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Abstract

Using the Australian weed risk assessment (WRA) model as an example, we applied a combination of
bootstrapping and Bayesian techniques as a means for explicitly estimating the posterior probability of
weediness as a function of an import risk assessment model screening score. Our approach provides esti-
mates of uncertainty around model predictions, after correcting for verification bias arising from the ori-
ginal training dataset having a higher proportion of weed species than would be the norm, and
incorporates uncertainty in current knowledge of the prior (base-rate) probability of weediness. The
results confirm the high sensitivity of the posterior probability of weediness to the base-rate probability
of weediness of plants proposed for importation, and demonstrate how uncertainty in this base-rate
probability manifests itself in uncertainty surrounding predicted probabilities of weediness. This quanti-
tative estimate of the weediness probability posed by taxa classified using the WRA model, including
estimates of uncertainty around this probability for a given WRA score, would enable bio-economic
modelling to contribute to the decision process, should this avenue be pursued. Regardless of whether or
not this avenue is explored, the explicit estimates of uncertainty around weed classifications will enable
managers to make better informed decisions regarding risk. When viewed in terms of likelihood of weed
introduction, the current WRA model outcomes of ‘accept’, ‘further evaluate’, or ‘reject’, whilst not
always accurate in terms of weed classification, appear consistent with a high expected cost of mistak-
enly introducing a weed. The methods presented have wider application to the quantitative prediction of
invasive species for situations where the base-rate probability of invasiveness is subject to uncertainty,
and the accuracy of the screening test imperfect.

Introduction

Increasingly, countries are attempting to stem the
rate of new biological invasions, and as many
pests were deliberately introduced, there is a
growing scrutiny of the procedures used for
importing new species (Ruesink et al. 1995), and

recognition of the need for better ways of evalu-
ating the risks and benefits of deliberate intro-
ductions (Ewel et al. 1999). Quantitative models
show promise for successfully predicting inva-
sive species, as there appears to be some statisti-
cally identifiable characteristics of release events
and species characteristics that influence the
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probability of a taxon becoming invasive (Scott
and Panetta 1993; Kolar and Lodge 2001). The
use of predictive models is particularly applicable
in the case for plants, where historically numerous
weeds have been imported at the behest of, for
example, the pastoral industry (Lonsdale 1994).
Currently there is high demand worldwide to
import many hundreds of taxa as part of a bur-
geoning global horticultural trade, hence the need
to accurately predict the invasive status of plants
proposed for importation has never been higher.
In response to the need for a publicly acceptable
risk assessment system to predict the weediness,
or invasive potential of plants being considered for
importation, screening models such as the weed
risk assessment (WRA) system (Pheloung et al.
1999) have been developed and implemented.

Despite some progress in identifying the char-
acteristics of invasive species, successful discrimi-
nation between invasive and non-invasive species
remains a difficult task, as it is widely accepted
that the likelihood of an introduced organism
making the transition to being invasive is low
(Williamson and Fitter 1996; Mack et al. 2000;
United States National Research Council 2002).
For events that have a low prior probability of
occurring, predicted probabilities of occurrence
based on the results of imperfect screening tests
alone tend to substantially overestimate the true
probability of the event occurring (Gigerenzer
2002). In the context of invasive species, the
‘prior’ probability of invasiveness is the probabil-
ity of invasiveness assigned to an individual
taxon drawn at random from a group of species
before consideration of additional information
that may contribute to the likelihood of it being
invasive, such as that gathered from a screening
test. The prior probability is sometimes referred
to as the ‘base-rate probability’. The actual prob-
ability of a particular taxon being invasive in
light of a screening test is obtained by ‘revising’
the prior probability using the screening test like-
lihood, and for this reason it is often referred to
as the ‘posterior’ probability. The proportion of
events predicted by a screening test that would
be expected to actually occur based on this pos-
terior probability is referred to as the ‘positive
predictive value’ (PPV) of a test, and for exam-
ple, in the case of the WRA model, could be in
the order of 0.1 (Smith et al. 1999). That is, an

