evolutionary stochasticity is a result of the

serial founder events that occur on the invasion front

each generation. Clearly, the analysis here is not

exhaustive: an infinite parameter space exists within

the model and exploring it all is not practicable. Thus,

I aim mostly for a proof-of-concept: to demonstrate

that evolutionary stochasticity might play an impor-

tant role in making invasions inherently difficult to

forecast, and that it can do so across a wide range of

circumstances. The work complements recent work by

Peischl et al. (2015) which shows that the accumula-

tion of fitness-reducing variants on an expanding range

edge can limit the rate of spread. Here, I show that both

dispersal and fitness traits are affected by serial

foundering, and the consequent evolutionary stochas-

ticity in spread rate is substantial. Indeed, the large

role of evolutionary stochasticity appears to be a

robust result: evolutionary stochasticity is associated

with more than 90 % of the variation in spread rate, in

both one and two dimensions and across a large range

of reproductive rates, equilibrium densities, and

heritabilities. By contrast, other processes acting

alone—demographic stochasticity and initial founder-

ing—often account for relatively minor proportions of

the overall variance in spread rate (Figs. 3, 4).

Clearly, however, the degree to which evolutionary

stochasticity makes invasions unpredictable will de-

pend on the system at hand. One constraint with this

system is that, for logistical reasons, the population

densities I have used are relatively modest (at n� ¼ 50,

for example neighbourhood size is approximately 200

individuals with continuous gene flow between

demes), and so we might expect drift to be an

important force in this system, even at equilibrium.

Nonetheless, varying n� made little difference to the

proportion of variance attributable to evolutionary

stochasticity (see lower panel of Fig. 3). This is

exactly what we would expect if evolutionary dynam-

ics were dominated by conditions on the leading edge

of the invasion. Population densities on this leading

edge are low and serially foundered irrespective of the

equilibrium density; so varying n� makes little differ-

ence to the degree of drift on the invasion front.

The model here also shows that absolute variance in

spread rate is much larger in a 1D space compared with

the 2D case. Stochastic effects are exaggerated in the

1D case because serial founder events are not mod-

erated by the spatial autocorrelation that acts across

another spatial dimension. In other words the effect of

drift on the invasion front is lower in the 2D case. As

well as reducing the strength of the serial founder

effect, in two dimensions, gene flow perpendicular to

the direction of invasion should eventually ensure that

a close-to-optimal invasion phenotype emerges across

the entire invasion front (see Hallatschek et al. 2007).

But although this should happen, it will take time. In

two dimensions, and given sufficient time, we would

expect different rates of invasion to emerge across
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different sectors of the invasion. These different rates

will remain stable for a period of time before being

invaded (from the side) by sets of phenotypes that

generate more rapid invasion speed (a phenomenon

apparent in Fig. 2).

Another spatial dimension might also alter the

evolutionary effect by slowing down the erosion of

genetic variance that occurs very rapidly in the 1D

case. A slower loss of variance would likely allow the

stochastic aspects of the evolutionary process more

time to play out; giving vanguard populations more

time to drift. The decay of genetic variance could also

be slowed by allowing greater capacity for long-

distance dispersal. Long-distance dispersal, because it

creates greater mixing, has been shown to slow the loss

of genetic variance on invasion fronts (e.g., Bialozyt

et al. 2006). Thus, swapping the Gaussian dispersal

kernel used here for one with fatter tails would slow

the loss of genetic variance on the invasion front and,

because of this, potentially increase the proportion of

variance in spread rate contributed by evolutionary

stochasticity. More generally, the shape of the disper-

sal kernel is already known to have a major impact on

invasion dynamics (Kot et al. 1996). Highly leptokur-

tic kernels, for example, can result in patchy and

highly stochastic invasions (Lewis and Pacala 2000;

Bocedi et al. 2014)—a situation where serial founder

events might be particularly pronounced. Thus, the

shape of the dispersal kernel remains a critical

consideration for both the ecological and evolutionary

dynamics of invasion.

The model I explore also treats the environment as

homogenous in space and time. Adding stochastic

environmental variation to the model would presum-

ably increase the role of ‘‘demographic’’ stochasticity

in generating variance in spread rates. Even so, it is

likely that evolutionary stochasticity will still play a

strong role in making spread rate unpredictable. The

reason for this is that evolution generates autocorre-

lated variation in dispersal and demographic rates: this

autocorrelation emerges in the evolutionary model

simply because traits are heritable. The work of

Schreiber and Ryan (2011) clearly shows that auto-

correlated demographic stochasticity increases the

overall unpredictability of spread rate above that seen

when stochasticity is not autocorrelated. Thus, even in

a model with strong environmental stochasticity, we

would expect evolutionary effects to make spread rate

even more unpredictable.

Finally, the introduction of an Allee effect reduces

both evolutionary and demographic stochasticity. By

forcing the vanguard population to grow from a larger

founder population each generation, Allee effects

reduce demographic stochasticity and also slow the

loss of genetic variation in the vanguard (Taylor and

Hastings 2005; Hallatschek and Nelson 2008). As well

as this, by creating a negative correlation between

fitness and dispersal on the invasion front, Allee

effects can undermine the evolutionary processes that

lead to increasing dispersal and reproductive rates

(e.g., Travis and Dytham 2002; Phillips 2009; Burton

et al. 2010). As a consequence, Allee effects may play

a particularly powerful role in decreasing overall

stochasticity during invasion. Indeed, when I incor-

porated an Allee effect, the model showed much lower

overall stochasticity in spread distance although,

again, the proportion of this variance due to evolu-

tionary stochasticity remained high (Appendix S1).

There are, of course, other ways in which the role of

evolutionary stochasticity during invasion can be

diminished. Most obviously, if there is no genetic

variance for the traits that determine spread rate

(reproductive and dispersal rates), evolutionary

stochasticity will not be an issue. Where there is even

a small amount of heritable variance in dispersal and

reproductive rates, however, my analysis suggests that

evolutionary stochasticity can play a powerful role in

generating unpredictable invasion speeds. Obviously,

extrinsic factors (e.g., environmental heterogeneity, or

species interactions) will still play an important role

(e.g., Tobin et al. 2007; Burton et al. 2010), but the

analysis here suggests that a great deal of variance in

spread rate may be explainable by intrinsic properties

of the population, without the need to invoke variation

in the environment. This observation is at once

encouraging—environmental variation may be less

important than we currently think—and discouraging,

because to be clear about our predictive uncertainty

requires information on population attributes that are

difficult to measure (e.g., trait heritabilities). What is

clear, however, is that evolutionary processes—both

deterministic and stochastic—are of critical impor-

tance in predicting invasion speed and in understand-

ing our uncertainties around these predictions.
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