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Abstract

The rusty crayfish, Orconectes rusticus, is one of America’s best-known non-indigenous crayfishes, having
been identified as extirpating native crayfishes and disrupting local aquatic ecosystems. Over the past
40–50 years, rusty crayfish have spread from its historical range in the Ohio River drainage (U.S.A.), to
waters throughout much of Illinois, Michigan, Wisconsin, and Minnesota and parts of 11 other states,
Ontario (Canada) and the Laurentian Great Lakes. Using a comprehensive dataset based on all known
historical records and extensive present-day surveys (n=2,775) this study reports on the invasion history of
rusty crayfish, with observations on concomitant declines of native crayfishes in Wisconsin over the past
130 years (1870–2004). We found that rusty crayfish occurrences have increased from 7% of all crayfish
records collected during the first 20 years of their invasion (1965–1984) to 36% of all records during the last
20 years, and that rusty crayfish have replaced the northern clearwater crayfish (O. propinquus) and virile
crayfish (O. virilis) as the most dominant member of the contemporary crayfish fauna. In light of our results
we discuss the introduction, establishment and integration phases of the rusty crayfish invasion and provide
preliminary predictions of the potential distribution of rusty crayfish in Wisconsin lakes based on critical
environmental requirements.

Introduction

Biological invasions are widely recognized as a
significant component of human-caused environ-
mental change and primary threat to native bio-
diversity (Elton 1958). The negative impacts of
species invasions, together with the consequences
of environmental degradation, are particularly
evident in North American freshwater ecosystems
(Richter et al. 1997), whose native faunas are
experiencing extinction rates that exceed their
terrestrial counterparts (Ricciardi and Rasmussen

1999). This ominous trend is particularly evident
for freshwater fishes, mussels, and crayfishes
(Master 1990).

Crayfishes are highly diverse in North America
(exceeding 333 species and comprising 75% of
the global fauna), though are seriously threa-
tened by habitat alteration (Taylor et al. 1996)
and non-indigenous crayfishes (Lodge et al.
2000a). Non-indigenous crayfish have been intro-
duced throughout North America via aquacul-
ture, aquarium and pond trades, biological
supply trade, and the live bait trade (Lodge et al.
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2000b), and many species have shown high rates
of spread and integration into streams, rivers and
lakes. In fact, competition, predation and hybrid-
ization with crayfish invaders have been identi-
fied as a primary threat for the majority (>50%)
of declining North American crayfishes (Lodge
et al. 2000a; ABI 2001; Perry et al. 2001).

Rusty crayfish Orconectes rusticus (Girard) has
proven to be a formidable invader, spreading
over the last 40–50 years from its historical range
in the Ohio River drainage, to waters throughout
much of Illinois, Michigan, Wisconsin, and Min-
nesota and parts of 11 other states, Ontario and
the Laurentian Great Lakes (Hobbs et al. 1989;
Lodge et al. 2000a). The invasion dynamics of
rusty crayfish and its ecological impacts have
been most intensively studied in lakes and
streams of northern Wisconsin and the Upper
Peninsula of Michigan (e.g., Capelli 1982; Capelli
and Magnuson 1983; Lodge et al. 1986; Olsen
et al. 1991; Perry et al. 2002; Wilson 2002; Wil-
son and Hrabik 2006; McCarthy et al. 2006). In
these invaded systems, rusty crayfish have out-
competed their native congeners, leading to pop-
ulation declines proportional to the population
growth of rusty crayfish (Lodge et al. 1986). In a
recent study, Wilson et al. (2004) reported on the
invasion dynamics of rusty crayfish in Trout
Lake, Wisconsin, where they were first detected
in 1979 (Lodge et al. 1986) and over the past
19 years have spread throughout the lake and
impacted nearly all components of the littoral-
zone food web. This study provided the unique
opportunity to observe the invasion sequence of
rusty crayfish from its initial point of introduc-
tion to the eventual occupation of the entire lake.
However, while the ecology of rusty crayfish has
been well studied in Trout Lake and surrounding
lakes in northern Wisconsin and Michigan, in
large part because of the North Temperate Lakes
Long-Term Ecological Research program (NTL-
LTER: Magnuson and Kratz 1999), little is
known about their invasion history at broader
temporal and spatial scales. Such information is
needed for conservation planning and prioritiza-
tion, and would provide the basis for forecasting
future distributions of rusty crayfish and estab-
lishing proactive management strategies aimed at
reducing further spread and ecological impacts.