estimated 90% of species effectively rejected are
in fact not weeds – these cases are referred to as
false positives. This high rate of false positives
may at first glance invite criticism of the screen-
ing test, however a low PPV is not necessarily a
result of a screening system being sub-standard,
but more often a phenomenon of trying to pre-
dict uncommon events with imperfect discrimina-
tory tests. This problem, sometimes referred to as
the ‘base-rate effect’, also occurs within disci-
plines such as engineering [e.g. earthquake and
weather forecasting (Matthews 1996, 1997)] and
medicine [e.g. cancer screening (Metz 1978; Gige-
renzer 2002)], though has only more recently
been addressed in issues of natural resource man-
agement [e.g. WRA (Smith et al. 1999)] or ecol-
ogy [e.g. predicting species occurrence (Pearce
and Ferrier 2000; Manel et al. 2001)]. The exact
value of the PPV depends heavily on the prior
probability of the event in question, along with
the sensitivity and specificity of the screening test,
particularly the latter, and can be calculated by
direct application of Bayes’ Theorem. This is
illustrated in Figure 1 in the case of using a
screening test to identify weeds, and makes it
clear that even for a test of exceptional accuracy
[sensitivity ¼ specificity ¼ 99%], as the prior
probability of being a weed becomes very small,
the PPV declines dramatically.

One management approach for dealing with
the imperfect nature of diagnostic tests and the
resulting inaccuracies in prediction is the use of
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Figure 1. The relationship between the posterior probability

of a taxon being a weed, given that a diagnostic test classifies

it as a weed [Pr(Weed | Positive test)] and the prior probabil-

ity of weediness [Pr(Weed)] for differing values of test sensitiv-

ity and specificity.
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decision theory (Matthews 1997), and it has been
suggested that WRA could be placed in this con-
text (Smith et al. 1999). For such an approach,
quantitative estimates of the probability of inva-
siveness are needed, along with estimates of the
losses associated possible decisions such as
importing an invasive plant or preventing impor-
tation of a useful plant etc. Classification-based
screening models such as the WRA, whilst useful
in terms of their simplicity and ease of interpreta-
tion, do not readily provide the required proba-
bilities of invasiveness. Furthermore, viewing a
classification at face value relegates uncertainty
to being implicit or contained within the assess-
ment system, rather than an explicit outcome of
the assessment system. However, for classification
systems based on summary scores, these scores
may be converted to predicted probabilities of
invasiveness by using, for example, logistic regres-
sion. For example, Hughes and Madden (2003)
fitted a logistic regression model to the summary
scores used to develop the WRA model. Note
though that the resulting fitted probabilities of
weediness in relation to WRA score are biased
upwards, as the data contain an unrealistically
high proportion (ca. 77%) of weeds. That is, there
is verification bias (Begg and Greenes 1983).

A decision theory approach requires not only
the estimated probability of a taxa becoming inva-
sive, but also the uncertainty around that proba-
bility. As an extreme example for illustrative
purposes, managers would view differently the
application to import species A with estimated

Pr(Invasive) ¼ 0.1 and associated 95% uncertainty
interval (U.I.) 0.09–0.11, than species B with esti-
mated Pr(Invasive) ¼ 0.1 and associated 95% U.I.
0.01–0.99. In deciding to import species A, the
magnitude of risk being taken is very certain,
whereas the risk associated with importing species
B is largely unknown, ranging anywhere between
near-zero risk and near-certain risk. Ruesink et al.
(1995) suggest that species with unknown conse-
quences should not be imported, unless additional
information can reduce the uncertainty involved.
Uncertainty in predicted probabilities may come
from several main sources. The first is model
selection uncertainty, whereby differing models dif-
fer in their predictions, and we are unsure which
model is the correct on to use. Model-averaging is
one approach for dealing with this (Burnham
and Anderson 2002). The second source is the
inherent variability in model predictions arising
from observation and process uncertainty, which
may be estimated from the statistical properties
of the model being used, or by computer inten-
sive methods such as bootstrapping (Efron and
Tibshirani 1993), or a mix of both. For example, a
prediction confidence interval can be added to the
logistic regression model of Hughes and Madden
(2003) relating the probability of an imported
plant being a weed as a function of WRA score
(Figure 2). Lastly, there may be uncertainty sur-
rounding structural parameters used within the
modelling process. For example, while it is clear
that the performance of a screening test is highly
sensitive to the prior probability of the event being
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Figure 2. Fitted logistic regression model (—) relating the probability of being a weed to the WRA score for (a) all types of weeds;

