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Abstract Habitat suitability models developed for

non-native, invasive species often implicitly assume

that projected invasion risk equates to risk of impact. I

aim to test to what extent this assumption is true by

comparing commonly-used invasive plant distribution

datasets to abundance records. I compared herbarium

occurrence records (downloaded from an online

database) and regional occurrence records (compiled

from individual states) to abundance estimates col-

lected from over 300 invasive plant experts for 9

invasive species in the western U.S. I also created

habitat suitability models (HSMs) using these datasets

and compared the areas of predicted suitability. Sixty

percent of the time, herbarium occurrences were

located in regions where the species was rare enough

to be undetected by experts, while only 26 %

coincided with locations identified as having high

abundance. Regional occurrences were located in

areas where the species was not detected 32 % of the

time, and on high abundance 42 % of the time. HSMs

based on herbarium records encompassed 89 % of

land area at risk of abundance, but overestimated the

area of estimated risk (27–46 % false positive rate).

HSMs based on regional occurrences had a smaller

false positive rate (22–31 %), but encompassed only

67–68 % of area suitable for abundance. Herbarium

records are strongly skewed towards locations with

low invasive plant abundance, leading to invasion risk

models that vastly overestimate abundance risk.

Models based on occurrence points should be inter-

preted as risk of establishment only, not risk of

abundance or impact. If HSMs aim to be more

management relevant, invasion risk models should

include abundance as well as occurrence.

Keywords Species distribution model � Herbarium

records � Invasion risk � Ecological niche model �
Impact niche � Damage niche � MAXENT �
Mahalanobis distance

Introduction

Non-native invasive plant species are well known

threats to native ecosystems (Mack et al. 2000), with

transformative invaders (sensu Richardson et al. 2000)

causing significant ecological (e.g., Wilcove et al.

1998; Vilà et al. 2011) and economic (Pimentel et al.

2005) damage. In an effort to forecast future invasions,

models of invasion risk based on correlations between

species distribution and environmental variables

(hereafter habitat suitability models) have become

increasingly common (Table 1), and are often pre-

sented as a tool for managers to prioritize treatment for

preventing invasions in their early stages. However,

habitat suitability models (HSMs) for invasive plants
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are almost universally based on occurrence data,

which to date have an unknown relationship with

invasive plant impact. Occurrence points have a clear

link to risk of species establishment (Lockwood et al.

2007), but how well do they model risk of impact?

Management plans for invasive species often focus

on the potential impacts of that species as a means of

assessing risk (Parker et al. 1999; Hulme 2006). And,

because the effects of individual invasive species are

so difficult to identify (Parker et al. 1999), abundance

is often presented as a proxy for impact (Ricciardi

2003; Kulhanek et al. 2011). Abundance of invasive

plants in particular likely correlates with impact. For

example, in agricultural systems, managers are con-

cerned about invasive plants that are or are likely to

become abundant and damaging to crops (McDonald

et al. 2009). Invasive plants that establish, but

maintain low densities are of minimal concern

(McDonald et al. 2009). Similarly, in arid ecosystems,

invasion of annual plants is primarily a concern where

those species are (or are likely to become) abundant

enough to carry fire (D’Antonio and Vitousek 1992;

Brooks et al. 2004). Where invasive species are

actively being controlled, the management aim is not

to extirpate the species (a virtually impossible task),

but to reduce the population to a level where it is no

longer abundant, and hence no longer problematic (see

for examples Hulme 2006). Thus, an assumption that

modeled establishment risk is the same as impact risk,

when in fact it is not, could waste limited management

resources by unnecessarily targeting non-native spe-

cies in areas where they are unlikely to become

problematic.

Impact does not relate only to abundance. Some

species invasions are problematic more as a result of

per capita effect rather than abundance. For example,

small numbers of non-native species with unique

qualities (‘quirks’ sensu Simberloff 1985; Parker et al.

