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Abstract  Nanocomposites selectively induce can-
cer cell death, holding potential for precise liver 
cancer treatment breakthroughs. This study assessed 
the cytotoxicity of gold nanocomposites (Au NCs) 
enclosed within silk fibroin (SF), aptamer (Ap), and 
the myogenic Talaromyces purpureogenus (TP) 
against a human liver cancer cell (HepG2). The ulti-
mate product, Ap-SF-TP@Au NCs, results from a 
three-step process. This process involves the myo-
genic synthesis of TP@Au NCs derived from TP 
mycelial extract, encapsulation of SF on TP@Au NCs 
(SF-TP@Au NCs), and the conjugation of Ap within 

SF-TP@Au NCs. The synthesized NCs are analyzed 
by various characteristic techniques. Ap-SF-TP@
Au NCs induced potential cell death in HepG2 cells 
but exhibited no cytotoxicity in non-cancerous cells 
(NIH3T3). The morphological changes in cells were 
examined through various biochemical staining meth-
ods. Thus, Ap-SF-TP@Au NCs emerge as a promis-
ing nanocomposite for treating diverse cancer cells.
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Introduction

Liver cancer stands as the leading global cause of 
mortality (Anwanwan et al. 2020), with a 100% fatal-
ity rate within a year, underscoring its profound medi-
cal significance (Wang et al. 2019). Most instances of 
liver cancer are identified at an advanced stage, neces-
sitating intrusive procedures as the only recourse for 
potential cure, yielding a survival rate ranging from 
10 to 30% (Kudo et  al. 2020). Despite notable pro-
gress in treatment modalities such as surgery, chem-
otherapy, and radiotherapy, the ability to eliminate 
malignant cells remains relatively limited, and sur-
vival rates show marginal improvement (Calderaro 
et al. 2019). Hence, there is an urgent need for inno-
vative screening, diagnostic, and therapeutic tools.

Nanotechnology has emerged as a promising solu-
tion to the significant drawbacks associated with cur-
rent cancer treatments, such as chemotherapy and 
radiation therapy (Madamsetty et al. 2019; Indumathi 
et  al. 2024). These traditional methods often lead to 
systemic toxicity, damage to healthy tissues, and lim-
ited efficacy against certain cancer types (Marques 
et al. 2020; Yeom et al. 2023; Aghebati-Maleki et al. 
2020). Metal oxide nanoparticles, in particular, offer 
promise in anticancer treatment due to their unique 
properties (Madamsetty et al. 2019). They can be spe-
cifically tailored to target cancer cells, enhance drug 
delivery, and provide imaging capabilities, improv-
ing precision in treatment while minimizing harm 
to normal tissues. Additionally, certain metal oxide 
nanoparticles exhibit properties such as photother-
mal therapy and radiotherapy enhancement, further 
augmenting their therapeutic potential (Medici et  al. 
2021; Peng and Liang 2019). The biocompatibility 
and biodegradability of these nanoparticles, coupled 
with their capacity to act as carriers for therapeutic 
agents, make them attractive candidates for cancer 
treatment strategies. Despite these promising attrib-
utes, ongoing research is crucial to address safety 
concerns and ensure regulatory approval for their 
clinical use. The integration of metal oxide nanopar-
ticles within the realm of nanotechnology holds the 
potential for more effective and targeted cancer thera-
pies, marking a significant advancement in the field 
(Farzin et al. 2020).

Gold nanoparticles play a pivotal role in anticancer 
treatment due to their selective targeting ability, facil-
itating precise drug delivery with minimal impact on 

healthy cells (Goddard et al. 2020; Tian et al. 2022). 
These nanoparticles are adept at harnessing photo-
thermal therapy (PTT), converting light into heat, 
and enabling localized cancer cell ablation. Func-
tioning as drug carriers, gold nanoparticles ensure 
controlled release and enhanced drug bioavailability 
(Navyatha and Nara 2023; Ameen et al. 2023). Their 
unique optical properties make them valuable for 
imaging contrast in diagnostic techniques like com-
puted tomography (CT) and photoacoustic imaging. 
However, the use of gold nanoparticles in biomedi-
cal applications raises concerns about potential toxic-
ity and uncertainties regarding their long-term fate in 
the body. To overcome these challenges, the present 
research has explored encapsulating gold nanopar-
ticles within SF, taking advantage of SF’s biocom-
patibility and biodegradability. This encapsulation 
provides a protective shell, reducing direct interac-
tion with biological systems and mitigating potential 
toxicity. The controlled degradation of SF allows for 
a gradual release of encapsulated gold nanoparti-
cles, enhancing their safety profile. This innovative 
approach improves the suitability of gold nanoparti-
cles for various biomedical applications, including 
myogenic applications, where considerations of bio-
compatibility and controlled release are paramount.