and (b) serious weeds. Dashed lines are 95% prediction confidence intervals around the fitted line. The vertical dotted and solid

lines indicate the cut-off WRA score for taxa to be classified as ‘further evaluate’ or ‘reject’, respectively.
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predicted, in the case of biological invasions, this
quantity is poorly characterised. Indeed, the
assumption of a very low prior probability of
introduced organisms becoming invasive appears
not to be universally true (e.g. Lonsdale 1994), and
the emerging high rate of naturalisation of non-
indigenous plants (Duncan and Williams 2002a)
may indicate that in time this paradigm may
change, as naturalisation is a necessary precursor
to invasion. There is clearly a need to incorporate
the uncertainty surrounding the prior probability
of invasiveness when assessing the predictive capa-
bilities of a screening model, and empirical Bayes-
ian approaches provide a way of achieving this.

In this paper, using the WRA model of
Pheloung et al. (1999) as an illustrative example,
we demonstrate how screening scores arising
from a predictive model of invasiveness may be
re-expressed as posterior probability estimates of
invasiveness, including uncertainty around these
estimates that reflect uncertainty in the prior
probability of invasiveness. We achieve this by
utilising standard bootstrapping procedures
(Efron and Tibshirani 1993) to generate boot-
strapped datasets from the original WRA dataset
that contain a more realistic prior probability of
weediness, though we additionally use a Bayesian
approach to explicitly incorporate uncertainty
surrounding this prior probability. We then
extend the logistic regression approach of Hughes
and Madden (2003) to modelling our boot-
strapped datasets. In doing so, we demonstrate
how a screening system used to predictively clas-
sify taxa into various invasiveness categories may
be modified to explicitly estimate risk in a proba-
bilistic manner. We recognise that not all weeds
would be classified as invasive plants under the
definition of Richardson et al. (2000), however
they would be under the definition of Heger and
Trepl (2003). This slight confusion in notation does
not affect the purpose of this paper in quantifying
uncertainty around screening model predictions.

Materials and methods

The WRA model

The WRA model (Pheloung et al. 1999) has been
operational in Australia since 1996, and is tasked

with providing a measure of the weed potential of
a plant species, and supports a decision-making
policy consistent with relevant international trea-
ties. The WRA model converts responses to ques-
tions relating to the plants climatic preferences,
biological attributes, reproductive and dispersal
method into a score, whose value determines
whether to ‘accept’ (WRA score £ 0), ‘further eval-
uate’ (1 £ WRA score £ 6), or ‘reject’ (WRA
score > 6) the taxon. It performs well in identifying
weeds over a range of countries, with a test sensitiv-
ity of ca. 90% (Pheloung et al. 1999; Daehler and
Carino 2000). Up until late 2003, about 1000 taxa
have undergone valid assessment where the mini-
mum required number of questions were answered,
with 46% being accepted, 23% requiring further
evaluation and the remaining 31% rejected. The
WRA model is not a model in the statistical sense,
as the coefficients and weightings to questions were
determined manually to maximise the discriminatory
performance between weeds and non-weeds, hence
it is not amenable to standard cross-validation
techniques such as jack-knifing (Kohavi 1995).

Specifying the prior probability of weediness

The prior probability of weediness of plants being
considered for importation is a poorly quantified
parameter. In a review of the available literature,
Smith et al. (1999) considered the value to range
from 0.01% (Williamson and Fitter 1996) to 17%
(Lonsdale 1994) with a likely value of 2%. As a
prior distribution for modelling this uncertainty
we used a Beta distribution (Vose 2000) with
parameters a ¼ 1.62 and b ¼ 31.4, that corre-
spond to a mode of 0.02, a mean of 0.05 and a
99% quantile of 0.17 (Figure 3). The Beta distri-
bution is the common choice of a prior or mixing
distribution for a probability parameter, as it is
bounded by the interval (0,1) and its shape is
quite flexible, ranging from near-uniform to highly
skewed towards either zero or one.