1999) could alter an ecosystem as much as high

abundance of a species with low per capita effect. Per

capita effects of the same species can also vary

with both abundance and environmental conditions

(e.g., Brewer 2011), reinforcing the importance of

both characteristics. Either abundance or per capita

effect within the species range can be considered a

reasonable proxy for impact (Parker et al. 1999), and if

the species is known to have a large effect as a single

individual then establishment risk alone would be an

appropriate approximation of impact risk. However,

given that plant abundance clearly relates to impact in

many cases and given the difficulty of measuring per

capita effect (and corresponding lack of data for most

species), abundance is currently the more viable

option as a proxy for impact.

To date, most projections of both current and

future invasion risk based on HSMs rely on

occurrence data alone. This practice identifies the

potential range of invasion, or the environmental

requirements of the modeled species (Leibold 1995).

Indeed, it is common for HSMs to use both native

and invaded ranges when predicting invasion risk

(e.g., Peterson and Vieglais 2001; Loo et al. 2007)

to identify all locations where the invader could

potentially establish (i.e. the ‘establishment niche’).

However, this practice ignores any consideration of

impact that invasive species have on the

Table 1 Distribution data sources used in studies of plant invasion risk based on habitat suitability (niche) models with some

example citations

Distribution data source Example citations

Primarily herbaria

Examples

Global biodiversity information facility (GBIF); Botanical

society records; Floristic maps of Europe; Atlas of European

flora; South Africa plant invaders atlas; plants of southern

Africa; Australia’s virtual herbarium

(Albright et al. 2010; Barney et al. 2008; Beaumont et al. 2009a;

Chejara et al. 2010; Christenhusz and Toivonen 2008; Dunlop

et al. 2006; Follak and Strauss 2010; Gasso et al. 2009; Le

Maitre et al. 2008; Nielsen et al. 2008; Peterson et al. 2008;

Smolik et al. 2010; Thuiller et al. 2005; van Klinken et al.

2009; Watt et al. 2009)

Primarily non-herbaria

Examples

Survey data; remote sensing; expert opinion; citizen science;

literature records

(Albright et al. 2009; Bradley 2009; Bradley et al. 2009, 2010;

Ibanez et al. 2009; Jarnevich and Reynolds 2011; Jarnevich and

Stohlgren 2009; Kriticos et al. 2003, 2011; Richardson et al.

2010; Welk et al. 2002)
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environment. Use of the term invasion risk implies

risk of impact. In 1995, Leibold called for greater

distinction of the ‘impact niche’ (i.e. locations

where the invader could potentially have an impact)

from the establishment niche. But, these concepts

remain muddled in invasion biogeography, with

only a handful of studies explicitly modeling

‘impact niche’ based on areas of high abundance

(Ricciardi 2003; McDonald et al. 2009; Kulhanek

et al. 2011).

Studies from other taxonomic groups suggest that

occurrence records are ineffective predictors of abun-

dance. For example, VanDerWal et al. (2009)

regressed measured abundance of 69 vertebrate spe-

cies against suitability modeled from occurrences and

found a significant correlation. However, the correla-

tion coefficient (R2) averaged only 0.12 across all

species (VanDerWal et al. 2009), and other similar

studies have found either no significant correlation

(Jiménez-Valverde et al. 2009; Tôrres et al. 2012), or

that the relationship is best represented as a step

function (Pearce and Ferrier 2001; Nielsen et al. 2005;

Estes et al. 2012). After a quickly reached threshold,

increasing environmental suitability modeled by

HSMs typically correlates poorly (or not at all) to

increasing abundance.

As a result, a more management-relevant

approach to modeling invasion risk could be to

create HSMs based on locations with high invasive

species abundance (Ramcharan et al. 1992; Ricciardi

2003; McDonald et al. 2009; Kulhanek et al. 2011),

which translate more closely to impact risk. HSMs

for invasive plants typically employ either occur-

rence records from herbaria, or from ancillary

records compiled from local or regional datasets

(e.g., Crall et al. 2006) (Table 1). But, how well do

these occurrence points represent abundance (and

therefore impact)? And, how similar are models

based on occurrence data (establishment niche) to

models based on abundance data (impact niche)?

