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Abstract Successful establishment and spread of

biological invaders may be promoted by the

absence of population-regulating enemies such

as pathogens, parasites or predators. This may

come about when introduced taxa are missing

enemies from their native habitats, or through

immunity to enemies within invaded habitats.

Here we provide field evidence that trematode

parasites are absent in a highly invasive morph of

the gastropod Melanoides tuberculata in Lake

Malawi, and that the invasive morph is resistant

to indigenous trematodes that castrate and induce

gigantism in native M. tuberculata. Since helminth

infections can strongly influence host population

abundances in other host-parasite systems, this

enemy release may have provided an advantage

to the invasive morph in terms of reproductive

capacity and survivorship.

Keywords Biological invasion � Enemy release �
Non-indigenous species � Exotic species �
Fish parasites � African lakes � Thiaridae

Introduction

Natural enemies may play a major role in

determining success of colonisations of new hab-

itat by invasive lineages. In particular it has been

found that colonisers can benefit considerably

from the release of life history, ecological and

fitness constraints associated with parasitic infec-

tion. Release from the regulatory role of parasites

may take two forms. Firstly, invaders may benefit

by release from parasites that occur within native

habitats (Keane and Crawley 2002; Torchin et al.

2003). This is because parasites may not have

migrated with host populations, or because par-

asites are unable to survive in new habitats due to

a lack of suitable intermediate or final hosts.

Secondly, invaders may benefit through immunity

to parasites that are prevalent within the invaded

community. Such immunity may occur because

parasites are often locally adapted to their hosts

(Ebert 1994; 1998), and as a consequence are

unable to infect invading taxa (Prenter et al. 2004;

Fromme and Dybdahl 2006).

The mollusc-trematode system has been

frequently used as a model for investigating

the benefits, costs and mechanisms of co-evolution

between parasites and hosts (Sorensen and

Minchella 2001; Lively et al. 2004). Trematodes

affect host molluscs through changes in survivor-

ship, fecundity, growth rates, behaviour and

morphology (Sorensen and Minchella 2001),
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potentially with considerable influences on

population abundance and competitive interac-

tions (Byers and Goldwasser 2001). Many trema-

todes also possess strong selectivity for gastropod

intermediate host species (Torchin et al. 2005),

suggesting trematode communities have co-

evolved with hosts and that introduced species can

be resistant to indigenous parasites. Moreover,

adaptations of trematodes to geographically local-

ised conspecific host populations have also been

shown for some gastropod species, implying mol-

lusc-trematode co-evolution over short evolution-

ary timescales. This has been shown most clearly in

cross-inoculation experiments of the freshwater

snail Potamopyrgus antipodarum with Microphal-

lus trematodes. Several studies have revealed

higher infection rates in snail populations from

sympatric parasite source sites when compared to

snail populations from allopatric sites (Lively and

Dybdahl 2000; Lively et al. 2004).

Many studies have demonstrated the importance

of local adaptation by parasites for our understand-

ing of ecological and evolutionary dynamics. In

particular, with regard to biological invasions,

investigations of parasite adaptations and host

invasion success have found that parasites can be

influential in determining outcomes of competition

between indigenous and invasive lineages (Mac-

Neil et al. 2003; Prenter et al. 2004). In this study we

report field evidence that a newly colonising lineage

of the parthenogenetic freshwater gastropod Mel-

anoides tuberculata (Müller) in Lake Malawi is free

from trematode infection, including opisthorchid

trematodes that sterilise and induce gigantism

within an indigenous M. tuberculata population.

This indicates that the introduced population is not

only missing parasites from its original range, but

also that it is resistant to trematodes within the

invaded community. This enemy release may have

afforded a competitive advantage over indigenous

taxa, and contributed to rapid population expan-

sion of this highly invasive morph.

Methods

Study organisms

Melanoides tuberculata is a viviparous freshwater

snail common to tropical environments across

Asia and Africa. It is highly invasive, and has

colonised many non-native subtropical and tropi-

cal locations during the last century including the

Americas and Australasia (e.g. Samadi et al. 1997).

