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Abstract Generalist predators have the capacity to

regulate herbivore populations through a variety of

mechanisms, but food webs are complex and defining

the strength of trophic linkages can be difficult.

Molecular gut-content analysis has revolutionized our

understanding of these systems. Utilizing this tech-

nology, we examined the structure of a soybean food

web, identified the potential for adult and immature

Orius insidiosus (Hemiptera: Anthocoridae) to sup-

press Aphis glycines (Hemiptera: Aphididae), and

tested the hypotheses that foraging behaviour would

vary between life stages, but that both adults and

immatures would exert significant predation pressure

upon this invasive pest. We also identified the

strength of trophic pathways with two additional

food items: an alternative prey item, Neohydatothrips

variabilis (Thysanoptera: Thripidae), and an intra-

guild predator, Harmonia axyridis (Coleoptera:

Coccinellidae). A. glycines constituted a greater

proportion of the diet of immature O. insidiosus,

but N. variabilis DNA was found in greater frequency

in adults. However, both life stages were important

early-season predators of this invasive pest, a

phenomenon predicted as having the greatest impact

on herbivore population dynamics and establishment

success. No adult O. insidiosus screened positive for

H. axyridis DNA, but a low proportion (2.5%) of

immature individuals contained DNA of this intra-

guild predator, thus indicating the existence of this

trophic pathway, albeit a relatively minor one in the

context of biological control. Interestingly, approxi-

mately two-thirds of predators contained no

detectable prey and fewer than 3% contained more

than one prey item, suggesting the possibility for food

limitation in the field. This research implicates

O. insidiosus as a valuable natural enemy for the

suppression of early-season A. glycines populations.
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Introduction

Theory predicts that predator and prey populations

oscillate, with predators lagging behind prey over

time, and such events have been demonstrated many

times (Bonsall and Hassell 2007). It is this disparity

between population sizes that is purported to translate

into ineffective and unsustainable regulation of

herbivorous pests by specific predators. However,

the community of natural enemies within a system

can exert pressure on pest populations (Sunderland

et al. 1997) and early-season predation has been

suggested as a mechanism delaying herbivore estab-

lishment (Landis and Van der Werf 1997; Brosius

et al. 2007). The capacity of generalist natural

enemies to ‘‘sit and wait’’ for prey to arrive (Settle

et al. 1996) and/or build up their populations early in

the year (Butler and O’Neil 2007a) enables them to

feed upon target pests immediately after colonization

(Sunderland et al. 1987; Harwood et al. 2004, 2007).

Notwithstanding, there is a large body of evidence

suggesting that alternative prey are often of high

nutritional quality (Marcussen et al. 1999; Bilde et al.

2000; Butler and O’Neil 2007b) compared to pests

(Toft 2005), and ultimately disrupt the capacity of

generalist predators in biological control (Madsen

et al. 2004; Koss and Snyder 2005; Prasad and

Snyder 2006). Furthermore, enhanced biodiversity,

despite translating into improved growth and repro-

ductive success (Bilde and Toft 2000; Fawki and Toft

2005), can reduce the impact of a predator population

at regulating pest densities (Symondson et al. 2006)

through preferential consumption of non-pest prey.

Interactions with intraguild predators have also been

reported as reducing biological control by predator

populations due to competition for shared prey and/or

foraging sites (Snyder and Wise 2001; Rosenheim

2005). Although not a universal phenomenon (Colfer

and Rosenheim 2001), further research is required to

identify the consequence of predator–predator inter-

actions in the field.

One invasive species of considerable concern is

the soybean aphid, Aphis glycines Matsumura

(Homoptera: Aphididae), whose populations are

capable of doubling every 6.8 days in the field

(Ragsdale et al. 2007). This aphid, first reported in

North America in 2000, has subsequently spread

throughout the US Midwest and eastern Canada

(Ragsdale et al. 2004; Venette and Ragsdale 2004;

Mignault et al. 2006) and resulted in the first

insecticide application to soybeans, Glycine max (L.

Merrill), in many regions (Rodas and O’Neil 2006).

The potential economic losses have facilitated interest

in the utilization of natural enemies from both North

America (Ragsdale et al. 2004; Nielsen and Hajek

2005; Butler and O’Neil 2007a; Costamagna et al.

