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Abstract Invasive species, biological control and

climate change are driving demand for tools to

estimate species’ potential ranges in new environ-

ments. Flawed results from some tools are being used

to inform policy and management in these fields.

Independent validation of models is urgently needed

so we compare the performance of the ubiquitous,

logistic regression and the CLIMEX model in

predicting recent range extensions of the livestock

tick, Rhipicephalus (Boophilus) microplus, in Africa.

Both models have been applied to the tick so new,

independent data can be used to test their ability to

model non-equilibrium distributions. Logistical

regression described the spatial data well but failed

to predict the range extensions. CLIMEX correctly

predicted the extensions without fitting the non-

equilibrium data accurately. Our results question the

validity of using descriptive, statistical models to

predict changes in species ranges with translocation

and climate change. More test cases that include

independent validation are needed.
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Introduction

The threats to biodiversity, agriculture and human

health from climate change (IPCC 2007) and invasive

species (Mooney and Hobbs 2000) are creating a

burgeoning demand for tools to estimate changes in

potential species’ ranges (Holt and Keitt 2005). This

demand is increased by the ongoing translocation of

biological control agents (Sutherst 2003). Multivar-

iate statistics and rule-based approaches, with

environmental variables sourced from meteorological

stations, ground observations or satellite imagery,

have been used widely (e.g. Rogers 1995; Austin and

Meyers 1996; Rogers et al. 1996; Estrada-Pena 2001;

Pearson et al. 2002; Peterson 2003; Guisan and

Thuiller 2007). The models are being used to make

projections of the potential geographical distribution

of species under current or future climates (Rogers

and Randolph 1993; Beaumont and Hughes 2002;

Midgley et al. 2002; Estrada-Pena et al. 2006). Such

results and many others have been used to inform

policy (Thomas et al. 2004), despite large differences

between different models when projecting changes

in ranges of the same species in response to

environmental changes (Kriticos and Randall 2001;
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Robertson et al. 2003; Thuiller 2003; Elith et al.

2006; Zeman and Lynen 2006). Rigorous validation

against independent data has been lacking (Sutherst

1998) partly because opportunities for such tests with

endemic species do not exist (Sutherst and Maywald

2005). On the other hand invasive species provide

many such opportunities as we now demonstrate.

One invasion that allows independent validation is

provided by the pan-tropical bovine tick, Rhipicephalus

(Boophilus) microplus (Canestrini) (Acari:Ixoididae),

which has been expanding its range in Africa over a

period of decades. We compare a priori estimates of the

areas at risk of further invasion in Africa based on a

multivariate logistic regression model (Cumming

1999a, b; Cumming 2002) and the inference-based,

climatic response model, CLIMEX, (Sutherst and

Maywald 1985; Sutherst et al. 1995; Sutherst 2003).

Historical geographical distribution

of R. B. microplus

R. B. microplus is a bovine tick of Asian origin that is

now widespread in tropical and sub-tropical Central

and South America, Australia and the east coast of

Africa (Wharton 1974; Cumming 1999a, b). It has

been in south-east Africa for over a century (Theiler

1949), during which time its distribution has waxed

and waned in southern Africa prior to 1999 as cited

by Lynen et al. (2008). Theiler (1943) foresaw future

extensions of the localised foci in southern Africa.

The prior occupation of much of the continent by the

very similar endemic species, B. decoloratus, which

mates with R. B. microplus to produce sterile hybrid

zones (Sutherst 1987a) has been a barrier to the

latter’s spread. Modelling suggested that it was

possible for R. B. microplus to colonise the occupied

territory in much of sub-Saharan Africa under certain

conditions of climate, host suitability and propagule

pressure. As such this exotic tick, which transmits

Babesia bovis, a more pathogenic bovine parasite

than the endemic B. bigemina, is a potential threat to

bovines in other parts of Africa.

Recently R. B. microplus expanded its range

slightly into marginal country at the northernmost

tip of South Africa during a period of above average

rainfall (Tønnesen et al. 2004) and northern Tanzania

(Lynen et al. 2008). Most recently the tick has been

recorded for the first time from a ‘dense humid forest’

habitat 50 km north of Abidjan in Ivory Coast, West

Africa (Madder et al. 2007), as shown with stars in

Figs. 1b and 2. These invasions provide an excellent

opportunity to compare model predictions using truly

independent observations.