This taxon typically undergoes clonal reproduction

and is a direct developer (Heller and Farstay 1990;

Samadi et al. 1997). Within Lake Malawi, two

lineages of M. tuberculata are present on littoral

soft-sediments. One is indigenous (Lake Malawi

Native—LMN) and present throughout Lake

Malawi and several peripheral water bodies. By

contrast molecular phylogenetic and museum col-

lection evidence strongly suggests that the other

(Lake Malawi Introduced—LMI) has been intro-

duced during the last 25 years from South-East

Asia (Genner et al. 2004, 2007). This invasive

morph is most abundant in the south of Lake

Malawi, Lake Malombe and the Shire River

(Genner et al. 2004), but is spreading around the

lake; live individuals have been collected in June

2005 at Unaka lagoon (12�23¢ S, 34�05¢ E) indicate

it is ranging north. Melanoides tuberculata is often

an intermediate host of trematode flukes, and

prevalence within populations can reach as high

87.5% of individuals (Ben-Ami and Heller 2005).

Field survey: abundance of gastropods at Cape

Maclear

To compare abundance of the invasive and indig-

enous lineages of M. tuberculata we surveyed the

gastropod communities at 17 sites around Cape

Maclear (Fig. 1) during August 2004. Using

snorkel, three replicates of the gastropod fauna

were collected from each site from a depth of 4 m.

To collect gastropods a hand net (stretched mesh

2.25 mm, square gape 20 cm) was dredged through

the top 3–5 cm of sediment for 50 cm (Genner and

Michel 2003). Sediment collected inside the net

was shaken through the mesh and residual material

was sealed in a labelled ziplock bag. All molluscs

were identified to species, and M. tuberculata

individuals were identified as either LMI or LMN.

Trematode infection and fecundity of

Melanoides tuberculata

We examined 146 specimens of LMN and 139

LMI collected from Cape Maclear (14�01¢51 S,
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123



34�49¢47 E; Site 5 Fig. 1; Table 1) during 2005

and 137 specimens of LMN collected at Nkhata

Bay (~11�36¢ S, 34�18¢ E) during 2002. Each

individual was weighed (ethanol wet mass of shell

and soft tissue) and the height of each shell was

measured using digital callipers. The shell of each
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Fig. 1 (a) Lake Malawi;
(b) Cape Maclear with
20 m depth contour lines
and locations of
seventeen sites where
gastropod abundance was
surveyed

Table 1 Mean abundance of gastropods (individuals per m2) at each sampling site at Cape Maclear (mean of three samples
per site)

Sampling
site

Latitude Longitude Melanoides
tuberculata
(LMI)

Melanoides
tuberculata
(LMN)

Melanoides
polymorpha

Bulinus
nyassanus

Bellamya
capillata

Lanistes
nyassanus

Gabbiella
stanleyi

1 14�02¢19¢¢ S 34�49¢30¢¢ E 3.3 16.7 340.0 6.7 – – –
2 14�02¢13¢¢ S 34�49¢34¢¢ E – 30.0 520.0 20.0 3.3 – –
3 14�02¢03¢¢ S 34�49¢34¢¢ E – 30.0 480.0 13.3 3.3 – –
4 14�01¢55¢¢ S 34�49¢35¢¢ E 203.3 20.0 160.0 16.7 3.3 – –
5 14�01¢51¢¢ S 34�49¢47¢¢ E 10.0 103.3 546.7 70.0 – – –
6 14�01¢46¢¢ S 34�49¢47¢¢ E 293.3 76.7 30.0 10.0 6.7 – –
7 14�01¢42¢¢ S 34�50¢07¢¢ E 136.7 103.3 310.0 110.0 10.0 3.3 –
8 14�01¢35¢¢ S 34�50¢18¢¢ E 883.3 50.0 176.7 26.7 13.3 3.3 3.3
9 14�01¢24¢¢ S 34�50¢28¢¢ E 4020.0 83.3 – 6.7 – – 3.3

10 14�01¢18¢¢ S 34�50¢37¢¢ E 3530.0 16.7 6.7 23.3 – – –
11 14�01¢07¢¢ S 34�50¢47¢¢ E 520.0 76.7 1043.3 3.3 – – 3.3
12 14�00¢59¢¢ S 34�50¢50¢¢ E 5140.0 126.7 126.7 13.3 6.7 3.3 –
13 14�01¢20¢¢ S 34�49¢25¢¢ E 496.7 56.7 13.3 26.7 – – 3.3
14 14�01¢07¢¢ S 34�49¢10¢¢ E 20.0 – 10.0 – – – –
15 13�59¢46¢¢ S 34�50¢15¢¢ E 20.0 10.0 226.7 6.7 10.0 – –
16 14�00¢22¢¢ S 34�51¢00¢¢ E 23.3 20.0 110.0 – 3.3 – –
17 14�00¢49¢¢ S 34�50¢59¢¢ E 193.3 90.0 256.7 – – – –
Mean abundance over all sites 911.4 53.5 256.3 20.8 3.5 0.6 0.8
95% confidence interval 773.9 18.6 129.5 13.5 2.1 0.6 0.7