The present study reports on the invasion his-
tory of rusty crayfish, with observations on con-
comitant declines of native crayfishes in the state
of Wisconsin over the past 130 years (1870–
2004). Using a comprehensive dataset based on
all known historical records and extensive pres-
ent-day surveys we address the following ques-
tions: (1) What are the spatial and temporal
patterns of rusty crayfish invasion in Wisconsin?;
(2) What fraction of the present crayfish fauna
are comprised of rusty crayfish versus native
crayfishes?; and (3) What is the potential distri-
bution of rusty crayfish in Wisconsin lakes based
on a preliminary analysis of critical environmen-
tal requirements?

Methods

We assembled a comprehensive dataset of cray-
fish occurrences in Wisconsin, U.S.A. (total area
of state: 169,652 km2) with the primary purpose
of providing a data source for improving crayfish
management and conservation. Wisconsin is
home to 6 native species, including Orconectes
virilis, O. propinquus, O. immunis, Cambarus diog-
enes, Procambarus acutus and P. gracilis (Creaser
1932; Hobbs and Jass 1988), and the non-indige-
nous species Orconectes rusticus. Note that
O. propinquus is presumed native to southern and
eastern Wisconsin (Creaser 1932), and has subse-
quently invaded the northern parts of the state.
The dataset contains 2,775 crayfish locality re-
cords collected from 1870 to 2004 throughout the
entire state, including tributaries of the Upper
Mississippi River Basin, Lake Superior Basin and
Lake Michigan Basin.

Records include incidence, identity, and collec-
tion information for the complete holdings of
major regional museum collections, numerous
smaller holdings, records from peer-reviewed and
gray literature sources, university theses and dis-
sertations, and recent field surveys by the au-
thors. Major data sources included: Hobbs and
Jass (1988), Creaser (1932), Capelli (1975), Mag-
nuson et al. (1975), Lang (1977), Sheffy (1978),
Lorman (1980), Capelli and Magnuson (1983),
Lodge and Hill (1994), National Park Service
(unpublished data), Jass (2001), and Wisconsin
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Department of Natural Resources (DNR) (data
provided by David Lodge and colleagues, the
North-Temperate Lakes-Long Term Ecological
Research Program (NTL-LTER), unpublished
crayfish DNR survey data, personal communica-
tion with DNR staff). Notably, 126 records of
rusty crayfish from the DNR were obtained from
an invasive species survey that included only rus-
ty crayfish records.

Present-day records were the result of extensive
field sampling in 2004 across the entire state of
Wisconsin by the authors McCarthy and Fetzer
(n=143 stream segments and lakes), and the
Wisconsin DNR (n=108 stream segments and
lakes). Sampling locations were primarily in the
vicinity of boat launches or road crossings for
accessibility reasons, which will tend to minimize
the probability of false absences for rusty cray-
fish because these are principle areas of human
introductions, but at the same time, could under-
estimate the occurrences of native species. The
authors used modified minnow traps (entrance
holes ca. 5 cm diameter) baited with beef liver or
sardines that were set in a variety of bottom
types in lakes, streams and rivers. At these sites,
5–10 traps were set at a depth range of 0.25–
1.0 m in streams and 1.0–2.0 m in lakes for
20–24 h. Streams were sampled using a combina-
tion of trapping, dip netting and hand collection
techniques, and lakes were sampled using two
transects of 5 minnow traps each. Temperature
(�C), dissolved oxygen (mg/l) and conductivity
(ls/cm) measurements were taken using YSI
instrumentation, local habitat characteristics were
recorded for each site, and water samples were
taken to measure total nitrogen, total phospho-
rous and major cation concentrations. DNR col-
lected crayfish using a combination of minnow
trapping and hand collection (38% of sampling
sites), mini-fyke nets (7%), and electro-shocking
(55%). Crayfish collected from both surveys were
preserved in the field using 95% ethanol and la-
ter identified by the authors at the University of
Wisconsin-Madison Center for Limnology.

All crayfish records were geo-referenced in a
Geographic Information System (ArcGIS, Envi-
ronmental Systems Research Institute, v. 8.3).
Sporadic occurrence records preclude us from
examining yearly changes in rusty crayfish distri-
butions over time, but based on the timing of

major collection events we were able to explore
the invasion sequence by partitioning the dataset
into 3 time periods: (1) pre-invasion years (1870–
1964), (2) early post-invasion years (1965–1984:
20 years), and (3) extant years (1985–2004:
20 years).

Results

Rusty crayfish are now broadly distributed
across the state of Wisconsin. They have been re-
corded 386 times from streams, rivers or lakes,
and comprise 17% of all crayfish records col-
lected since its first sighting in 1965 (Figure 1a).
Extant distribution of rusty crayfish includes 36
of 42 sub-watersheds (86% of watersheds), where
the highest frequency of occurrence (controlling
for the total number of records) is in Wisconsin’s
Northern Highlands Lake-District (Figure 1b).
The proportion of records containing rusty cray-
fish has increased five-fold in recent years from
7% of sites between 1965 and 1984 (130 out of
1,776 records) to 36% of sites (130 out of 366 re-
cords, excluding the 126 sites from the invasive
species survey mentioned previously) during the
last 20 years (Figure 2). Interestingly, rusty cray-
fish appear to have invaded lakes (49% of the re-
cords) at higher frequencies than expectations
based on sampling effort (19% of all records
since 1965).