Estimating posterior probability of weediness
as a function of WRA score

The original 370 taxa data set analysed by
Pheloung et al. (1999) contains 286 species classi-
fied as weeds, and 84 species classified as non-
weeds. As the WRA model is not a model in the
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statistical sense, variability around the predicted
outcomes cannot be investigated by standard
parametric means. The issue is further compli-
cated by the need to incorporate the effect of the
prior probability of weediness and uncertainty
around this prior probability. However, boot-
strapping, whereby datasets are repeatedly resam-
pled with replacement, provides a robust method
of estimating this variability whilst accounting of
the prior probability. Initially, to examine the
sensitivity of the model predictions to the prior
probability, we bootstrapped the original WRA
dataset with the probability of selection of weeds
and non-weeds calculated to produce an under-
lying fixed prior probability of weediness in the
bootstrapped sample of either 0.001, 0.02, 0.1, or
0.2. We generated 1000 bootstrap samples for
each prior probability. This resulted in four sets
of data, each consisting of 1000 bootstrap sam-
ples from the WRA dataset. For each bootstrap
sample, a logistic regression model was fitted,
relating the predicted (posterior) probability of
weediness to WRA score. Finally, over the range
of WRA scores, we calculated the average of the
logistic regression model curves over all boot-
strap samples within each dataset, and the associ-
ated lower and upper 95% uncertainty intervals
for each prior probability of weediness.

We then generated a further 1000 bootstrap
samples from the WRA dataset, though with the
probability of weed selection for each bootstrap
sample drawn at random from a Beta (1.62, 31.4)

distribution. Logistic regression was used to
relate the posterior probability of weediness to
WRA score as before. We also averaged the raw
bootstrap probabilities as a function of WRA
score over the 1000 bootstrap samples, to pro-
vide a ‘raw bootstrap’ estimate of the posterior
mean probability of weediness as a function of
WRA score, including uncertainty intervals.

Evaluating current thresholds

We evaluated the estimated posterior probabili-
ties of weediness in relation to the thresholds
used in the WRA model to distinguish between
acceptable taxa (WRA score £ 0) from those
requiring further evaluation (1 £ WRA score £ 6)
from those that should be rejected (WRA
score > 6). We concentrated on the results
obtained for the ‘further evaluate’ class, as it is
taxa in this class that are most problematic from
a management point of view. For a given WRA
score, the estimated posterior probability is equal
to the PPVs of a screening test using that partic-
ular score as a cut-off value. Hence the PPVs of
screening tests using different cut-offs may be
read directly from a plot of posterior probabili-
ties versus WRA score.

All analyses were undertaken using S-Plus ver-
sion 6.1 for Windows (Insightful Co., Seattle,
Washington).

Results

The posterior predicted probability of weediness
as a function of WRA score was, as expected,
highly sensitive to the prior probability of weedi-
ness (Figure 4). As the prior probability of weed-
iness increased, the predicted probability of
weediness increased for a given WRA score, and
the uncertainty intervals around the predicted
probability decreased as predictions became more
certain. For a low prior probability of weediness
(£2%), the predicted probability of weediness
was virtually zero up until a WRA score of ca. 5,
and the uncertainty intervals were wide (Figures
4a and b). For modelled prior probabilities of
weediness greater than 2%, the predicted proba-
bility approached the asymptote of 1 at high
WRA scores (Figures 4b–d).
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Bootstrapping the dataset with the prior prob-
ability of weediness drawn from a Beta distribu-
tion provides our best estimates of how the
probability of being a weed relates to the WRA
score, and the estimated variability around this
prediction (Figure 5). Comparing the uncertainty
around the logistic regression models of Fig-
ure 2a (no uncertainty in prior probability) with
Figure 5a (uncertainty in prior probability
modelled as Beta) illustrates clearly how incorpo-
rating uncertainty in the prior probability of
weediness substantially increases the uncertainty
around the predicted probability of weediness for
a given WRA score. The PPV of the WRA model
using the current cut-offs is clearly low (<0.1)
using both bootstrap approaches (Figure 5).