Here, I compare herbarium occurrence records and

regionally-compiled occurrence records to abun-

dance and occurrence data for nine invasive species

in the western U.S. I determine the extent to which

occurrence records represent areas of high invasive

species abundance, and compare suitability model

results based on the four datasets to determine how

well typical HSMs estimate risk of invasive species

impact.

Methods

Collection of abundance data

This research targeted nine problematic invasive plant

species in the western U.S.: Acroptilon repens (Rus-

sian knapweed), Bromus tectorum (cheatgrass), Cen-

taurea maculosa (spotted knapweed), Cirsium arvense

(Canada thistle), Cynoglossum officinale (hound’s

tongue), Lepidium draba (white top), Lepidium latifo-

lium (perennial pepperweed), Linaria dalmatica (Dal-

matian toadflax), and Taeniatherum caput-medusae

(medusahead). These species were selected because

they have large ecological impact in the areas where

they are abundant and each is a management priority

in some portion of the study area. Abundance

estimates for these species were based on the expert

knowledge of over 300 county weed managers

employed by state departments of agriculture, or the

bureau of land management (Bradley and Marvin

2011). These experts were very familiar with the

location and extents of invasions in their counties, and

were familiar with all of the target species due to

widespread concern about their invasion across the

western U.S. However, the resulting maps have not

been validated, so it is likely that this dataset suffers

from both under-reporting and over-reporting. Fur-

ther, although the collected data are distributed across

fifteen western states (Washington, Oregon, Califor-

nia, Idaho, Nevada, Montana, Wyoming, Utah, Ari-

zona, Colorado, New Mexico, North Dakota, South

Dakota, Nebraska, and Kansas), the coverage is not

complete and some spatial bias likely exists. Experts

estimated qualitative abundance of the nine species on

paper maps with 4 9 4 km grid cells overlaid on the

county or land area they manage. These results were

then digitized, creating abundance estimates for 43 %

of the western U.S. with mapped area distributed

nearly evenly across all states except Arizona and New

Mexico, which had fewer responses. Of the nine

species mapped, B. tectorum and C. arvense were by

far the most widespread and regionally abundant

invaders (Bradley and Marvin 2011).

Abundance estimates included the following poten-

tial rankings: not detected, rare, few small invasions,

many small invasions, and many large invasions. For

comparison with occurrence locations, I combined

those categories into three: absent (from not detected),

low abundance (from rare and few small invasions),
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and high abundance (from many small and many large

invasions).

Comparing point occurrence locations

to abundance

I compared abundance estimates to point occurrences

of the nine invasive plants collected from one of two

sources: herbarium occurrences or regional manage-

ment occurrences. Herbarium occurrences were

downloaded from records compiled by the Global

Biodiversity Information Facility (GBIF).1 This

online, searchable database of museum and herbarium

records is frequently used as a source of distribution

data for habitat suitability modeling and invasion risk

assessments. Regional management occurrences were

compiled from Oregon weedmapper (weedmap-

per.org), Nevada natural heritage (heritage.nv.gov),

Idaho department of agriculture (agri.state.id.us), and

the southwest exotic plant mapping program

(SWEMP). Regional management occurrences were

collected by both scientists and managers, often with a

specific focus on invasive species control.

I compared herbarium and regional occurrence

records to gridded abundance estimates for each

species. Only occurrence points that overlapped the

abundance map were retained, and duplicate records

intersecting the same 4 km abundance grid cell were

excluded. I counted the number of occurrence records

in the herbarium and regional datasets that intersected

abundance estimates of absent, low abundance, and

high abundance for each of the nine species. I also

averaged the data across all species to quantify how

well occurrence points represent invasive plant

abundance.

Comparing modeled invasion risk

In addition to evaluating the occurrence datasets

relative to abundance, I compared the spatial extents

of invasion risk maps created using habitat suitability

modeling. For this analysis, I created four separate

models for each species, one based on all of the

available herbarium occurrences (not just those over-

lapping the abundance dataset), a second based on all

of the regional management occurrences, and a third

based on points at the center of all expert-identified

occurrence points (both low and high abundance).