2008; Kaiser et al. 2007) and the native host range in

Asia (Heimpel et al. 2004; Liu et al. 2004; Miao et al.

2007), the effects of juvenile hormone on growth and

mortality (Richardson and Lagos 2007), and adoption

of alternative habitat management approaches

(Schmidt et al. 2007). However, it is the density and

diversity of predatory arthropods within North Amer-

ican soybean crops (Rutledge et al. 2004) that has

received most attention, and the anthocorid, Orius

insidiosus (Say) (Hemiptera: Anthocoridae), can

account for up to 85% of the predator community in

some regions (Rutledge et al. 2004; Desneux et al.

2006). This natural enemy is also abundant early in

the season, potentially impacting pests during coloni-

zation and thereby limiting population growth

(Rutledge and O’Neil 2005; Desneux et al. 2006).

This is further supported by Brosius et al. (2007) who

suggested that O. insidiosus are most effective if

present before aphid colonization. However, adult and

immature predators are likely to respond differently to

prey availability, and the structure of trophic connec-

tions between an immature predator and its prey have

only been studied occasionally (e.g., Traugott 2003;

Juen and Traugott 2007). Therefore in the context of

invasive species biology, it is essential to characterize

the structure of arthropod food webs, elucidate the

role of generalist predators in conservation biological

control and identify potential disruptive mechanisms

reducing invasive species suppression.

The strength and structure of predator-prey

(Symondson 2002; Sheppard and Harwood 2005)

and parasitoid-host (Greenstone 2006) interactions

have been defined using molecular techniques,

initially through antibody-based approaches and,

more recently, specific PCR. The principal limitation

of custom-developed monoclonal antibodies (MAbs)

has been their capacity to examine only single

interactions but, once developed, they can be used

to screen large populations against individual target

(typically pest) prey (e.g., Hagler and Naranjo 2005).

In contrast, field-based analysis of predation using

specific PCR has often focused on examining the
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dynamics of predation upon multiple prey, including

pest (Harper et al. 2005; Harwood et al. 2007; Zhang

et al. 2007) and non-pest (Agustı́ et al. 2003; Harper

et al. 2005; Juen and Traugott 2007; Harwood et al.

2007) species. Undoubtedly, where specific interac-

tions are of interest, MAbs will continue to be used

but the ability of PCR to decipher multiple trophic

interactions makes it the assay of choice when

examining predator-multiple prey food webs.

In this study, we adopt a multi-disciplinary

approach to elucidate the strength of trophic interac-

tions between adult and immature O. insidiosus and

three categories of prey: an invasive pest (A.

glycines); a non-pest prey (Neohydatothrips variabi-

lis (Beach) (Thysanoptera: Thripidae)) and a late-

season predator (Harmonia axyridis (Pallas) (Cole-

optera: Coccinellidae)). These predators and prey

represent the most important fauna in soybean fields

in Indiana (Rutledge et al. 2004, Desneux et al. 2006,

H.J.S.Y. & R.J.O. unpublished data). By integrating

field population surveys with molecular gut-content

analyses, we will test the hypothesis that early-season

predation will be exhibited in both adult and imma-

ture generalist predators, but significant differences in

foraging behaviour will be evident between life

stages. We predict that the relatively immobile

immature O. insidiosus will consume A. glycines

more frequently than the adults, which can access

prey over a broader spatial scale. This study will also

examine the importance of alternative prey in

O. insidiosus food webs and the likelihood for

foraging upon H. axyridis by these anthocorid

predators. Understanding the mechanisms of foraging

behaviour, in relation to invasive pests, alternative

prey and intraguild predators, is crucial to under-

standing the dynamic and changing structure of food

webs involving invasive species.

Materials and methods

Field sampling techniques

In 2006, adult and immature O. insidiosus were hand-

collected weekly (*20 adult and 20 immature

predators per week) from two or three 0.16 ha plots

within a 7.5 ha soybean field (Beck’s 274NRR

soybean, Beck’s Hybrids, Atlanta, Indiana, USA)

located at the Purdue University Agronomy Center

for Research and Education, Tippecanoe County,

Indiana, USA. During the research study, crops were

planted in 76.2 cm rows under standard agronomic

practices for soybeans in Indiana. No pesticides were

applied during 2006. Following collection by aspira-

tor, predators were transferred into 1.5 ml

microcentrifuge tubes filled with 95% EtOH before

being stored at -20�C until DNA extraction (see

below).