– indicates absence at the sampling site
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individual was then broken enabling the individ-

ual to be sexed and embryos in brood pouches

counted under 10 · magnification. The presence

or absence of digenean trematode rediae within

gonad and digestive gland tissue was determined

by examining tissue compressed between two

slides at 40·–100· magnification.

Trematode identification

Identification of freshwater trematode cercariae

and rediae can be difficult using morphological

traits alone. To identify the parasite we adopted a

DNA barcoding approach. First we amplified a

283 bp section of ITS1 from two infected M.

tuberculata individuals using the primers ITS HC2

(ATATGCTTAAGTTCAGCGGG) and ITS

LC2 (CGAGTATCGATGAAGAACGCAGC)

(Navajas et al. 1992). Polymerase chain reaction

(PCR) was performed in 25-ll reactions including

1 ll genomic DNA, 2.5 ll 10· PCR buffer,

2.5 ll dNTPs (1 mm); 1 ll each primer (10 mm

stock), 1 ll MgCl2 (25 mm stock), 0.5 units

SuperTaq (Promega), 1ll bovine serum albumin

(20 lg/ml) and 14.9 ll double-distilled water.

PCR conditions were as follows: 1 min at 95�C;

then 34 cycles of 95�C for 30 s, 43�C for 30 s and

72�C for 1 min, followed by 72�C for 5 min. PCR

products were purified, and one clone was

sequenced from each using the cloning and

sequencing procedure described in Erpenbeck

et al. (2002).

The two generated sequences of the unidenti-

fied parasites were 283 base-pairs in length, of

which two sites were polymorphic. We employed

nucleotide-nucleotide BLAST to search Genbank

for the 100 closest sequences. All were from

digenean trematodes. These data were aligned

against an outgroup sequence from the more

distantly related trematode Schistosoma mansoni

and our two unidentified sequences, resulting in a

final alignment of 74 sequences of 332 base pairs

in length, including 34 genera and at least 55

species. Phylogenetic trees were reconstructed

using maximum likelihood in PhyML (Guindon

and Gascuel 2003). Prior to analyses, MrModeltest

1.1b http://www.ebc.uu.se/systzoo/staff/nylander.

html) was used to determine the best-fitting

model of sequence evolution, the GTR + G + I

model was selected. Branch support was

calculated as the percentage of 1000 bootstrap

replicates.

Results

Field survey: Abundance of gastropods at

Cape Maclear

Melanoides dominated the gastropod community

at all of the seventeen survey sites. M. tuberculata

morph LMI comprised on average 73.1% of

gastropod communities with mean abundance

911.4 m2, M. tuberculata morph LMN comprised

4.3% with mean abundance 53.5 m2 while

M. polymorpha (Smith) comprised 20.6% with

mean abundance 256.3 m2. The remaining 2.0%

of the communities was made up of Bellamya

capillata (Frauenfeld), Bulinus nyassanus (Smith),

Gabbiella stanleyi (Smith) and Lanistes nyassanus

Dohrn (Table 1).