These three datasets were each compared to suitability

models based on expert-identified locations of high

abundance. To create the suitability models, I used

MAXENT version 3.3.3 (Phillips et al. 2006), which

uses a maximum entropy methodology as well as

Mahalanobis distance (MD; calculated in Matlab

version 7.10), which calculates distance from a

centroid of n-dimensional climate space.

Suitability models such as MAXENT which use

occurrence points and generate pseudo-absences may

be prone to overfitting occurrence data (Jiménez-

Valverde et al. 2008; Lobo et al. 2010) thereby

underestimating invasion risk. Presence-only models

such as MD (see for examples Tsoar et al. 2007) might

therefore be a better choice for erring on the side of

overprediction, particularly if occurrence data are

likely to be biased (Jiménez-Valverde et al. 2008) as

often happens early in an invasion (Václavı́k and

Meentemeyer 2012). I chose to use MAXENT and

MD in this case in order to ensure that any observed

differences in modeled suitability are a result of the

input data and not the choice of model.

In order to reduce sampling bias in MAXENT’s

pseudo-absence dataset, I applied a bias correction to

the analysis to limit the extents of pseudo-absence

points to areas likely to have been sampled (thereby

making pseudo-absences a better approximation of

actual absences). For the expert-identified occurrence

and abundance records, the bias file extents included

all sampled counties. For regional management and

herbarium records, the bias file included all areas

within one 4 km pixel of a recorded occurrence for any

species in the regional and herbarium datasets respec-

tively. The total area modeled was limited to the 15

western U.S. states sampled for expert knowledge. All

other parameters in the MAXENT model were kept as

the default settings.

1 Biodiversity occurrence data provided by: Arizona State

University Vascular Plant Herbarium, Botany Vascular Plant

Collection, CSU Herbarium, Consortium of California Her-

baria, Herbarium GZU, Herbarium of The New York Botanical

Garden, Missouri Botanical Garden, New Mexico Biodiversity

Collections Consortium database, UA Herbarium, USDA

PLANTS Database, USU-UTC Specimen Database, University

and Jepson Herbaria DiGIR provider, Utah Valley State College

Herbarium, Vascular Plant Collection, Vascular Plant Collec-

tion—University of Washington Herbarium (WTU) (Accessed

through GBIF Data Portal, data.gbif.org, 2010-09-20).
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I used six climatic predictors important for plant

growth in the western U.S.: each of four quarterly

precipitation variables, minimum winter temperature,

and maximum summer temperature. I used PRISM

climate data (Daly et al. 2002) at 2.5 arc minute

resolution and resampled the grids to a 4 km resolu-

tion Albers equal area projection (which matches the

resolution of the expert-identified datasets). In order to

turn the continuous model results into discrete inva-

sion risk maps, I selected thresholds of MAXENT

suitability (‘gain’) and Mahalanobis distance that

resulted in maps encompassing 95 % of the input

occurrence or abundance dataset.

I compared the total area identified as suitable for

each of the four models (based on herbarium, regional

management, expert occurrence and expert abundance).

I assumed that the suitability model based on abundance

(hereafter abundance niche) represented risk of invasive

plant abundance. Based on this assumption, I calculated

false positive (predicted risk outside of the abundance

niche) and false negative (predicted no-risk inside of the

abundance niche) rates for the HSMs based on herbar-

ium, regional management and expert-identified occur-

rences. Both false positives and false negatives were

calculated relative to total available land area within the

15 state study area.

Results

Comparing point occurrence locations

to abundance

Herbarium occurrence records were most likely to fall

on areas where the species was not detected in the

abundance dataset. There were a total of 1,640

overlapping herbarium records for all of the nine

species when duplicates on abundance grid cells were

excluded. Across all the invasive species tested, 60 %

of presence locations from herbarium records were

located in areas designated as ‘not detected’ by weed

experts (Fig. 1). The percentage of herbarium occur-

rences within designated absences ranged from 25 %

(for B. tectorum) to 80 % (for A. repens), and for four

of the nine species herbarium occurrences fell on

designated absences more than 70 % of the time.