Throughout the sampling period (June–Septem-

ber), predator and prey populations were sampled to

identify relationships that exist between field popu-

lation densities and foraging behaviour. Soybean

plants were located by stratified random sampling

within field plots and destructive whole-plant counts

(n [ 30 plants per week) taken to estimate densities

of A. glycines, N. variabilis and coccinellid eggs.

Sample preparation and molecular screening

protocols

Prior to analysis, all predators were homogenized

whole in 0.5 ml mortar-and-pestle microcentrifuge

tubes in 100 ll of high salt extraction buffer (Aljan-

abi and Martinez 1997), supplemented with SDS to

2% and Proteinase K to 400 lg/ml. Following

overnight digestion at 60�C, DNA precipitates were

resuspended in 100 ll of 0.19 TE, pH 8.0. Polymer-

ase chain reaction (PCR) protocols utilized primers

designed by Harwood et al. (2007) for A. glycines

(Genbank Accession Number EF467229), N. varia-

bilis (EF523586), H. axyridis (EF192083) and

O. insidiosus (EF467230). Full molecular screening

protocols are described in detail by Harwood et al.

(2007). All predators were screened against the

primers of all three prey items and against

O. insidiosus. The screening against predator primer

pairs was done to ensure that DNA could be

successfully extracted from all specimens.

Data analysis

The number of adult and immature predators screen-

ing positive for prey DNA was compared using v2

analysis. The relationship between availability of

prey resources (monitored by destructive whole-plant

sampling) and the proportion of predators screening

positive was correlated following arcsine transforma-

tion of gut-content data. All data were analyzed using

Soybean aphid predation by adult and nymphal Orius 897
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Minitab� v. 14.1 (Minitab Inc., State College,

Pennsylvania, USA).

Results

Previous characterization of this molecular detection

system was undertaken by Harwood et al. (2007). In

all instances, primer pairs were specific to target prey

and elicited no amplification of DNA from 85 closely

related or non-target organisms common at this field

site. Similarly, previous research optimizing detec-

tion limits of prey DNA (Harwood et al. 2007)

revealed highly significant correlations between arc-

sine transformed percentages of predators screening

positive for prey DNA and time after feeding.

All field-collected predators were screened against

primers for O. insidiosus (F: ACACATTATTAGAA

AAGAAAGAGGA; R: TAAATAGAAATACGAAT

CCTAATG; Genbank Accession Number EF467230,

size 281 bp) to ensure successful extraction of DNA.

In all cases, 100% of predators screened positive, thus

validating the extraction procedures used during this

study.

Soybean aphid numbers increased exponentially

over time (Fig. 1a), although population densities were

low compared to 2005 (Harwood et al. 2007). Simi-

larly, the proportion of O. insidiosus screening positive

for soybean aphid DNA (Fig. 1b) increased over time,

but at a linear rate (adults: arcsine % positive =

7.65 + 2.05 Week number, r2 = 0.68, F1,7 = 12.45,

P = 0.012; nymphs: arcsine % positive = 14.5 +

3.70 Week number, r2 = 0.79, F1,4 = 11.57, P =

0.042) and there was no significant correlation between

aphid density and consumption of these prey in the field

(adults: r2 = 0.48, F1,7 = 5.65, P = 0.056; nymphs:

r2 = 0.51, F1,4 = 3.18, P = 0.173). However, signif-

icantly fewer adult (13.4%) compared to immature

(25.0%) O. insidiosus screened positive for soybean

aphid DNA (v2 = 4.226, df = 1, P = 0.040).

