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Introduction

Compared with traditional chemical catalysts, bio-
catalysts are of great interest because of their signifi-
cant advantages in terms of reaction conditions, such 
as their high efficiency, excellent selectivity (regiose-
lectivity, chemoselectivity and enantioselectivity), 
and eco-friendly reaction conditions. Thus, “green” 
biocatalysts have gained much attention, providing 
another route for the industrial production of bulk 
chemicals and pharmaceuticals (de Carvalho 2011; 
Du et  al. 2011; Patel 2011; Wang et  al. 2012; Lee 
et al. 2019).

Nitriles, organic compounds widely present in 
nature, have attracted much attention in the chemical 
market for the synthesis of important amides (acryla-
mide (Fleming et al. 2010), nicotinamide (Nikas et al. 
2020), cyanoverlamide (Wang et al. 2020b), and drug 
intermediates (Banerjee et al. 2016). Nitrile hydratase 
(NHase), which is a key enzyme in the bienzymatic 
pathway of nitrile degradation, catalyzes the conver-
sion of nitriles to the corresponding amides (Jiao 
et  al. 2020; Cui et  al. 2014). NHase has been found 
in a variety of microbes belonging to various species 
of diverse genera, including Actinobacteria, Pro-
teobacteria, Cyanobacteria and Firmicutes, since it 
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was initially identified in the bacterium Arthrobac-
ter sp. J1 (now known as Rhodococcus rhodochrous 
J1) in 1980 (Asano et al. 1980). With the increasing 
demand for NHase, many studies have focused on 
screening and modifying NHase enzymes for green 
industrial chemistry (Ma et  al. 2024a; Wang et  al. 
2022; Guo et  al. 2024; Zhang et  al. 2023). Yamada 
et al. for the first time achieved large-scale industrial 
production of acrylamide in three NHase producing 
strains: R. rhodochrous J1, Rhodococcus sp. N-774 
and Pseudomonas chlororaphis B23 (Yamada et  al. 
1996). To date, the third-generation industrial strain 
R. rhodochrous J1 has dominated in the industrial 
production of amides, especially acrylamide and nic-
otinamide. In China, Shen et al. used Nocardia sp. to 
industrialize acrylamide and nicotinamide production 
(Wang et  al. 2007). Additionally, NHase also plays 
an important role in the textile industry; e.g., it can 
improve the properties of polyacrylonitrile (PAN) 
fibres as a synthetic block (Tauber et al. 2000; Gue-
bitz and Cavaco-Paulo 2008). In addition, on the 
basis of great achievements in synthetic biology, the 
industrial production of amides could be improved by 
the use of engineered strains harbour robust NHase 
genes.

Like many other scientific fields, the history of 
NHase since its discovery to date is the journey from 
academia to industry, which has entered a new era 
to create more possibilities by revealing the secrets 
of ecological, microbiological, molecular, pro-
tein chemistry and bioremediation areas for nearly 
three decades. Most of the previous NHase reviews 
invariably covered NHase cloning, structural, and 
molecular characteristics, mechanisms and applica-
tions (Prasad and Bhalla 2010; Supreetha et al. 2019; 
Cheng et al. 2020b). This review summarizes recent 
NHase research progress with respect to its natural 
distribution, enzyme screening, molecular modifi-
cation, industrial application and recent significant 
biotechnology. Finally, we briefly discuss the chal-
lenges, opportunities, and future prospects for its fur-
ther development in industrial applications for green 
chemistry. This review provides useful information 
and insight for basic research and the industrial appli-
cation of NHase.

Natural distribution of NHase

In nature, it has been reported that the distribution 
of NHase-producing microorganisms is very wide-
spread, with bacteria accounting for the majority 
of producing microorganisms, mainly Actinomy-
cetes and Proteobacteria. However, the majority 
of NHases are obtained from various species of 
Rhodococcus (Prasad and Bhalla 2010). Recently, 
NHase genes have been found in the genomes of 
some eukaryotes, such as Monosiga brevicollis 
(Tanii 2017). Foerstner et  al. explored the NHase 
gene cluster through sequence-based metagenomic 
screening method and reported an unusual NHase 
structure consisting of two usually separated NHase 
subunits fused in one protein, which might open 
a new way to study the structure and function of 
eukaryotic NHases further (Foerstner et  al. 2008). 
However, there is no related research report on gene 
function identification of NHase in the eukary-
ote. Therefore, bacteria are still the main source of 
NHase. Recently, Zhou et  al. explored an archaeal 
NHase from halophilic archaeon A07HB70, which 
exhibits high tolerance to 3-cyanopyridine and nico-
tinamide, further broadening our understanding of 
NHase (Guo et al. 2024).