SF, synthesized in the silk glands of the Bombyx 
mori silkworm, constitutes specialized, high-molec-
ular-weight proteins resembling block copolymers 
(Qian et  al. 2020). Biotechnological applications 
involving SF proteins combined with colloidal Au 
NPs are viable (Ranjana et al. 2020; Hosseini et al. 
2023; Ahmad et al. 2019). Even though native silk 
materials are quite strong and biocompatible, they 
aren’t always up to snuff for some uses. The pro-
gress in physical, chemical, and genetic engineer-
ing in silks is modified and functionalized on mul-
tiple levels to attain specific qualities (Ahmad et al. 
2019). One potential approach to obtaining silk 
derivatives and conjugation products with photosen-
sitivity, cell attachment capacity, and anti-adhesion 
ability is chemically modifying the silk polymer 
chain via reactive amino acid groups. The delivery 
of anticancer drugs for cancer treatment has been 
the primary focus of research on tiny drug delivery 
from SF-based nanoparticles (Ranjana et al. 2020). 
Problems with biodistribution, systemic toxicity, 
and unwanted side effects plague the majority of 
today’s anticancer drugs. Anticancer drugs must 
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reach the targeted tumor tissues via many path-
ways in the body while preserving as much of their 
therapeutic efficacy as possible outside the blood-
stream (Dam et al. 2022; Khalifehzadeh and Arami 
2020; Zhang et  al. 2010; Some et  al. 2020; Unal 
et  al. 2020). Anticancer medicine can passively or 
actively target tumor cells, killing them off while 
sparing healthy cells from harm once they reach 
the tumor location. Also, for the drugs to work as 
intended, their release into the bloodstream needs to 
be carefully regulated. A promising new approach 
to cancer treatment has emerged with the creation 
of SF nanoparticles loaded with anticancer drugs. A 
lot of people are interested in SF nanoparticles that 
have anticancer drugs such as emodin, paclitaxel 
(PTX), curcumin, methotrexate, floxuridine, doxo-
rubicin (DOX), and cis-dichlorodiamminoplatinum 
(Lakshmeesha Rao et al. 2017; Tunali et al. 2023).

The combination of Ap with SF encapsula-
tion on gold nanoparticles presents a promising 
approach for anticancer drug delivery. Ap enables 
targeted delivery to cancer cells, minimizing off-
target effects, while SF provides biocompatibility, 
biodegradability, and controlled drug release. The 
incorporation of gold nanoparticles enhances thera-
peutic effects and offers imaging capabilities. This 
synergistic system reduces potential toxicity con-
cerns associated with bare nanoparticles, ensuring 
a safer and more effective anticancer drug delivery 
platform (Khorshid et al. 2023; Kar et al. 2023).

Endophytic fungi coexist within plant tissues with-
out causing harm to the host. Myogenic NPs pro-
duced by endophytic fungi exhibit potential antioxi-
dant, antibiotic, and anticancer effects (Akther et  al. 
2019; Munawer et al. 2020; Janakiraman et al. 2019). 
TP, an endophytic fungus residing in both marine and 
terrestrial plants, surpasses most endophytes in its 
ability to generate novel metabolites (such as butana-
mide, propanoic acid, phenol, urea, and pigment) and 
nanoparticles with anticancer, antibacterial, antioxi-
dative, and antiproliferative properties (Akther et  al. 
2019; Munawer et al. 2020; Janakiraman et al. 2019). 
SF, owing to its low toxicity and biocompatibility, 
is employed in the creation of drug-delivery devices 
(Hu et  al. 2019; Danagoudar et  al. 2020; Clarance 
et  al. 2020; Danagoudar et  al. 2020). The present 
study aimed at myco-synthesis of gold nanocompos-
ites utilizing TP. This study aimed to enhance cyto-
toxicity in human liver cancer cells by synthesizing 
TP@Au NCs through TP mycelial extract encapsu-
lated in SF (SF-TP@Au NCs), followed by conjuga-
tion with an AP (Ap-SF-TP@Au NCs) (Fig. 1).