The predicted probability or weediness was
similar for both the logistic regression and raw
bootstrap up until a WRA score of about 6, after
which the raw bootstrap was no longer a
‘smooth’ function. Regardless of the approach

used, as a general trend, the probability of weedi-
ness started to increase sharply from a WRA
score of about zero for the logistic bootstrap and
)2 for the raw bootstrap and upwards. The esti-
mates of uncertainty around the predicted proba-
bilities for the two models differed depending on
WRA score. Uncertainty in the raw bootstrap
was proportionally greater for WRA scores less
than 7, with the reverse occurring for scores
greater than 7. In fact, for the raw bootstrap, no
variability was estimated around the predicted
probability of weediness for WRA scores greater
than 7 [other than 12 and 13], as weeds alone
received these WRA scores (Figure 5b). In con-
trast, the logistic regression recorded substantial
variability around the predicted probability of
weediness for high WRA scores (Figure 5a).

Within the ‘further evaluate’ classification
applied to taxa with WRA scores in the range 1–
6, the probability of weediness as a function of
WRA score ranged from 2.0% for WRA
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score ¼ 1 to 6.4% for WRA score ¼ 6 (Figure 6).
The uncertainty intervals were proportionally
large compared to the predicted probabilities
(Figure 6). For example, the uncertainty interval
for the probability of weediness for a WRA score
of 5 ranged from 0 to 26.3% (Figure 6).

Discussion

Previous studies (Smith et al. 1999; Hughes and
Madden 2003) have highlighted the effect of a
low prior probability of invasiveness on the per-

formance of screening tests to identifying invasive
plant biota. We have extended this analysis by
explicitly incorporating the uncertainty in this
prior probability, in conjunction with uncertainty
arising from the screening model itself. The
resulting predicted probabilities of weediness as a
function of WRA screening score include sub-
stantially more uncertainty than would be the
case if uncertainty in the prior probabilities or
weediness were ignored. As training datasets used
to fit screening models will most commonly have
a higher proportion of invasive taxa than the
environment in which they are required to pre-
dict in, there will always be a need to correct for
the prior probability when evaluating the perfor-
mance of invasive screening models. This state-
ment holds true for all types of predictive
models, such as categorical and regression tree
analyses (Reichard and Hamilton 1997; Kolar
and Lodge 2002), regardless of their quantitative
rigour. Indeed, the training dataset used by
Reichard and Hamilton (1997) contained ca.
67% invasive species, a similar proportion to the
dataset analysed here. Obviously, the closer the
true proportion of invaders in the suite of species
being evaluated is to that contained in the
training dataset, the less the bias in the model
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predictions of invasiveness. For example, the
training dataset used by Daehler et al. (2004)
contains a reasonably high (39%) proportion of
weeds, hence the screening test will still undoubt-
edly perform at a level below what the sensitivity
and specificity alone suggest, though possibly not
to the extent of the previously mentioned studies.

Estimating the prior probability of invasiveness
will remain problematical, and hence any esti-
mate, will be subject to considerable uncertainty.
Given the close relationship between the PPV of
a screening test and this prior probability, it is
important that this uncertainty is incorporated
into model predictions. We consider our boot-
strapping approach has considerable merit for
addressing this problem, elucidating uncertainty
arising from both the imperfect nature of the
screening test, and the uncertainty in the prior
probability of invasiveness. An advantage of the
bootstrapping approach is that it can be applied
to a wide range of models. For example, boot-
strapping has previously been used to estimate
uncertainty around predictions for non-paramet-
ric classification models such as classification
trees (Kuhnert and Mengersen 2003). We note,
however, that the two methods we used for anal-
ysing bootstrapped datasets, namely a raw sum-
mary of the bootstrapped datasets and the
summary of repeated logistic regressions to each
bootstrapped dataset, have both strengths and
weaknesses. At the lower end of the WRA scale,
the logistic regression approach clearly underesti-
mates uncertainty in the probability of weediness
compared to the raw bootstrap. This is due to
the constraints on the shape of the logistic curve
relating the probability of weediness to WRA
score. At the upper end of the WRA scale, the
raw bootstrap estimates no uncertainty in the
probability of weediness for WRA scores of 7–9
and 13 and above. For WRA score of 7–9 at
least, this lack of uncertainty in weediness is in
all likelihood an illusion resulting from small
sample sizes not containing any non-weeds that
were assigned these WRA scores. In contrast, the
logistic regression approach suggests substantial
variation in the probability of weediness for
higher WRA scores. We recommend that for esti-
mating the probability of weediness for a given
WRA score, it is best to use the raw bootstrap
results for WRA scores less than 5 and the logis-