Screening methods for NHase

Traditional enrichment cultivation

Nitrile compounds, which are metabolic prod-
ucts of biological systems, are ubiquitous in the 
natural environment and exist in a variety of forms 
(Legras et  al. 1990). It is estimated that there are 
hundreds of millions of microorganisms in each 
gram of soil. In order to screen microorganisms 
harboring NHase, an effective and feasible screen-
ing model is required. Conventional screening of 
NHase has been carried out by enrichment culti-
vation using selective cultures with nitriles as the 
sole C/N source. In recent years, owing to the rapid 
development of gene sequencing technology, the 
amount of genomic data has increased rapidly, and 
the researches on screening of metagenomic librar-
ies and genome mining have also become more and 
more prosperous.
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Function- and sequence-based screening of 
metagenomic libraries

The natural environment contains abundant micro-
bial resources and is an important natural reposi-
tory for biocatalysts (Kimura and Nobutada 2006). 
NHase is mainly distributed in microorganisms in 
natural environment, of which bacteria occupy the 
majority (Prasad and Bhalla 2010). The strains har-
bouring NHase isolated and screened thus far have 
been obtained from environments (such as waste-
water, soil, and farmland) through traditional iso-
lation and culture techniques, but less than 1% of 
the microbial resources in the environment can be 
cultivated. Metagenomics is the genomic analysis 
of microbial communities through expression-based 
or sequence-based methods without culturing; a 
large amount of genetic information can be obtained 
without cultivation (Ye et  al. 2019). Owing to the 
use of metagenomic technology, the diversity of 
the obtained microbial genetic information can be 
greatly improved, which is conducive to the dis-
covery of many unknown biocatalysts. In particu-
lar, the application of high-throughput screening 
(HTS) greatly enhances screening efficiency and 
increases the application scope of metagenomic 
technology. The screening of unknown biocata-
lysts via metagenomic technology can generally be 
divided into the following steps: sample collection, 
DNA extraction, library construction, screening for 
NHase activity, subcloning and expression, identifi-
cation and sequencing (Gong et al. 2013).

Genome mining based on the conserved amino acid 
sequence

The traditional screening methods for NHase mostly 
involve isolationed from basal medium with nitrile 
compounds as the only nitrogen source, which is not 
only time-consuming and labour intensive, but also 
suffer from low screening efficiency. Gene mining, 
a network technology, allows the search and screen-
ing of homologous sequences with similar func-
tions in the database using the nucleotide or amino 
acid sequences of known enzyme proteins as probes 
(Zhao et al. 2023). With this novel method, research-
ers can design primers according to the known 
gene sequence, utilize polymerase chain reaction to 
amplify the target enzyme gene and then perform 
functional expression of the gene in the host cell 
(Gong et al. 2013).

In the postgenome era, although gene resources 
are very abundant, a large number of gene sequences 
do not have corresponding functional annotations or 
clear biological functions (Seffernick et  al. 2009). 
The nucleotide sequences of the subunits can be 
searched in NCBI, which are valuable resources for 
NHase studying. Genome mining provides technical 
support for obtaining novel NHase genes.

Molecular modification of NHase based on its 
characteristics and catalytic mechanism.