Materials and methods

Fabrication of TP@Au NCs using mycelial extract of 
TP

The fabrication of TP mycelial extracts followed 
established protocols as previously published (Mani 

Fig. 1   The graphical representation of fabrication of aptamer-coupled silk fibroin encapsulated myogenic gold nanocomposites (Ap-
SF-TP@AuNCs) for effective treatment of liver cancer
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et  al. 2021). In summary, 500  ml Erlenmeyer flasks 
were inoculated with 2  ml of fungal spore suspen-
sions (7 × 107 spores/mL) and placed in a rotary 
shaker at 180  rpm at 27  °C for a week. After filter-
ing the mycelial extract through the Whatman No.1 
filter paper, it was collected. Subsequently, 25 ml of 
the mycelial extract was mixed with 100 ml of AuCl 
(10  mM) solution, and the mixture was placed in a 
shaking incubator at 29 °C, 180 rpm, in the dark for 
72 h. To monitor the synthesis of TP@Au NCs, the 
UV–visible spectrum was utilized to document the 
gradual transformation of the solution’s color from 
yellowish to pink and finally to dark purple. After 
centrifugation at 17,000  rpm to collect the TP@
Au NCs, the powder was lyophilized for subsequent 
experiments.

Preparation of SF solution

Aqueous SF solution was extracted from Bombyx 
mori cocoons using a well-established and effective 
method (Hu et al. 2019). In summary, 5 g of Bombyx 
mori cocoons underwent degumming in a Na2CO3 
solution (0.02 M, 2 µL) at 100 °C for 0.5 h, followed 
by rinsing for 20  min in DI water with continuous 
stirring. Degummed silk was achieved after three 
processing rounds. To further process the degummed 
silk, it was immersed in a LiBr solution (9.3 mol/L, 
w/v = 15:100) at 60  °C for 4 h with continuous stir-
ring. The subsequent step involved a 72-h room-
temperature dialysis against DI water to eliminate the 
salt (14  kDa  MW cutoff, Millipore). Ultrafiltration 
was employed to further concentrate the obtained SF 
solution to a concentration of 0.24 g/ml. Concentra-
tion measurement involved placing 1 ml of silk solu-
tion on a Petri plate and drying it to a constant weight 
in an oven set to 60 °C. A sample was considered to 
have maintained a constant weight if there was no 
more than a 0.1% shift in the weight percent of solids 
after 1  h of warming. Silk concentration was deter-
mined by subtracting the weight of the empty petri 
plate from the total weight of the dry silk and petri 
plate.

Encapsulation of SF on TP@Au NCs

A previously published technique for encapsulating 
TP@Au NCs in SF was adopted (Yu et al. 2023). In 
brief, 75 mg of SF was immersed in 20 ml of water 

and stirred at 90  rpm in a magnetic stirrer at room 
temperature for 12 h. On a subsequent day, 10 mg of 
TP@Au NCs was added to the SF solution, and the 
mixture underwent agitation for 30  min at 90  rpm 
before being sonicated for 10  min. A solution of 
1.0  mg/ml of sodium triphosphate pentabasic was 
gently added to the TP@Au NCs-SF solutions, which 
were then stirred at 100  rpm at room temperature 
in the darkness for 24  h to create SF-TP@Au NCs. 
Centrifugation at 17,000  rpm for 15  min was then 
employed to extract the SF-TP@Au NCs.

Conjugation of Ap on SF‑TP@Au NCs

Activation of covalent bonds in SF-TP@Au NCs via 
the EDC and NHS reaction facilitated the attach-
ment of the DNA AP through conjugation. Specifi-
cally, SF-TP@Au NCs (2  ml, 1  mg/ml) were com-
bined with EDC (25 µL, 0.1 mg/ml) and NHS (10 µl, 
0.1  mg/ml), and the mixture was stored at 4  °C for 
2  h. Subsequently, the SF-TP@Au NCs were incu-
bated at 4 °C for a full 24 h after the addition of 30 µL 
of the AP solution. Following this, a dialysis mem-
brane was employed to dialyze the Ap-SF-TP@Au 
NCs against deionized water at 4 °C for 12 h. Finally, 
the Ap-SF-TP@Au NCs were lyophilized into a sin-
gle batch for use in subsequent research. Additionally, 
agarose gel electrophoresis confirmed AP conjuga-
tion with SF-TP@Au NCs (Abdussalam-Mohammed 
et al. 2023). The schematic diagram of the synthesis 
is given in Fig. 1.

In vitro release

To determine the number of TP@Au NCs released 
in vitro from Ap-SF-TP@Au NCs, diffusion through 
a dialysis membrane was employed. In brief, experi-
ments on the release of pH-responsive nanocompos-
ites utilized acetate buffer (pH 5.4) and phosphate 
buffer saline solution (pH 7.4) as representatives 
of varied pH solutions. The dialysis bag was loaded 
with a buffer solution containing Ap-SF-TP@Au 
NCs, diluted to 1  mg/ml, within a pH range of 7.4 
to 5.4 (14  kDa). Subsequently, the dialysis bag was 
immersed in a 50  ml dissolving buffer (pH 5.4 and 
7.4) at 37 °C with gentle stirring (100 rpm). Aliquots 
of the dissolution buffer were taken every 5 ml over 
an hour, and a UV spectrophotometer was utilized to 
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analyze them, determining the rate of nanocomposite 
release (Shahabadi et al. 2019).