Model comparison

A regression model with up to 49 predictor variables

(mean monthly rainfall, maximum and minimum

temperatures, normalized difference vegetation index

(NDVI) and elevation) was built for 73 species of

ticks to describe Pan-African distributions of species

richness (Cumming 1999a, b; Cumming 2002). The

climatic data used were restricted to the southern

hemisphere. A number of studies were cited (Cum-

ming 1999a, b) that used multivariate analyses to

estimate the likely range of particular species, and to

infer the role of different environmental variables in

determining species’ distributions. Some of the

limitations of descriptive methods were pointed out

but these caveats have not been taken into account by

later users of regression and other statistical methods.

The observed and estimated distributions of

R. B. microplus in Africa (Cumming 1999a, b) are

shown in Fig. 1a, b. The model provides a very

credible description of the data. It also shows small

areas at risk in Namibia and Angola. Zero or minimal

risk is attributed to most of East and Central Africa.

The results were reproduced in a series of high profile

maps by a consortium supported by the UK Depart-

ment for International Development’s (DFID)

Animal Health Programme, Food and Agriculture

Organization (FAO), International Livestock

Research Institute (ILRI) and the Integrated Consor-

tium on Ticks and Tick-borne Diseases (ICTTD),

with tick and tick-borne disease interests in Africa

(Minjauw et al. 2001).

We repeated Cumming’s analysis, using only

climatic variables because Cumming stated that

climate accounted for nearly all of the observed

variation, due to the high correlation between the

predictive variables. The presence of hosts and

vegetation types had also been eliminated as limiting

factors (Cumming 1999b, 2002). We ran the model

using an interpolated climate surface (monthly

maximum and minimum temperature, rainfall and

relative humidity) with a resolution of 100 (New et al.

2002). Our results were sufficiently similar to those of
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(Cumming 1999a, b) to ensure that a climate-based

model comparison was valid for further comparisons.

A question arose as to what weighting effect the

different density of observational records had on the

estimation of the model parameter values. The data are

heavily biased towards northern Malawi and south-

western Tanzania. This coincides with the area with

greatest predicted habitat suitability. We tested the

effect of the sampling bias, by aggregating clusters of

data points, and found that it had little discernable

effect on the predicted areas. A major effect on the

range limits arose from the weighting given to absence

records.

The potential geographical distribution of

R. B. microplus in relation to climate had also been

estimated for Africa (Sutherst and Maywald 1985;

Sutherst 1987b), using the CLIMEX model. CLI-

MEX is a simplified simulation model that infers the

responses of species to average maximum and

minimum temperatures, rainfall and relative humidity

from its geographical distribution and seasonal phe-

nology. It incorporates a hydrological model and runs

on a weekly time step. The model combines growth

and stress parameters to produce a measure—the

Ecoclimatic Index (EI)—of the overall suitability of

the climate for the target species. The original

CLIMEX model of R. B. microplus was parameter-

ised using the distributions in Australia (Sutherst and

Maywald 1985) and the south coast of South Africa

because a quarantine boundary prevented southward

spread beyond the Queensland, New South Wales

border, so the cold-limited boundary could not be

estimated precisely in Australia (Sutherst 1987a, b).

In order to make the model comparison fair and

equal, we re-fitted the CLIMEX parameters using

only the distribution records of Cumming (1999a, b)

(Fig. 1) and the results are shown in Fig. 2. There

was minimal difference between these results and

those of Sutherst and Maywald (1985) and those

differences related to the cold limits only which do

not affect the current argument. CLIMEX was unable

to include the observed records of occurrence without

also including a large additional area beyond the

northern limits of the data. The map depicts the

suitability of the climate for the tick in the whole of

Africa and hence the area predicted to be at risk of

invasion in the absence of other constraints. It

indicates that the highest risk areas in Africa have

not yet been invaded, i.e. in East, Central Africa

including most of Angola and West Africa.

Both models identified Venda as being moderately

suitable. CLIMEX also identified north-western

Tanzania and Ivory Coast in West Africa as being

highly favourable for R. B. microplus. In addition, it

flagged the high risk to much of the highlands of East

and Central Africa, and the humid tropics of West

Africa. Further, it revealed a western corridor of

suitable habitat connecting southern and north-

western Tanzania. The regression model classified

northern Tanzania as unsuitable and it could not be

applied to West Africa because it was parameterised

with climatic data from the southern hemisphere.

Fig. 1 (a) Observed and (b) estimated potential geographical

distribution of the bovine tick, R. B. microplus in Africa, using

logistic regression fitted to the observed African distribution.