Trematode infection and fecundity of

Melanoides tuberculata

Individuals from the introduced morph LMI

possessed no trematode rediae, while in the

indigenous morph LMN trematode prevalence

was significantly associated with body size

(Fig. 2). Parasitised individuals of morph LMN

were larger in shell height (Cape Maclear,

t = –8.07, df = 144, P < 0.001; Nkhata Bay,

t = –16.07, df = 135, P < 0.001) and weight (Cape

Maclear, t = –11.14, df = 144, P < 0.001; Nkhata

Bay, t = –13.47, df = 135, P < 0.001). All individ-

uals over 26.12 mm and 25.48 mm from Cape

Maclear and Nkhata Bay, respectively, were

parasitised (Figs. 2, 3). Pooling individuals from

both sites for the height range where non-parasi-

tised and parasitised individuals overlap (10.43–

26.12 mm), parasitised individuals of morph LMN

were heavier per unit shell height than non-

parasitised individuals (Homogeneity of Slopes

Test on logex transformed data: F1,181 = 6.342,

P = 0.013) (Fig. 4). Despite all sampled individ-

uals being female, only 3.7% (2 in 54) and 3.0%

(1 in 33) of parasitised LMN individuals pos-

sessed embryos at Nkhata Bay and Cape Maclear,

44 M. J. Genner et al.
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respectively. Non-parasitised individuals of

morph LMN had significant positive relationships

between shell height and embryo number (Cape

Maclear, F1,111 = 106.79, R2 = 0.49, P < 0.001;

Nkhata Bay, F1,81 = 102.62, R2 = 0.55,

P < 0.001), and shell weight and embryo number

(Cape Maclear, F1,111 = 98.089, R2 = 0.46,

P < 0.001; Nkhata Bay, F1,81 = 86.469, R2 = 0.51,

P < 0.001) (Fig. 2). Similarly in morph LMI there

was a significant positive relationship between

shell height and embryo number (F1,137 = 148.77,

R2 = 0.52, P < 0.001), and shell weight and

embryo number (F1,137 = 115.67, R2 = 0.45,

P < 0.001) (Fig. 2).

Trematode identification

Reconstruction of the molecular phylogeny using

the nuclear ITS sequences placed the Lake

Malawi digeneans in a clade comprised of Opis-

thorchiata, and revealed them as a sister lineage

to Haplorchis pumilio (Looss), a member of the

Heterophyidae (Fig. 5).

Discussion

Host-parasite co-evolution and competition

At Cape Maclear M. tuberculata morph LMI was

numerically dominant to the indigenous morph

LMN in field samples. This high abundance,

combined with the expanding distribution around

Lake Malawi, demonstrates that this is a highly

invasive lineage. The absence of trematode

parasites in morph LMI supports previous phylo-

genetic evidence that it is new coloniser (Genner

et al. 2004). It also suggests that it is missing

parasites from its original distributional range,

South-East Asia, where trematode infection is

commonplace (e.g. Lo and Lee 1996). Trematode

parasites have also been found to be absent in

other introduced M. tuberculata populations, for

example the extensively studied introduced

M. tuberculata morphs on the Caribbean island

of Martinique, (Samadi et al. 1997). Thus,

absence of trematode infection may be a common

feature of invasive gastropods, however there is

also evidence to suggest that M. tuberculata has
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promoted the establishment of heterophyid trem-

atodes on the central American mainland (Scholz

et al. 2001).

It has been suggested that non-indigenous taxa

should be more susceptible to native enemies

than indigenous taxa in the invaded community.

This is because invaders may experience bottle-

necks that reduce the diversity of genes that

promote disease resistance, or because invaders

are naı̈ve to native enemies (Colautti et al. 2004).

In contrast to these suggestions, our results

suggest the invasive morph LMI does not have

increased susceptibility to the native parasites.

Instead, the absence of trematode parasites in

LMI, but prevalence in the indigenous morph

LMN, implies that LMI is resistant. Similar

resistance of introduced species or genotypes to

locally adapted native range trematodes has been

recorded in other gastropod-trematode systems

(Torchin et al. 2005; Fromme and Dybdahl 2006).

Parasites regulate host population abundance

in a broad range of host-parasite systems (Hudson

et al. 1998; Albon et al. 2002; Newey and Thir-

good 2004), including mollusc-trematode systems

(Dillon 2000; Fredensborg et al. 2005). Thus,

immunity of introduced morph LMI may provide

the lineage with an advantage over the indigenous

LMN through greater reproductive output and

longevity. Our data show they share habitats, but

without abundance data prior to invasion by LMI

it is unclear if the LMN population has been

significantly affected. Moreover, other factors are

also likely to influence competitive outcomes, for

example growth rates, body sizes, food utilisation

efficiency and interactions with other gastropods

including M. polymorpha. Field surveys, labora-

tory assessments of growth and reproduction, and

studies of competitive interactions in controlled

environments will help to clarify the role of

parasites in determining population dynamics of

these lineages.

Trematode identification

Phylogenetic analyses of the sequenced Lake

Malawi trematode rediae placed them within a

sister lineage to Haplorchis pumilio, a member of

the Heterophyidae. It is likely that they are either

closely related to, or conspecific with, H. pumilio.