NHase characteristics

NHase consists of two allogenic α- and β-subunits 
(Fig.  1), which are usually present in equimolar 

Fig. 1  Crystal structure of 
nitrile hydratase (NHase) 
from Pseudonocardia ther-
mophila JCM 3095 (PDB 
1ugp). NHase consists of 
two allogenic α- and β- 
subunits. The α- subunits 
and β-subunits are repre-
sented in gray and purple, 
respectively. The square box 
represents the active-site 
center as the channel used 
for entering and exiting 
of substrate and product 
molecules
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amounts and generally have similar molecular 
weights, but NHases from different sources are struc-
turally different. Structural analysis of NHases, 
revealed that the VC(T/S) LCSC(Y/T) in the α- subu-
nit region is highly conserved, and this special site is 
a metal-binding domain (catalytic domain), that can 
coordinate with metal ions (Hashimoto et  al. 2002; 
Miyanaga et al. 2004). According to the type of metal 
ions at the active site, NHases are divided into two 
categories: (a) Fe-containing NHase and (b) Co-con-
taining NHase (Miller et al. 2024). Fe-NHase gener-
ally interacts with the small nitrile compounds, while 
the Co-NHase is considered to act more strongly on 
aromatic halogenated molecules (Desai and Zimmer 
2004). Furthermore, Co-NHase is more robust and 
has wider substrate specificity compared with Fe-
NHase. These metals are constitutional components 
of functional NHase, which fulfill a significant role in 
folding, stability and catalysis of the NHase polypep-
tide chains (Komeda et al. 1996). It is noteworthy that 
the nitrile substrate can only be catalysed in the inte-
rior of NHase, because the catalytic domain of NHase 
(the Fe−/Co-ion centre at the active site) is deeply 
buried in protein scaffold (Prasad and Bhalla 2010).In 
addition, according to the different protein molecular 
weight, NHase is divided into two types: low-molec-
ular-weight (L-NHase) and high-molecular-weight 
NHase (H-NHase). Owing to its excellent thermal 
stability and organic solvent tolerance, H-NHases 
have been widely used in the acrylamide and nicoti-
namide industrial production (Miyanaga et  al. 2004; 
Lan et al. 2017).

The characteristics of the previously reported 
NHasea are summarized in Table 1. The optimal pH 
value of the NHase reported to date is 6.5–8.5, and 
the optimal temperature is 20–35 °C, except for those 
isolated from thermophilic bacteria, e.g. Bacillus 
RAPc8 (60 °C) (Pereira et al., 1998), Bacillus palli-
dus Dac521 (50 °C) (Cramp and Cowan, 1999), and 
Pseudonocardia (60  °C) (Yamaki et  al., 1997). The 
reaction involving amidase is the main rate-limit-
ing factor for amide production, due to the existing 
of original amidase, which can further hydrolyse 
the formed amides into the corresponding carbox-
ylic acids and ammonia. Thus, significant strategies 
have been developed to overcome this obstacle, for 
instance, the reaction can be carried out at low tem-
perature (< 25  °C) for reducing amidase activity to 
negligible levels (Prasad and Bhalla 2010). Besides, 

cloning and expression of NHases in a heterolo-
gous host lacking amidase activity is a widely used 
method. Furthermore, ceasing the amidase activity 
through knock-out or interferring the amidase gene 
in parent strain is another feasible strategy (Ma et al. 
2010).