Meanwhile, averaged across all species, only 26 % of

herbarium occurrences were located in areas desig-

nated as high abundance.

Regional management occurrence records were

more likely than the herbarium records to fall on areas

identified as high abundance. There were a total of

26,309 overlapping regional records for all of the nine

species when duplicates on abundance grid cells were

excluded. Averaged across all the invasive species

tested, 32 % of presence locations from regional

records were located in areas designated as ‘not

detected’ by weed experts (Fig. 1). The percentage of

regional occurrence points within designated absences

ranged from 2 % (for B. tectorum) to 49 % (for

T. caput-medusae). Averaged across all species, 42 %

of regional occurrences were located in areas desig-

nated as high abundance.

Comparing modeled invasion risk

HSMs based on expert-identified occurrences or based

on herbarium records predicted much more land area

at risk of invasion than models based on regional

occurrences or points with high abundance (Fig. 2).

This trend was consistent across 8 of the 9 species. The

only exception was T. caput-medusae which had only

114 total herbarium records clustered in the Pacific

northwest, likely due to biased sampling. Models

based on expert-identified occurrences had 1.31 and

1.44 times more land area than models based on

expert-identified abundance using MD and MAXENT

respectively. Similarly, models based on herbarium

occurrences averages 1.36 and 1.75 (MD, MAXENT)

times the land area of models based on abundance.

Herbarium records produced models of invasion risk

that were much more extensive than the abundance

niche despite having only a small fraction of the total

number of point locations. However, suitability mod-

els based on regional management occurrences were

smaller than the abundance niche, averaging 0.69 and

0.98 (MD, MAXENT) times the land area (Fig. 2).

Treating the abundance niche as ‘true’ abundance

risk to evaluate model performance, models based on

expert-identified and herbarium occurrences vastly

overestimated suitability for abundance. Averaged

across all species, 22–30 % (MD, MAXENT) of the

area modeled as suitable based on expert-identified

occurrences falls outside the abundance niche

(Fig. 3a, b). Similarly, averaged across all species,

27–46 % (MD, MAXENT) of the area modeled as

suitable based on herbarium records falls outside the

abundance niche (Fig. 3a, b). On the other hand,
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models based on expert-identified and herbarium

occurrences captured most of the abundance niche,

both missing less than 10 % of land area using either

MD or MAXENT (Fig. 3c, d). As a result, the average

model based on expert-identified occurrences had an

overall accuracy of 80–83 % (MD, MAXENT), while

the models based on herbarium occurrences had an

overall accuracy of 66–71 % (MAXENT, MD) rela-

tive to the abundance niche.

In contrast, HSMs based on regional occurrences

had lower false positive rates. Averaged across all

species, 3–30 % (MD, MAXENT) of the area modeled

Fig. 1 Comparison of percent of point occurrences from

herbarium records (black) and regional databases (white) falling

in areas where the species was not detected (absent), present at

low abundance, and present at high abundance by county weed

managers. Point occurrences from herbarium records are

strongly biased towards locations where the species was not

detected. For all but two of the above invasive plant species, a

strong majority of herbarium occurrence points fell within areas

where the species was not detected by weed experts. Regional

occurrences were located in areas where the species was not

detected half as often as herbarium occurrences
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as suitable by regional data falls outside the abundance

niche (Fig. 3a, b). However, models based on regional

occurrences failed to capture an average of 21–38 %

(MAXENT, MD) of the abundance niche (Fig. 3c, d).

The average model based on herbarium occurrences

had an overall accuracy of 76–79 % (MAXENT, MD)

for predicting abundance risk.

Discussion

Modeling whether an invasive plant could establish in a

given location is useful information. Indeed, climate

matching as a tool for identifying potential invasive

species (e.g., Thuiller et al. 2005) forms a cornerstone of

successful import risk assessments (e.g., Pheloung et al.