The density of N. variabilis on soybean plants

remained low throughout the season (Fig. 2a) but

significantly more adult O. insidiosus (21.7%) con-

tained N. variabilis DNA than the immatures (5.0%)

(v2 = 9.718, df = 1, P = 0.002) (Fig. 2b). Interest-

ingly, the feeding frequency of adult O. insidiosus

increased over time (arcsine % positive = 12.4 +

1.59 week number; r2 = 0.63, F1,7 = 10.09, P =

0.019) but, as with aphid consumption, there was no

comparable relationship between the presence of

N. variabilis DNA in O. insidiosus gut samples and

their availability in the field (r2 = 0.01, F1,7 = 0.08,

P = 0.793). The very low number of immature

O. insidiosus screening positive for soybean thrips

DNA prevented correlative analysis.

Coccinellid eggs were scarce throughout 2006,

with only 5 eggs collected from 640 destructively

sampled soybean plants. Despite this scarcity, we

screened O. insidiosus against H. axyridis primers to

indicate the presence or absence of these trophic
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Fig. 1 (a) Mean number (±SE) of Aphis glycines captured per

plant in 2006; (b) the percentage of adult (solid line) and

immature (dashed line) Orius insidiosus screening positive for

A. glycines DNA on these sampling dates
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linkages in the field. Interestingly, even though no

adult Orius screened positive, 2.5% of immatures

amplified H. axyridis DNA, indicating consumption

of intraguild predators in the field. Thus, the overall

foraging diets of different life stages of O. insidiosus

varied significantly (Fig. 3).

Therefore, all predators were probed simulta-

neously for all three prey items but only 1.9% of

adults and 2.5% of immature Orius contained more

than one prey item. A large proportion (66.9% of

adults and 60.0% of immatures) contained none of

these three prey items.

Discussion

Invasive species have a major impact on agricultural

commodities throughout the world, and since 2000 A.

glycines has become the most important insect pest of

soybeans in North America (Ragsdale et al. 2004;

Venette and Ragsdale 2004; Mignault et al. 2006).

Thus, there has been considerable focus on identify-

ing the role of natural enemies in suppression of these

herbivores (Ragsdale et al. 2004; Nielsen and Hajek

2005; Butler and O’Neil 2007a; Kaiser et al. 2007;

Donaldson et al. 2007). Although coccinellids
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line) and immature (dashed line) Orius insidiosus screening

positive for N. variabilis DNA on these sampling dates
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Fig. 3 Structure of Aphis glycines, Neohydatothrips variabilis,

Harmonia axyridis and (a) adult and (b) immature Orius
insidiosus food web in the soybean agroecosystem. The sizes

of arrows and value corresponds to the relative strength of the

pathway and the proportion of O. insidiosus screening positive

for prey DNA
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undoubtedly play an important role in A. glycines

population dynamics (Fox et al. 2004, 2005; Costa-

magna and Landis 2006; Costamagna et al. 2008),

molecular analysis has identified O. insidiosus as an

important natural enemy in some soybean food webs

(Harwood et al. 2007).

Our data indicate that trophic linkages between O.

insidiosus and A. glycines are strong (Fig. 3), espe-

cially early in the season when pest densities were

low. In addition to deciphering trophic connectedness

between natural enemy and pest populations, we

tested the hypothesis that foraging behaviour of adult

and immature generalist predators (O. insidiosus)

would differ. Indeed, predation pressure was not

consistent between life stages, with significantly

more immature O. insidiosus screening positive for

soybean aphid DNA. Given that predator communi-

ties in agroecosystems are dominated by non-adults,

this research emphasizes the need for comprehensive

examination of food web structure in the context of

all life stages. The pressure exerted on A. glycines by

O. insidiosus appears to be primarily attributable to

immature predators.

In contrast, significantly more adult O. insidiosus

screened positive for N. variabilis DNA. Despite very

low population densities (adult N. variabilis peaked

at just 1.3 individuals per plant), over 20% of adult

O. insidiosus had recently consumed these prey items

in the field. These proportions screening positive

were similar to data from 2005 (Harwood et al. 2007)

even though N. variabilis populations were signifi-

cantly lower, thereby exposing predators to very few

prey. Given the scarcity of these food resources in

2006, and the high rate of predation upon them, it is

likely that some degree of preference for non-target

prey was exhibited. Therefore, although there was no

relationship between prey availability and consump-

tion in the field, preferential foraging may have led to

some degree of prey (thrips) depletion. Despite this

unusually high predation on such a scarce prey item,

almost 70% of adult O. insidiosus did not contain

either A. glycines or N. variabilis prey, species that

constituted the majority of food resources in this

agroecosystem (H.J.S.Y., unpublished data), leading

to the likelihood for resource supplementation

through plant feeding, a trait common in these

hemipteran omnivores (Lundgren et al. 2008). Even

with plant feeding, it can be assumed that, in common

with other predators (e.g., Anderson 1974; Bilde and

Toft 1998), O. insidiosus were experiencing some

degree of food limitation in the field.