tic regression results for WRA scores greater
than or equal to six.

Taking our recommended approach for inter-
preting the results indicates that the probability
of being a weed become noticeably non-zero at a
score somewhat less than the current cut-off for
‘further evaluation’ (WRA score ‡ 1), and starts
to increase rapidly for WRA scores at, or slightly
greater than the current cut-off for ‘reject’ (WRA
score > 6). For taxa with WRA scores classified
in the ‘further evaluate’ category, the estimated
posterior probabilities of weediness (2–6%),
whilst low at first glance, become non-trivial
when one considers the number of taxa being
proposed for importation (P. Pheloung, unpubl.
data), the uncertainty in the estimates, and the
potentially high cost of importing a weed (Pimentel
et al. 2000). For the current system to be cost
neutral, the cost of mistakenly introducing a weed
needs to far outweigh the benefit of introducing a
useful plant.

In this paper, we have focused on estimating
the likelihood of an introduced plant being a
weed, and have not considered variation in the
consequences between taxa. Hence we have not
fully characterised risk as per the standard defini-
tion of risk ¼ likelihood · consequences. Given
that the WRA model does not attempt to esti-
mate the consequences of introducing a weed,
this was beyond the scope of this study. We also
have not considered other issues possibly affect-
ing the performance of the WRA survey dataset
and its interpretation, such as variations in weed
definitions, possible biases in scores based on
prior knowledge of a taxon’s weediness, and vari-
ation in screening performance and/or weediness
between taxonomic groups (Smith 1999; Duncan
and Williams 2002b).

Unsurprisingly given the low base-rate of
weediness and previous work (Smith et al. 1999),
we found the WRA system to have a low PPV.
This is likely true of other classification systems
such as that presented by Reichard and Hamilton
(1997), whose ‘do not admit’ classification cate-
gory may in reality not have the very high proba-
bility of invasiveness that they suggest. Having a
low PPV, although undesirable in the context of
risk assessment, is not necessarily a problem
within the context of risk management. For
example, if a 1 in 20 chance of introducing an

284



invasive species is considered too high a risk
[i.e. the rejection threshold is set at Pr(Inva-
sive) ¼ 0.05], and a taxon is rejected on the
grounds that its predicted probability of invasive-
ness exceeds this, there is no inconsistency.
Rather, it is ignorance of the PPV of a screening
test that could bias management decisions, par-
ticularly where there is a cost associated with
implementing the screening test outcome – for
example, a taxon that may be of considerable
use. Using the maximisation of PPVs as the sole
criteria for determining cut-off values for screen-
ing tests is inappropriate, as the cut-off value that
maximises the PPV will admit all but the highest
scoring invasive species.

The bio-economic modelling of Smith et al.
(1999) pooled all ultimately rejected taxa (‘fur-
ther evaluate’ and ‘reject’) when calculating the
proportion of false positives arising from the
WRA model. The current analysis shows that
within the group either rejected or in need of fur-
ther evaluation, the probability of a false positive
varies by as much as an order of magnitude
depending on WRA score. Hence the approach
of Smith et al. (1999) is overly simplistic, in that
it pools good predictions with bad. Logically the
analytical structure presented by Smith et al.
(1999) could be modified to account for this. For
a taxon assigned a particular WRA score, the
estimated probability of weediness, and associ-
ated uncertainty interval can be taken directly
from our results. Any future attempt at bio-eco-
nomic modelling of plant introductions should
also incorporate uncertainty not only in predic-
tions of invasiveness, but also in the expected
costs and benefits of future plant introductions.
Clearly the costs and benefits of past introduc-
tions are not necessarily a reliable guide to those
of future introductions. We also note that the
WRA model as implemented is the second com-
ponent of a three-tiered system aimed at identify-
ing and preventing the entry to Australia of
environmental and agricultural weeds. Its current
implementation is in no way intended to support
a bioeconomic approach to plant importation
decisions, although we have used it as a case
study to illustrate how to generate the required
outputs should this avenue be pursued.