Catalytic mechanism of NHase

In order to illustrate the the complete mechanism of 
NHase, many studies have focused on experimental 
and theoretical studies, and some plausible mecha-
nisms have been proposed. To date, four catalytic 
mechanisms have been proposed for NHase cataly-
sis, as shown in Fig. 2. The inner-sphere mechanism 
indicates that nitriles initially bind to metal ions, 
after which the binding group is hydrolysed by water 
molecules (Fig.  2A). Sugiura and Kuwahara et  al. 
used electron spin resonance spectroscopy (ESR) to 
analyse the status of Fe ions in P. chlororaphis B23 
NHase, and reported that the spectra shifted when 
the acrylic nitrile was added as the optimal substrate. 
However, when isobutyronitrile (not the catalytic sub-
strate) and the product proacrylamide were added, 
no change in the spectra occurred, suggesting that 
the substrate may be directly connected to the metal 
ion  (Fe3+) (Sugiura et  al., 1988). The outer-sphere 
mechanism demonstrated that the hydroxide ion lib-
erated from water molecule coordinated with metal 
ion and catalysed the nitrile substrate hydrolysis reac-
tion (Prasad and Bhalla 2010) (Fig.  2B). This cata-
lytic mechanism has been confirmed by many stud-
ies. Peplowski et al. used a computer-aided molecular 
docking technique to analyse the conformation of a 
Co-type NHase from P. thermophila JCM 3095 with 
different substrates and products, and the results sup-
ported the outer-sphere mechanism (Peplowski et al., 
2007). Kubiak and Nowak et  al. used molecular 
dynamics simulation technology to analyse the action 
mechanism of NHase derived from Rhodococcus sp. 
N-771, and the results also showed that the water 
molecules connected with metal ions directly attacked 
the cyanide carbon atoms in nitrile compounds 
(Kubiak and Nowak 2008). Yu et al. analysed the Co-
type NHase of P. hermophila JCM 3095 using a more 
accurate semiempirical quantum mechanical calcula-
tion method, and the results also supported the cata-
lytic mechanism (Yu et  al. 2008). Another recently 
proposed outer-sphere mechanism indicated that the 
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metal-bound hydroxide would activate another free 
water molecule from the second coordination shell, 
and that the second water molecule would catalyse 
the hydrolysis of nitriles (Mitra and Holz 2007; Yu 
et  al. 2008; Yamanaka et  al. 2010) (Fig.  2C). More 
recent research has further demonstrated that post-
translational sulfonate (which acts as a nucleophile) 
initially attacks nitriles and that the source of the 
product carboxamide oxygen is the protein (Nelp 
et al. 2016) (Fig. 2D).

Molecular modifications of NHase

Mining novel NHases from nature not only is one way 
to obtain NHases with high activity and superior sta-
bility, but also provides new ideas for the molecular 

modification of NHases on the basis of the character-
istics of novel enzymes. Molecular modification has 
become one of the most powerful and widespread 
tools for engineering improved or novel functions in 
proteins (Ma et al. 2024b). The main molecular modi-
fication strategies to improve the robustness of NHase 
include stabilizing the subunit terminus, stabilizing 
the mesophilic zone, redesigning the active pocket, 
and enhancing the hydrophobic network between sub-
units (Fig. 3). Yokota et al. reported that thermophil-
ins contain more polar amino acid residues and more 
easily form salt bridges compared with mesophilins 
(Yokota et  al., 2006). With the increase of the total 
salt bridges and the proportion of the salt bridge net-
work, the heat resistance of the protein is significantly 
enhanced, indicating that the salt bridge is one of the 

Table 1  The characteristics of the previously reported nitrile hydratase (NHase)

Name of organism Products Cofactor Molecular mass (kDa) Inducer Optimum Reference

Subunits Native pH Tem-
perature 
(℃)

Rhodococcus sp. N774 Acrylamide Fe α-28.5
β-29.0

70 Constitutive 7.7 35 (Endo and 
Watanabe, 
1989; Hashi-
moto et al., 
1991)

P. chlororaphis B23 Acrylamide, 
5-Cyano-
valeramide

Fe α-22.0 β-24.5 100 (2) Methacryla-
mide

7.5 20 (Nagasawa et al. 
1987; Hann 
et al. 1999)

R. rho-
dochrous J1

H–NHase Acrylamide,
benzamide,
2,6-difluroben-

zamide, 
2-(1H-indol-
2-yl)-
acetamide, 
Nicotina-
mide, pico-
linamide, 
pyrazine-
2-carboxa-
mide, isoni-
cotinamide, 
2H-thi-
opyran-
6-carboxa-
mide

Co α-22.7 β-26.3 505 Urea 6.5–6.8 35 (Mauger 
et al. 1989; 
Nagasawa 
et al. 1991)

L–NHase α-22.7 β-25.2 101 (2) Cyclohexane-
carboxamide

8.8 40

R. rhodochrous PA-34 Acrylamide, 
nicoti-
namide, 
Butyramide

Co α-25.0 β-30.6 86 Acetonitrile 7.5 35 (Prasad et al. 
2007; Raj 
et al. 2007b)
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direct factors affecting the protein stability (Gurry 
et al. 2010). Directed evolution is an effective modi-
fication method, that can modify enzyme-encodinge 
genes in vitro by simulating natural evolution, error-
prone PCR or chemical and physical mutagenesis 
(Reetz and Carballeira 2007). Zhou et al. developed a 
high-throughput automatic in vivo screening platform 
based on a niacin biosensor (NAsensor) for evolving 
nitrile metabolism-related enzymes (nitrilase, ami-
dase, and NHase) (Han et  al. 2022). Homologous 
recombination is a type of genetic recombination in 
which nucleotide sequences are exchanged between 
two similar or identical molecules of DNA.