The stars show the areas in Venda, north-western Tanzania and

Ivory Coast in West Africa from where the tick has recently

been recorded
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Discussion

Comparison of the results from the two models

(Figs. 1b, 2) could not provide a more stark contrast

in prediction of invasive risk. The regression

described the observed distribution records of

R. B. microplus in southern Africa accurately but

excluded the main range extensions. On the other

hand the CLIMEX results included the observed

distribution but also included large areas outside the

range of the observations, which included the

observed range extensions. The reasons for these

differences go to the heart of modelling non-equilib-

rium populations.

Firstly, the regression algorithm and parameter

fitting process treat each data point as a presence or

absence record. This has the unavoidable effect of

categorising those areas that the species has not yet

colonized as unsuitable. Such a model is therefore

inherently unsuitable for anticipating range exten-

sions of invasive species that have not yet reached

equilibrium in their new environment. With CLI-

MEX, absence data—in areas that are estimated to be

suitable from the climatic conditions associated with

presence data—prevent the model from restricting its

parameter values to simulating only the presence

records. Such absence records are attributed

‘unknown’ status in such conditions. They stimulate

a search for other explanations.

Secondly, the regression fitting process is limited

to using truncated or selective independent variables.

In the current application, despite the use of numer-

ous climatic variables, the model is unable to take

account of the different seasonal patterns across

latitudes and longitudes. While southern Africa has

mostly a summer rainfall pattern, further north the

rainfall seasonality is quite different. The pattern-

matching algorithm categorises different combina-

tions of climatic variables as having low suitability

because they do not correspond well with the patterns

associated with the observations.

The inability of statistical models to accommodate

different patterns of environmental variables has been

noted previously (Kriticos and Randall 2001). This

failure can be partly overcome by choosing variables

that are more independent of the structure of seasonal

cycles of temperature and rainfall. Annual average

temperatures and rainfall (Rogers and Randolph

2000) or derived variables like annual degree-days

or moisture indices based on ratios of rainfall to

evaporation (Austin and Meyers 1996; Lindsay et al.

1998) have been used. However they do not take

account of the needs of species to have concurrent

combinations of suitable temperature and moisture

(Sutherst and Maywald 2005). They also only

estimate conditions suitable for growth and do not

take account of the limiting effects of extreme

conditions of different durations. The result is risk

Fig. 2 The potential

geographical distribution

of the bovine tick,

R. B. microplus in Africa,

estimated using the

CLIMEX model and the

Australian geographical

distribution. The stars show

the areas in Venda, north-

western Tanzania and Ivory

Coast in West Africa from

where the tick has recently

been recorded
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assessments with vast scope for bias and error from

ignoring both seasonality and interactions between

temperature and moisture variables.

In discussing the major differences between the

original CLIMEX model predictions of the area at

risk in Africa and the historical observed distribution,

the authors stated that ‘Clearly areas such as western

Kenya have a high risk from R. B. microplus if that

species should be introduced there’. They also stated

that ‘discrepancies between observed and predicted

distributions can be just as useful as agreements in

identifying limiting factors’ (Sutherst and Maywald

1985). In the case of R. B. microplus this discrepancy

contributed to identifying the hybrid zone phenom-

enon involving this tick and B. decoloratus in Africa

(Sutherst 1987a, b).

In fact, the reported distribution of R. B. microplus

in southern Africa includes almost all of the range of

temperature and moisture values that define the tick’s

climatic domain. The tick has a preference for a warm,

humid climate as found in tropical Asia and also in

East, Central and West Africa. The unsuitable rating

from the regression model was produced even though

the most basic consideration of the temperature and

moisture requirements of the tick indicates that the

climates are highly favourable. Indeed other similar

Boophilus species occupy large parts of sub-Saharan

Africa (Hoogstraal 1956; Cumming 1999a, b).

The major differences between the results from

using regression compared with CLIMEX arise in

part from the different objectives of the different

methods. Firstly, statistical models often used in

conjunction with geographical information systems

(GIS) are powerful tools for interpolating between

sample data to fill in missing values. They are not

appropriate for extrapolating beyond the data sets as

is necessary with species invasions or climate change

scenarios. They can describe geographical distribu-

tions precisely (Rogers and Randolph 1993) but the

dangerous assumption is often made that the models

therefore enable valid extrapolation to other regions

or global change scenarios. The better the fit to the

data the more successful the model is considered to

be. The inappropriateness of using such models to

describe species distributions of tsetse fly (Glossina

spp.) (Rogers and Packer 1993; Rogers 1995;

Robinson et al. 1997), ticks (Rogers and Randolph

1993) and malaria (Rogers and Randolph 2000) has

been alluded to previously (Sutherst 1998, 2004).