1999). However, once a non-native species has arrived

and become a transformative invader (sensu Richardson

et al. 2000), modeling its potential for establishment

(establishment niche) is much less relevant than mod-

eling is potential for impact (impact niche; Leibold

1995), and the impact niche is better approximated by

invasive species abundance than by presence (Ricciardi

2003; McDonald et al. 2009; Kulhanek et al. 2011).

HSMs based on abundance records, such as the expert

dataset used here, will provide better estimates of

current and future impact risk.

Herbarium occurrences are most likely to be found

in areas where weed managers have not detected the

species (Fig. 1). This does not necessarily mean that

the herbarium occurrences are wrong, although errors

leading to range over-estimation have been identified

in herbarium records (Miller et al. 2007). It may be

that the species was once there, but did not persist. Or,

it may be that weed managers have not yet discovered

the species, which is plausible given the mapped grid

resolution of 4 9 4 km. Either way, a species that has

not been detected by invasive plant managers is

unlikely to be a concern and therefore unlikely to be

having a substantial impact. This skew towards low

abundance locations is consistent with a goal of

collecting rare species for herbarium collections,

however it is ultimately problematic for modeling

invasion risk.

Fig. 2 Estimated land area of suitability based on a MAXENT

and b MD models. Distribution datasets are based on expert-

identified abundance (grey with hash), regional management

occurrences (white), expert-identified occurrences (grey), and

herbarium occurrences (black)
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Regional occurrences were more likely than her-

barium records to be found in areas of high abundance

(Fig. 1). However, 58 % of points were still located

where the species is not detected or achieves only low

abundance. This finding is consistent with Marvin

et al. (2009) who found that regional occurrence points

in the southeast U.S. were more likely to be found in

locations with low abundance. Marvin et al. (2009)

hypothesized that this could be due to a management

focus on collecting points for early detection and rapid

response, which focuses on small infestations in their

early stages. This practice may also bias occurrences

collected in the western U.S. towards lower abun-

dance. However, it is clear that regional occurrences

are more likely to be found in locations where the

species is abundant than are herbarium records

(Fig. 1).

Because herbarium occurrences are so often located

in areas where the species is of minimal concern,

corresponding HSMs overestimate potential impact.

In HSMs based on herbarium records, a third to nearly

half of the projected area at risk was outside of the

‘impact niche’ modeled by the abundance data

(Fig. 3a, b). Example MAXENT models for perennial

pepperweed (L. latifolium) and hound’s tongue

(C. officinale), which are the two species most closely

matching the average pattern, are shown in Fig. 4 for

illustration. Further, the herbarium occurrence points

selected were only those located within and applied to

the western U.S. If the national or global distribution

had been used instead, the modeled establishment

niche would have been much more extensive, while

the impact niche would have changed only marginally

because these species are known to have high impact

Fig. 3 Assessment of suitability map accuracy relative to the

abundance niche for models based on regional occurrences

(white), expert-identified occurrences (grey) and herbarium

occurrences (black). a False positive rates (pixels identified as

suitable that were unsuitable for abundance) for MAXENT

models. b False positive rates for MD models. c False negative

rates (pixels identified as unsuitable that were suitable for

abundance) for MAXENT models. d False negative rates for

MD models
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primarily within the western U.S. Many recent HSM-

based studies of invasion risk have relied on herbarium

occurrence records assembled from a variety of global

herbaria (Table 1). These models are correctly inter-

preted as predicting risk of establishment, but they

cannot be considered accurate predictions of abun-

dance or impact.

Modeled suitability for the expert-identified occur-

rences was more similar in land area to the herbarium

records than to the abundance data (Fig. 2) and

showed high false positive rates relative to the

abundance niche (Fig. 3a, b). This finding suggests

that the differences presented here between the

abundance niche and herbarium-based establishment

niche are not simply an artifact of biased collection of

the abundance data. Rather, the sampling effort

(represented by the expert-identified occurrences)

encompassed nearly the same range of climatic space

represented by the herbarium records. However, the

expert-identified occurrence data do not encompass

the entire establishment niche as defined by the

herbarium records, so it is likely that the true

abundance niches for these species are slightly larger

than the ones modeled here because the range has not

been completely sampled.