The nature of our dataset (i.e., species collected
sporadically over space and time) precludes us
from being able to make robust statements
regarding distributional declines in native crayf-
ishes over time. However, substantial changes in
relative proportion of native crayfish records sug-
gest that there have been a major shift in species
dominance, most notably for O. virilis. Before
rusty crayfish invasion (pre-1965), O. virilis com-
prised 62% of the records, whereas 20 years after
the invasion (1965–1984) and during the past
20 years (1985–2004) they represented 54% and
34% of the records, respectively (Figure 2). These
findings agree with Lodge et al. (2000a) who re-
ported that of the 107 lakes and 50 stream
reaches surveyed in northern Wisconsin and the
Upper Peninsula of Michigan where O. virilis was
the only common crayfish in the first decades of
this century (Creaser 1932) – O. virilis now occurs
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in only 44% and 38% of the lakes and streams,
respectively. The remaining native species that
were less frequently collected in historical sur-
veys showed similar proportional declines in
their relative occurrences; with the exception of
O. propinquus.

Based on simple patterns of watershed co-
occurrence, rusty crayfish showed significant
spatial overlap with all native species in the fol-
lowing decreasing order: Orconectes virilis (36 of
42 watersheds, 86%); O. propinquus (36 of 42
watersheds, 86%); Cambarus diogenes (27 of 30
watersheds, 90%); Procambarus acutus (15 of 16
watersheds, 94%); O. immunis (11 of 12 water-
sheds, 92%); andP. gracilis (3 of 3 watersheds,
100%). This result indicates that the potential
for the negative interactions and possible
hybridization with native crayfish species is high
(Perry et al. 2002). Moreover, because of the
large spatial scale of this study, our analysis
likely under-estimates the overall geographic dis-
tribution of both rusty crayfish and native
species.

Discussion

Rusty crayfish has successfully invaded the entire
state of Wisconsin and now constitutes a signifi-
cant component of the crayfish fauna. Long-term
occurrence records from 1870 to 2004 show that
(1) rusty crayfish occurrences have increased
from 7% of all crayfish records collected during
the first 20 years of their invasion (1965–1984) to
36% of all records during the last 20 years, and
(2) rusty crayfish have replaced the northern
clearwater crayfish (O. propinquus) and virile
crayfish (O. virilis) as the most dominant member
of the contemporary crayfish fauna. A rich body
of literature from research conducted in northern
Wisconsin and Michigan provide strong insight
into the introduction, establishment and integra-
tion phases of the rusty crayfish invasion, and
below we briefly discuss each of these in turn.

Vectors of rusty crayfish introduction include
bait bucket discharge from recreational anglers
(Ludwig and Leitch 1996) and intentional re-
leases by lake-users for nuisance weed control

Figure 1. (a) Occurrence records of rusty crayfish (black circles) and all other native crayfish species (grey circles) in Wisconsin col-

lected between 1870 and 2004 (n=2,775). (b) Frequency of rusty crayfish collections (expressed as a percentage of the total number

of crayfish records) by sub-watersheds (8-digit hydrologic units: http://water.usgs.gov/). Top inset illustrates the native (light grey)

and non-native (dark grey) distributions of rusty crayfish in the United States, and the state of Wisconsin is indicated by the arrow

(source: http://nas.er.usgs.gov/).
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(Magnuson et al. 1975) and commercial crayfish
retailers (Gunderson 1999). Support for these
mechanisms comes from Capelli and Magnuson
(1983) who found that human activity and lack
of geographic isolation were the best predictors
of rusty crayfish occurrence in lakes of northern
Wisconsin. Natural inter-lake dispersal of rusty
crayfish is also possible and may represent an
important vector of introduction (Olsen et al.
1991; Bryon and Wilson 2001). In 1982, Wiscon-
sin prohibited the use of crayfish as live bait and
the introduction of live crayfish in inland wa-
ters1; however, the impact of this law on slowing
rusty crayfish invasion is difficult to assess.