Many claims of high accuracy of statistical and

simulation models in describing species’ potential

distributions arise from comparison of highly corre-

lated subsets of data obtained by splitting datasets for

training and validation exercises. This inappropriate

practice is widespread and may have arisen from a

misunderstanding of the recommendation to split data

sets in order to obtain unbiased estimates of parameter

values after selecting models using the original subset

(Miller 2002).

These findings show that using regression, and by

implication any descriptive pattern-matching

approach, is not appropriate when predicting poten-

tial range changes under global change or invasion

scenarios. The failure of such models to make

provision for non-equilibrium ranges, as shown with

this example of R. B. microplus in Africa demon-

strates their weaknesses wherever extrapolations are

required. This has led to the misguided practice of

using ensembles of statistical models (Thuiller 2003)

in an attempt to reduce the errors. That does not

address the underlying problem of inappropriate

model structures and optimisation methods. CLIMEX

on the other hand aims to infer the species climatic

response relationships from the known geographical

distribution and then to project likely responses to

climates in different places and climate change

scenarios. Rather than trying to achieve a precise

description of the distribution, the emphasis is on

interrogating the data to shed light on the climatic

conditions that support growth or limit the survival of

the species. The need to ensure internal consistency

in the results is paramount and the aim is to include

all known positive locality records. Inconsistencies,

like those above, warn that climate alone is not

responsible for limiting the geographical distribution,

or that the species has not reached its equilibrium

distribution, rather than indicating model failure.

Most native species have spread to their maximum

potential ranges and so do not provide the opportunity

for an a priori assessment of areas suitable for further

spread. An exception was the invasion of the

highlands of Zimbabwe by two African species of

ticks, Amblyomma variegatum and Amblyomma he-

braeum (Bruce and Wilson 1998). This occurred after

a warning of such a risk was given a decade earlier

based on a CLIMEX analysis (Sutherst and Maywald

1985). Such apparent discontinuities or inconsisten-

cies in geographical distributions may also arise from
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incomplete distribution records and CLIMEX can

help to identify such gaps (Hall and Wall 1995;

Sutherst 2003; Sutherst and Maywald 2005).

R. B. microplus can be expected to continue its

spread through the continent and occupy those

habitats to which it is better adapted than the resident

Boophilus species. The continuing spread will pro-

vide further opportunities for model validation.

We repeat the appeal (Sutherst and Maywald 2005)

for less concern with precision of model fits to species

geographical distributions (Cumming 2000a, b;

Anderson and Lew 2003; Elith et al. 2006), which

are usually of poor quality and more emphasis on

avoiding the systemic errors that arise from faulty

model structures. Such errors are not revealed by

statistical measures of goodness of fit. We now add

the issue of inappropriate selection of predictive

environmental variables and weighting given to

absence records. Derived measures of climatic suit-

ability may improve the performance of statistical

models but will not enable them to match the

performance of dynamic simulation models. The

mechanistic CLIMEX simulation model performed

reliably using such derived variables and provides

more insight into the role of specific growth and

limiting conditions across all global climates. As such,

it is a useful first step in an ecological study of any

species (Sutherst et al. 2007). Being mechanistic,

each parameterised function constitutes a testable

hypothesis on the role that the climatic factor has in

supporting population growth or limiting a species

range (Sutherst et al. 1995). The relationships can

inform policy and guide further process-based studies.

As ecologists we need to go back to the basics of

our discipline and consider the needs of species from

first principles (‘to look at the world through the eyes

of the species we are studying’) instead of applying

descriptive models to multiple species using a black-

box ‘plug-and-play’ approach as done for many

studies such as those cited by (Thomas et al. 2004).

Risk assessments for biodiversity under global

change will be better served by selecting species

with ranges that are representative of their compatri-

ots and understanding them thoroughly as a basis for

extrapolation to the other species with similar ranges.

Progress in understanding the factors limiting spe-

cies’ geographical distributions will only come from

applying mechanistic, hypothesis-based approaches

to the analyses. This, after all, is the fundamental

distinguishing characteristic of science and it leaves

little room for descriptive methods.
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