HSMs based on regional occurrences were more

likely to under-estimate rather than over-estimate

invasion risk, failing to identify, on average, 21–38 %

of the abundance niche (Fig. 3c, d). In this example,

the under-estimation of regional occurrences is likely

due to a concentration of compiled data in 3 states

(Oregon, Nevada, and Idaho), which represents a

sampling bias that may be common to regional

datasets if some areas do not collect or compile

invasive species distribution data. Even with bias

corrections applied to the models, biased distribution

data are known to create biased suitability model

results (Beaumont et al. 2009b; Wolmarans et al.

2010), and for invasive species are likely to underes-

timate risk. Models of invasion risk based on regional

Fig. 4 Comparison of distribution data and resulting HSMs for

two example species. The top row shows high abundance points

and modeled abundance niche. The middle row shows regional

and herbarium points and modeled establishment niche. The

bottom row shows a comparison between abundance and

establishment niche for the different data sources
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occurrences (Table 1) can therefore be interpreted as

an underestimate of impact risk (capturing 62–79 % of

the abundance niche), and an extreme underestimate

of establishment risk.

Abundance data are rarely collected for any

species, let alone invasive species, and even more

rarely at regional scales appropriate for distribution

modeling. Percent cover or biomass is time consuming

to measure, and visual estimates of cover are often

unreliable. However, even qualitative rankings of

abundance would be a huge boon for predictive

modeling efforts. The difference between a single

roadside weed and a landscape of near-monoculture is

enormous, but that distinction is not made in presence

only datasets. I urge the scientific and management

communities to collect invasive species abundance

data, and to make existing data publicly available

through online archives (e.g., EDDMaps.org; Simpson

et al. 2009).

In the absence of abundance data, suitability

modelers can be more vigilant in searching for

regional distribution data to supplement herbarium

records. Regional datasets are rarely centrally located,

but are collected by many local agencies (Crall et al.

2006). By creating two HSMs, one based on herbarium

records, and one based on regional records, modelers

can be more explicit about how they define invasion

risk. The smaller area identified as suitable by regional

records is likely to underestimate impact risk, while

the larger area identified as suitable by herbarium

records is likely to model establishment risk, but

vastly overestimate impact. This level of transparency

would improve the translation of predictive models

into invasive species management.

Estimates of false positive and false negative rates

in HSMs derived from regional and herbarium occur-

rences assume that the projected abundance niche

represents true potential for invasive plant abundance,

and therefore impact. This assumption is almost

certainly flawed. All of these species continue to

expand, hence estimates of both abundance niche and

occurrence niche are likely underestimates. Time lags

between introduction and impact of non-native species

are well known (Mack et al. 2000; Essl et al. 2011) and

HSMs based on data collected at early stages of

invasion will underestimate potential distribution

(Václavı́k and Meentemeyer 2012). However, all of

these species have existed in the U.S. for decades

(most arrived in the 19th or early 20th century) and

were widely introduced through contaminated seed

and hay crops. Welk (2004) estimated that the

geographic area of modeled suitability stabilized after

100–150 years of invasion, comparable to the time

since introduction for most of the species presented

here. While many of these species may continue to

expand locally, at regional scales it is likely that they

encompass a majority of suitable climate space.

How worried should we be about overestimating

impact? In a perfect world, managers would have all

the resources necessary to eradicate non-native spe-

cies. In reality, limited staff and finances force

constant prioritization of target species and locations.

HSMs are increasingly being used to inform invasive

species management (e.g., Stohlgren et al. 2010; CAL-

IPC 2012). Yet, it is clear from these results that

occurrence data are a poor proxy for abundance. By

relying on models of occurrence risk to inform

treatment plans, managers risk wasting resources in

areas where target species are unlikely to ever have a

substantial impact. The invasive species modeling

community must move towards modeling abundance,

and thereby impact, in order to become more man-

agement relevant.
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Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošı́k V, Maron JL,
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