Once introduced, successful establishment of
rusty crayfish depends on the environmental and
biological suitability of the receiving waters. In
addition to the availability of firm substrates
(Kershner and Lodge 1995) and shelter for egg-
or young-carrying females and molting individu-
als, the persistence of rusty crayfish appears to be
dependent on two key physiochemical factors –
dissolved calcium and pH. Correlative studies

have identified two critical thresholds where rusty
crayfish are absent from lakes with pH values
lower than 5.5 (Berrill et al. 1985) and dissolved
calcium concentrations less than 2.5 mg/l (Capelli
and Magnuson 1983). A preliminary analysis
plotting pH and Ca2+ values for 527 lakes in
Wisconsin2, demonstrates that 463 or 88% of
lakes exceed these critical thresholds, and there-
fore can be considered potentially suitable for
rusty crayfish persistence (Figure 3). Similarly,
Vander Zanden et al. (2004a) found that 70% of
North American Shield lakes (626 out of 895
lakes) are environmentally-suitable based on the
same thresholds. With more than 15,000 lakes
and 32,000 miles of perennially flowing waters
embedded in the Wisconsin landscape, we present
these results to illustrate the need to develop
models that forecast the potential distribution of
rusty crayfish at broad spatial scales. This general
approach to forecasting future invaders based on
potential occurrences and food web impacts was
recently demonstrated by Vander Zanden et al.
(2004b). Similar analysis for rusty crayfish and
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other invaders in the upper Midwest are currently
in progress, specifically where ecological niche
modeling based on multi-scaled descriptors of the
environment are being used to predict rusty cray-
fish distributions and design conservation plans
for native crayfishes throughout Wisconsin.

Once established, the highly aggressive and
omnivorous feeding behavior of rusty crayfish
has resulted in numerous ecological impacts
manifested across entire lake food webs. In this
region, rusty crayfish invasions have been associ-
ated with negative effects on benthic algae (Char-
lebois and Lamberti 1996), macrophytes (Lodge
and Lorman 1987), aquatic invertebrates and
snails (Olsen et al. 1991) and fish (Wilson et al.
2004), in addition to displacing and hybridizing
with native species, especially O. propinquus and
O. virilis (e.g., Lorman 1980; Capelli 1982; Lodge
et al. 1986; Olsen et al. 1991; Hill and Lodge
1999; Perry et al. 2001). In a long-term study of
Trout Lake, Wisconsin, Wilson et al. (2004)
found that rusty crayfish reduced mean lake-wide

abundance of Odonata, Amphipoda and Tri-
choptera, decreased snail densities and reduced
submerged macrophyte species richness at some
locations, and all but eliminated resident O. pro-
pinquus and O. virilis populations. Taken to-
gether, crayfish play a pivotal role in aquatic
systems (Momot 1995), and consequently the
invasion of rusty crayfish have often been accom-
panied with negative impacts on littoral-zone
food webs (Lodge et al. 1994).

Perhaps the best proactive method for control-
ling the introduction of rusty crayfish is through
the education of anglers, bait dealers and the lay
public regarding the ecological threats posed by
rusty crayfish (Gunderson 1999). Distributional
maps of rusty crayfish (such as the one presented
here) would provide a means of identifying those
lakes and watersheds where introductions have
been the most frequent and where educational ef-
forts should be targeted. In contrast, more
reactive approaches may include chemical control
(although selective chemical agents targeting just
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rusty crayfish and not native species do not exist:
Bills and Marking 1988), enhancing fishery man-
agement practices to promote ‘‘healthy’’ bass and
sunfish populations to control crayfish population
levels via predation (Momot 1984), and develop-
ing a viable commercial harvest of rusty crayfish
from natural lakes that would serve to discourage
intentional introductions by trappers (although
only a few commercial trappers remain active:
Arora and Wik 1988). In fact, some lake owners
associations have voluntarily promoted catch and
release fisheries of smallmouth bass with the hope
of naturally-controlling rusty crayfish densities.

In conclusion, our study shows that rusty cray-
fish have rapidly invaded streams, rivers and
lakes throughout the entire state of Wisconsin
over the past 40 years. A striking result is that
rusty crayfish has replaced O. propinquus and
O. virilis as the most dominant member of the
contemporary crayfish fauna. This pattern of ra-
pid expansion across the Wisconsin landscape
stands in contrast with the relatively slow spread
of rusty crayfish within Trout Lake reported by
Wilson et al. (2004), where it took nearly
20 years for rusty crayfish to occupy the avail-
able littoral zone habitat of this northern Wis-
consin lake. This apparent mismatch of invader
spread at different scales highlights our limited
understanding of the dynamics of exotic invader
spread on landscapes, and is an area of ongoing
research. We are currently using expert-based
modeling using crayfish occurrence data to pro-
vide site-specific probabilities of rusty crayfish ar-
rival, establishment and integration into native
ecosystems of Wisconsin, with the ultimate goal
of incorporating this information into statewide
efforts to manage invasive species spread.
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