Using this technology, researchers have integrated 
homologous protein fragments from different sources 
into a protein body to design highly variable but 
still naturally folded chimeric proteins (Carbone and 
Arnold 2007). NHases with high stability/activity can 
be screened by constructing a library of hybrid pro-
tein mutants.Moreover, the fusion of α- and β- subu-
nits can effectively increase protein stability (Azzam 
et  al. 2012; Xia et  al. 2016). Additional molecular 
modifications of NHase are summarized in Table 2.

NHase applications

Synthesis of fine chemicals

NHase, well-known for its great impact on the revolu-
tion wave of acrylamide biosynthesis, has undergone 
40  years of academic and industrial utilizationand 
is one of the most successful cases of biocatalysis 
in biology. Acrylamide, a synthetic monomer, has 
attracted much attention in the industrial applications 
of the leather industry, water treatment, enhanced 
oil recovery, and many other fields (Taeymans et al. 
2004; Jiao et  al. 2020). NHase in R. rhodochrous 
N-774, developed by Japan Nitto chemical indus-
try, was the first biocatalyst for the production of 
acrylamide. Besides, P. chlororaphis B23 and R. 
rhodochrous J1, as the new generation of NHase-
producing strains, have also been employed as a 

vehicle for acrylamide industrial production (Yamada 
et  al. 1996). Shen et  al. screened a strain Nocardia 
sp. 86–163 with high production of NHase in 1986, 
which was successfully applied in the industrial 
production of acrylamide (Asano 2002; Sahu et  al. 
2022).

What’s more, NHase also serves as an important 
biocatalyst for nicotinamide industrial production. 
Nicotinamide is an important vitamin with a wide 
range of industrial applications in the pharmaceutical, 
nutraceutical, cosmetic, and feed industries, among 
other fields (Prasad et  al. 2007). Nicotinamide has 
potential as a safe, well-tolerated, and cost-effective 
agent to be used in cancer chemoprevention and ther-
apy, such as laryngeal and urinary bladder cancers 
(Nikas et al. 2020). Among the NHases reported thus 
far, the NHases from R. rhodochrous J1 and R. rho-
dochrous PA-34 exhibit high activity towards 3-cyan-
opyridine (Pratush et al. 2013). Recently, the potential 
applications of NHase in the synthesis of other valu-
able amides, such as 2-(1H-indol-2-yl)-acetamide, 
butyramide, 5-cyanovaleramide, isonicotinamide, 
picolinamide, indole-3-acetamide, pyrazine-2-car-
boxamide, lactamide, 2H-thiopyran-6-carboxamide, 
2,6-difluorobenzamide, benzamide and adipamide 
have been disclosed (Table 3).

Environmental bioremediation

NHase is not only widely used in the manufacture 
of amides, but also fulfills a role in environmen-
tal protection. Synthetic nitriles can currently be 
employed for organic synthesis as starting materi-
als and intermediates. However, most of the nitriles 
are neurotoxic and belong to mutagenic, terato-
genic and carcinogenic compounds in nature, which 
are continuously released as effluents by industries 
(Supreetha et  al. 2019; Tanii 2017). Thus, removal 
of nitrile from industrial contaminated soil and water 
is urgently needed. NHase in combination with ami-
dase or nitrilase is considered promising for potential 
application in nitrile biotransformation and degra-
dation, which has made significant contributions to 
the environmental bioremediation in recent decades 
(Table  1). For instance, Kohyama et  al. degraded 
the acetonitrile wastewater by using the dual-bac-
teria (R. pyridinovorans S85-2 and Brevundimonas 
diminuta AM10-C) coupling process, and 90% of 
the acetonitrile was degraded to acetic acid within 