Morphological analyses of adult stages are

required to confirm identity. Further study may

also reveal a more diverse trematode community

within Melanoides from Lake Malawi. Neverthe-

less, this identification is consistent with the

known biogeographical distributions and host

use of H. pumilio. This species has a wide

distribution ranging through Africa (Abd

el-Kader Saad and Abed 1995) and Asia (Wang

et al. 2002), and has recently been introduced into

Neotropical America (Scholz et al. 2001). It has a

three-stage life history, and has been reported to

use thiarid gastropods, including M. tuberculata,

as first intermediate hosts (Umadevi and Madhavi

1997; Wang et al. 2002), and cichlid fishes as

second intermediate hosts (Sommerville 1982;

Mahdy and Shaheed 2001). Final hosts include

piscivorous birds and mammals (Dzikowski et al.

2004). Cichlid fishes are abundant in Lake Malawi

and plausible final hosts are cichlid predators

including white-breasted cormorants [Phalacroc-

orax carbo (L.)] and spotted-neck otters (Lutra

maculicollis Lichtenstein).

Parasite-induced gigantism

Our results showed that the incidence of parasitism

increased with shell size; no LMN specimens with a

shell height larger than 27 mm were free from

infection and all were sterile. Parasitised snails
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Fig. 5 Maximum likelihood phylogram of unique ITS
sequences closest to the Lake Malawi digeneans revealed
from a BLAST nucleotide-nucleotide search on Genbank.
Numbers on branches indicate ML percentage bootstrap
support, only branches with >50% support are labelled.

The Lake Malawi digenean sequences are placed within
the Opisthorchiata and form a well-supported clade with
Haplorchis pumilio. The tree was rooted using a sequence
of Schistosoma mansoni
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were significantly heavier than non-parasitised

individuals of equivalent size (Fig. 4), implying

that increase is size is not exclusively a conse-

quence of individuals being older and thus having

longer exposure to trematode miracidia. Instead,

this evidence suggests parasite-induced growth,

which has been previously suggested as a conse-

quence of heterophyid infection of M. tuberculata

(Minchella 1985). Gigantism is thought to take

place following castration as a consequence of the

diversion of resources used for reproduction into

growth (Mouritsen and Jensen 1994; Dillon 2000).

This strategy appears to benefit parasites by

increasing reproductive output and thus transmis-

sion probability to the next host (Ebert et al. 2004).

Gigantism may promote this by increasing host

tissue mass, but it may also increase the longevity

of the host lifespan. In freshwater snails larger

body sizes and thicker shells can render individuals

less vulnerable to predation (e.g. Seeley 1986).

This also seems to be the case in Lake Malawi

where the main predators of gastropods are

believed to be specialised molluscivorous fish.

One of the most common molluscivores is the

cichlid Trematocranus placodon (Regan), but even

large individuals of this species do not consume

Melanoides larger than 14.6 mm in height (Evers

et al. 2006). An alternative perspective on the

advantage of gigantism is that it represents a host

adaptation selected to promote survival of the

host itself; the longer hosts live, the more likely

they are to recover from parasite infection and

resume reproductive activity (Ballabeni 1995).

However this seems unlikely in this system. No

parasite-free individuals were present within the

largest size classes of LMN (>28 mm shell height;

Fig. 3) suggesting hosts never recover from

infections.

Conclusions

Here we provided field evidence that a recent

invader is resistant to indigenous parasites. This

provides the basis for experimental work

investigating how parasites mediate growth rates,

fecundity and possibly competition in this system.

Studies examining the parasite burden of new col-

onisers suggest immunity of successful invaders

against indigenous parasites may be widespread.

For example Torchin et al. (2005) and Krakau

et al. (2006) have found the parasite burden of

introduced molluscs to be considerably lower

than sympatric native molluscs in marine

environments. Thus, invasive genotypes may be

successful due to widespread indigenous host-

parasite adaptation. This fits comfortably with

evidence that the most successful invaders are

also the most phylogenetically distinct from

native taxa (Strauss et al. 2006). However, advan-

tages for parasite-free invaders may not be

permanent, as evidence suggests trematode

adaptation for new invasive hosts can arise

rapidly (Gérard and Le Lannic 2003).
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