Despite their nutritive quality (Butler and O’Neil

2007b), N. variabilis DNA was found in only 5% of

immature Orius. In laboratory trials, access to highly

mobile prey (e.g., thrips) is artificially increased

within the experimental arena; in the field, this

variation in foraging activity may reflect behavioural

differences and the inability of immature O. insidiosus

to catch highly active prey. Therefore, when prey is in

limiting supply, such as during 2006, growth and

development will probably be reduced given that 60%

of immature predators contained no recognizable

prey. Although trophic linkages may be missed (only

three prey items were examined), this is unlikely

given the dominance of these food items in the field.

The final trophic connection examined was

between O. insidiosus and H. axyridis. No adult

O. insidiosus screened positive for DNA of this

intraguild predator, but 2.5% of immature specimens

had consumed H. axyridis. Although such interac-

tions occur in the laboratory, it is thought that these

linkages are unlikely to significantly impact biolog-

ical control in the field. The small number of

immature hemipterans testing positive, coupled with

the very fast breakdown of H. axyridis DNA in

O. insidiosus (Harwood et al. 2007), indicate that

some disruptive effects may occur in the field.

However, prey was extremely scarce in 2006, with

only 5 coccinellid eggs observed. Further research is

required to examine this trophic pathway and test the

hypothesis that despite low levels of predation, late

season suppression of A. glycines by H. axyridis is

unaffected by these infrequent foraging events.

It is widely recognized that dietary diversification

can promote growth and development of generalist

predator populations (Bilde and Toft 2000; Fawki and

Toft 2005). While alternative prey help maintain

predator populations when pests are absent or scarce

(Murdoch et al. 1985), they may also contribute to

the balancing of amino acid (Greenstone 1989)

and protein/lipid (Mayntz et al. 2005) intake.

This research demonstrated that, if A. glycines and

N. variabilis constituted the primary prey resources

available, O. insidiosus were food-limited with only

1.9% of adults and 2.5% of immature containing

more than one detectable prey. During these periods,

when prey is in short supply, it can therefore be

predicted that these predator populations may be
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reduced through mortality, competitive interactions

and/or emigration.

Our molecular elucidation of trophic connections

has enabled accurate delineation of an important food

web with regard to suppression of a key invasive pest

in North America. Although levels of predation upon

A. glycines were low, early-season foraging was

evident, as previously observed in this (Harwood

et al. 2007), and other (Sunderland et al. 1987;

Harwood et al. 2004), food webs. The phenomenon of

early-season suppression has been the subject of

intense study because of the effectiveness of gener-

alist predators at this time of year (Chiverton 1986;

Chang and Kareiva 1999). This study demonstrated

that O. insidiosus can impact A. glycines early in the

season, and that immature stages may be particularly

important in biological control. However, the high

degree of predation upon scarce alternative food

items implies possible disruption of this predator-pest

linkage. Furthermore, given that predator biodiversity

positively affects herbivore suppression (Snyder et al.

2006, 2008), additional research is required to

decipher all interactions within the soybean food

web, and formulate a framework for management of

A. glycines by the natural enemy complex. Not only

do other trophic pathways need examining, but the

identification of trophic pathways between regions

should also be considered given the variable effects

and predator assemblages reported across sites.

Finally, despite limited predation upon H. axyridis

by immature O. insidiosus, possibly consumed due to

hunger, the A. glycines ? H. axyridis pathways are

probably unaffected by these intraguild interactions.

Nevertheless, the role of late-season foraging by

coccinellid (and other) biocontrol agents needs fur-

ther examination for season-long control of A.

glycines to be realized.
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