Fig. 2  Four proposed catalytic mechanisms for nitrile 
hydratase (NHase) catalysis. A The inner-sphere mechanism; 
B the outer-sphere mechanism; C the newly proposed outer-
sphere mechanism (Indirectly Activated Nucleophile); D 
Direct attack of activated sulfenate towards substrate

◂



 Biotechnol Lett

Vol:. (1234567890)

10  h (Kohyama et  al. 2006). Wyatt et  al. degraded 
highly toxic wastewater containing acrylonitrile and 
other compounds by mixed microorganism produc-
ing nitrile converting enzymes (i.e., NHase, nitrilase 
and amidase). The results revealed that the chemical 
oxygen demand (COD) decreased by 75%, and 99% 
of the COD was metabolized by cells as a result of 
the nitrile compounds (Wyatt and Knowles 1995). 
Hansen et  al. realized the biodegradation of cyanide 
in a gold tailings environment via nitrilase, NHase 
and thiocyanate (Welman-Purchase et al. 2024).

Advances in NHase engineering

Whole-cell biocatalysis engineering driven by 
synthetic biology

NHase has been universally found in a variety of 
microbes belonging to various species. Compared 
with other hosts, Rhodococcus strains (e.g., Rhodo-
coccus sp. M8, R. rhodochrous J1 and R. ruber TH) 

have become increasingly attractive for value-added 
amides synthesis due to their outstanding character-
istics, e.g., high NHase activity and superior stability 
to high temperature and organic solvents, enabling 
their wide application in whole-cell biocatalysis 
(Jiao et al. 2020). Recent advances in synthetic biol-
ogy have revolutionized the technology to engineer 
microbial hosts for the production of a wide variety 
of valuable amides. Thus, it is significant to highlight 
the achievements in Rhodococcus strains as platform 
organisms for amides production.

In the past several decades, basic genetic ele-
ments, including the development of different pro-
moters, ribosome binding sites (RBSs), reporter 
genes, and selection markers, have been developed 
in engineered Rhodococcus sp. to facilitate whole-
cell biocatalysis applications (Liang and Yu 2021). 
What’s more, to realize the large-scale amides pro-
duction at an industrial level, various strategies have 
been explored in Rhodococcus, ranging from random 
mutagenesis to precise genome editing, including tra-
ditional homologous recombination, bacteriophage 

Fig. 3  Strategies used to 
improve nitrile hydratase 
(NHase) properties
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recombinase-assisted recombineering and the 
CRISPR/Cas9 system (Liang and Yu 2021). In par-
ticular, with respect to the CRISPR/Cas9 system, 
the development and application of CRISPR/Cas9 in 
Rhodococcusare important. The first CRISPR/Cas9 
system in R. ruber for gene deletion, mutation, and 
insertion was successfully developed by introducing 
recombinases Che9c60 and Che9c61 in the study of 
Liang et  al., and the editing efficiency reached 75% 
(Liang et al. 2020).

NHase immobilization

Although biotransformation mediated by free cells or 
soluble enzymes has been successful, immobilized 
cells or enzymes have other advantages compared 
with free enzymes or cells. In particular, immo-
bilization promotes biocatalyst retention and by-
product removal, simplifying the process of catalyst 

separation and product purification (Rangraz et  al. 
2024). Immobilization can also improve the reusabil-
ity and stability of biocatalyst, and immobilized cells 
have also been reported to catalyse a wider range of 
substrates than free cells do (Dias et al. 2001).

The most mature technology in industry using 
NHase to convert nitriles into amides is to catalyze 
acrylonitrile to acrylamide and catalyze nicotinoni-
trile to nicotinamide by immobilized Rhodococcus 
(Raj et al. 2010; Wang et al. 2020a). The Swiss com-
pany Lonza and Japan’s Mitsubishi Corporation have 
successfully used these two processes to operate on a 
thousand-ton scale for over a decade.