In summary, we have demonstrated how
screening test scores may be translated to quanti-

tative probabilities of invasiveness, and argued
that this form of screening information would
enable managers to better assess the risk posed
by a proposed introduction. Our results have
demonstrated that a low and uncertain base-rate
probability manifests itself in uncertainty sur-
rounding predicted probabilities of invasiveness,
and a low PPV of screening test positives.
Clearly, better estimates of the prior probability
of invasiveness and improved predictors of inva-
siveness will help to reduce this uncertainty and
improve the accuracy of future screening models
for invasive species.
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Kolar CS and Lodge DM (2001) Progress in invasion biology:

predicting invaders. Trends in Ecology and Evolution 16:

199–204

Kolar CS and Lodge DM (2002) Ecological predictions and

risk assessment for alien fishes in North America. Science

298: 1233–1236

Kuhnert PM and Mengersen K (2003) Reliability measures

for local nodes assessment in classification trees. Journal of

Computational and Graphical Studies 12: 1–19

Lonsdale WM (1994) Inviting trouble: introduced pasture spe-

cies in northern Australia. Australian Journal of Ecology

19: 345–354

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M

and Bazzaz FA (2000) Biotic invasions: causes, epidemiol-

ogy, global consequences, and control. Ecological Applica-

tions 10: 689–710

Manel S, Williams HC and Ormerod SJ (2001) Evaluating

presence-absence models in ecology: the need to account

for prevalence. Journal of Applied Ecology 38: 921–931

Matthews RAJ (1996) Base-rate errors and rain forecasts.

Nature 382: 766

Matthews RAJ (1997) Decision-theoretic limits on earth-

quake prediction. Geophysics Journal International 131:

526–529

Metz CE (1978) Basic principles of ROC analysis. Seminars

in Nuclear Medicine 8: 283–298

Pearce J and Ferrier S (2000) Evaluating the predictive perfor-

mance of habitat models developed using logistic regres-

sion. Ecological Modelling 133: 225–245

Pheloung PC, Williams PA and Halloy SR (1999) A weed risk

assessment model for use as a biosecurity tool evaluating

plant introductions. Journal of Environmental Manage-

ment 57: 239–251

Pimentel DL, Lach L, Zuniga R and Morrison D (2000)

Environmental and economic costs associated with non-

indigenous species in the United States. BioScience 50: 53–65

Reichard SH and Hamilton CW (1997) Predicting invasions

of woody plants introduced into North America. Conser-

vation Biology 11: 193–203

Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta

FD and West CJ (2000) Naturalization and invasion of

alien plants: concepts and definitions. Diversity and Distri-

butions 6: 93–107

Ruesink JL, Parker IM, Groom MJ and Kareiva PM (1995)

Reducing the risks of nonindigenous species introductions:

guilty until proven innocent. BioScience 45: 465–477

Scott JK and Panetta FD (1993) Predicting the Australian

weed status of southern African plants. Journal of Bioge-

ography 20: 87–93

Smith C (1999) Studies on Weed Risk Assessment. Master of

Applied Science, University of Adelaide

Smith CS, Lonsdale WM and Fortune J (1999) When to

ignore advice: invasion predictions and decision theory.

Biological Invasions 1: 89–96

United States National Research Council (2002) Predicting

Invasions of Nonindigenous Plants and Plant Pests,

National Academy Press, Washington, DC

Vose D (2000) Risk Analysis: A Quantitative Guide, John

Wiley and Sons, Chichester, West Sussex

Williamson M and Fitter A (1996) The varying success of

invaders. Ecology 77: 1661–1665

286



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