It is relatively mature to immobilize NHase and 
cells harboring NHase using traditional matri-
ces (such as calcium alginate, agar, and polyvinyl 
alcohol) and commercial immobilization materials. 
In recent years, the application of metal–organic 
frameworks and biomimetic mineralization in 

Table 2  Molecular modifications of nitrile hydratase (NHase)

Method NHase producing organ-
isms

Modification site Results Reference

Salt-bridges R. ruber TH C-terminal-residue-
bridged

Slight enhancement in the 
expression of β-subunit 
and enzyme activity,

160% enhancement in 
thermal stability,

7% enhancement in prod-
uct tolerance,

75% enhancement in 
resistance to cell-
disruption by ultrasoni-
cation

(Chen et al. 2013)

Domain swapping P. putida NRRL-18668 Swapping the corre-
sponding fragments of 
PpNHase

1.4- to 3.5-fold enhance-
ment in thermostability,

3AB NHases: 1.4 ± 0.05-
fold enhancement in 
enzyme activity

(Cui et al. 2014)

Domain swapping Bordetella petrii Swapping the correspond-
ing C-domains

Enhancement in thermal 
stability

(Sun et al. 2016)

Subunit-fusion P. putida Fusing the α- and 
β-subunits and/or the 
“activator proteins” of 
the NHase

Enhancement in thermo-
stability and tolerance 
to high concentrations 
of the product amide

(Xia et al. 2016)

Site-saturation mutagen-
esis

Caldalkalibacillus ther-
marum

TA2. A1

βL48H Enhancement in enzyme 
activity

(Cheng et al. 2021)

Site-directed mutagenesis P. thermophila JCM3095 αI5P/αT18Y/αQ31L/
αD92H/βA20P/βP38L/
βF118W/βS130Y/
βC189N/βC218V

Enhancement in enzyme 
activity, melting tem-
perature

(Cheng et al. 2020a)
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immobilizing NHases is emerging. Common 
immobilization methods such as covalent binding, 
embedding, cross-linking, and physical adsorp-
tion have also been reported, of which embedding 
is often used to immobilize the cells containing 
NHase (Table 4).

Commonly, immobilization of NHase has the 
advantages mentioned above, but also introduces a 
series of issues, such as unstable properties of the 
immobilizing supports under extreme conditions, 
partial loss of catalytic activity of biocatalyst, the 
mismatch of immobilization carrier size (Velankar 
et al. 2010). We hope the future research will make 
a breakthrough in improving the applicability and 
stability of the immobilized carrier.

Conclusion and Future Perspectives

The history of NHase since its discovery to date 
is the journey from academia to industry, and 
researchers have witnessed the rapid progress of 
NHase in aspects of industrial application, natural 
distribution, enzyme screening, molecular modifica-
tion and significant biotechnology in amide produc-
tion. NHase, as a green biocatalyst, is launching a 
revolutionary wave at the forefront of green bioman-
ufacturing, e.g., the agricultural, pharmaceutical, 
material, and textile industries, along with the fields 
of chemical engineering and environmentalstudies. 
What is exciting that NHase has been successfully 
used for the industrial production of acrylamide, 

Table 3  NHase-catalyzed transformation of nitriles to the corresponding amides

Product Source of NHase Production (g/L) Reference

Acrylamide R. rhodochrous J1 650 (Nagasawa et al. 1991)
R. rhodochrous PA-34 600 (Prasad et al. 2010)
Brevibacterium sp. CH2 200 (Lee et al. 1993)
P. chlororaphis 100 (Nagasawa et al. 1987)

Nicotinamide R. rhodochrous J1 1456 (Nagasawa et al. 1988)
R. rhodochrous PA-34 855 (Prasad et al. 2007)

2-(1H-indol-2-yl)-acetamide R. rhodochrous J1 1045 (Mauger et al. 1989)
Butyramide R. rhodochrous PA-34 597 (Raj et al. 2007a)
5-Cyanovaleramide Pseudomonas putida NRRL-18668 99.5% (adiponitrile) (Cheng et al. 2016)

Comamonas testosteroni 5-MGAM-4D βF37P mutant 94.1% (adiponitrile) (Cheng et al. 2016)
Rhodococcus ruber CGMCC3090 100% (Cheng et al. 2016)
R. rhodochrous J1 βY68T/W72Y mutant 70.5% (adiponitrile) (Cheng et al. 2017)
P. chlororaphis B23 3150 g/g DCW (Hann et al. 1999)

Isonicotinamide R. rhodochrous J1 1099 (Mauger et al. 1989)
Picolinamide R. rhodochrous J1 977 (Mauger et al. 1989)
Indole-3-acetamide Ensifer meliloti CGMCC 7333 294.28 U/mg

(V-max)
(Zhao et al. 2020)

Pyrazine-2-carboxamide R. rhodochrous J1 895 (Mauger et al. 1989)
Lactamide Rhodococcus pyridinivorans NIT-36 14.5 g/g DCW/h (Singh et al. 2019)
2H-thiopyran-6-carboxamide R. rhodochrous J1 210 (Mauger et al. 1989)
2,6-Difluorobenzamide Aurantimonas manganoxydans ATCC BAA-1229 314 (Yang et al. 2019)

R. rhodochrous J1 360 (Mauger et al. 1989)
Benzamide R. rhodochrous J1 489 (Mauger et al. 1989)
Adipoamide P. putida NRRL-18668 βL37Y mutant 98.8% (adiponitrile) (Cheng et al. 2016)

C. testosteroni 5-MGAM-4D 100% (adiponitrile) (Cheng et al. 2016)
R. rhodochrous J1 98.6% (adiponitrile) (Cheng et al. 2017)
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nicotinamide, etc. Although rapid progress has 
been made in the past decade, the performance of 
most NHases cannot achieve the goals required for 
large-scale industrial production because of the 
notable instability, unsatisfactory catalytic activity, 
unwanted byproduct formation, etc. In spite of the 
efforts discussed herein to exploit NHase for vari-
ous applications, a great deal of work is still neces-
sary to achieve the goals of “Green and Sustainable 
Chemistry” which are being faced by the scientific 
community, in both academia and industry. Emerg-
ing biological tools and strategies in synthetic biol-
ogy, protein engineering, and bioinformatics have 
been developed to not only improve the properties 
of NHase but also generate novel process technolo-
gies, which will be promising for the improvement 
of the NHase as a robust biocatalyst. Especially, as 
-omics and other high throughput technologies have 
been rapidly developed, the promise of applying 

machine learning (ML) techniques in NHase design 
has started to become a reality.
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Table 4  Nitrile biotransformation processes with immobilized cells and enzymes

Immobilization method-
ology

Support carrier matrix Substrates for bioconver-
sion

Product Reference

Cross-linking (immobi-
lized enzymes)

Glutaraldehyde-CLEA Acrylonitrile Acrylamide (van Pelt et al. 2008)

Cross-linking (immobi-
lized enzymes)

Polysulfone
hollow-fiber

Acrylonitrile Acrylamide (Sun et al. 2004)

Entrapment (immobi-
lized enzymes)

Bio-MOF(Co-Cys) 3-Cyanopyridine Nicotinamide (Wang et al. 2020a)

Cross-linking (immobi-
lized enzymes)

PVA/chitosan biocom-
patible complex

3-Cyanopyridine Nicotinamide (Pawar and Yadav 2014)

Cross-linking (immobi-
lized enzymes)

Glutaraldehyde-CLEA Several nitriles Corresponding
amides

(Kubác et al. 2008)

Adsorption (immobilized 
cells)

Charcoal Acrylonitrile Acrylamide (Maksimov et al. 2007)

Entrapment (immobi-
lized cells)

LentiKats® Several nitrile
compounds

Corresponding amides 
and

carboxylic acids

(Kubac et al. 2006)

Entrapment (immobi-
lized cells)

Agar Acrylonitrile Acrylamide (Raj et al. 2007b)

Entrapment (immobi-
lized cells)

Alginate and cellulose 
triacetate

Propionitrile Propionamide (Chen et al. 2010)

Entrapment (immobi-
lized cells)

Chitosan-N, 
N′-Methylene bis-
acrylamide

Lactonitrile Lactamide (Singh et al. 2020)

Biomimetic miner-
alization (immobilized 
enzymes)

Zeolitic imidazolate 
framework (ZIF-67)

3-Cyanopyridine Nicotinamide (Pei et al. 2020)

Entrapment (immobi-
lized cells)

Agar Butyronitrile Butyramide (Singh et al. 2018)
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