Cell culture

Human liver cancer cells (HepG2) and mouse embry-
onic fibroblasts (NIH3T3) were cultured in high-glu-
cose RPMI-1640 medium supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin–strepto-
mycin at 37 °C in a humidified atmosphere with 5% 
CO2. TP, TP@Au NCs, SF-TP@Au NCs, Ap-SF-
TP@Au NCs, and cisplatin (100  mg/ml) in DMSO 
were prepared at different concentrations with RPMI 
1640; in both control and treated cells, the final con-
centration of DMSO was less than 0.02%.

HepG2 and NIH3T3 cells were plated onto 
96-well plates (5000 cells/well) and left overnight 
to form a semi-confluent monolayer. Cell monolay-
ers were treated in quadrants with TP, TP@Au NCs, 
SF-TP@Au NCs, Ap-SF-TP@Au NCs, and cisplatin 
(0–2000 μg/ml) for an exposure time of 24 h. Subse-
quently, MTT solution in PBS (5 mg/ml) was added, 
and the formation of formazan crystals was visually 
confirmed. DMSO (100  µL/well) was added to dis-
solve the formazan crystals, after which the absorb-
ance was read at 470  nm. Cell proliferation was 
assessed based on the optical density values and rep-
resented as a percentage relative to the control. IC50 
values (the concentration of the sample causing 50% 
loss of cell proliferation compared to the vehicle con-
trol) were determined using non-linear regression 
curve fitting of the dose–response plots on GraphPad 
Prism V.8.0 software (Giriraj et  al. 2022; Swamina-
than et al. 2022; Kalaiarasi et al. 2022).

Apoptotic detection by fluorescence staining

The HepG2 cell density (1 × 10^5 cells) was cul-
tured for 24 h. Following this period, the cells were 
treated with TP, TP@Au NCs, SF-TP@Au NCs, and 
Ap-SF-TP@Au NCs and kept for incubation. The 
control cells remained untreated. On a subsequent 
day, the IC50 concentration of the treated TP, TP@
Au NCs, SF-TP@Au NCs, and Ap-SF-TP@Au NCs 
was mixed with acridine orange (AO) and ethidium 
bromide (EB) (5  mg/ml) on a coverslip (Mohamed 
Subarkhan et al. 2016; Sathiya Kamatchi et al. 2020; 
Mohan et  al. 2018; Swaminathan et  al. 2021). After 
a 5-min incubation, the cells were washed with PBS 

thrice to remove unstained samples (at 5-min inter-
vals) and photographed under a fluorescence micro-
scope (Olympus microscopy-CKX53, Japan).

4′, 6-diamidino-2-phenylindole (DAPI) assay 
was conducted to recognize cell death. In brief, the 
HepG2 cell density (1 × 105cells) was cultured for 
24  h. Following this period, the cells were treated 
with TP, TP@Au NCs, SF-TP@Au NCs, and Ap-
SF-TP@Au NCs and kept for incubation. The control 
cells were left untreated. On the subsequent day, the 
IC50 concentration of the treated TP, TP@Au NCs, 
SF-TP@Au NCs, and Ap-SF-TP@Au NCs was mixed 
with DAPI dye (100  µL, 1  µg/ml) on a coverslip 
(Subarkhan et al. 2016; Wang et al. 2020; Mohamed 
Kasim et al. 2018). After a 5-min incubation, the cells 
were washed with PBS thrice to remove unstained 
samples (at 5-min intervals) and photographed under 
a fluorescence microscope (Olympus microscopy-
CKX53, Japan).

Results and discussion

Nanocomposites characterization

The analysis of the UV–visible spectrum provides 
insights into the composition, size, and structure 
of nanocomposites (Dykman and Khlebtsov 2012; 
Ganapathy et  al. 2024). Au NCs exhibit a distinct 
absorbance band in the visible spectrum due to their 
localized surface plasmon resonance (LSPR). Smaller 
nanospheres typically display predominant absorption 
with peaks around 520 nm, while larger spheres scat-
ter light more significantly, resulting in broader and 
more diffuse peaks. As their size increases, larger 
spheres scatter light, exhibiting larger optical cross-
sections (Avellan et al. 2017; Rai et al. 2010; Diegoli 
et al. 2006). Changes in the nanocomposite shape may 
lead to an expected blue or red shift in the maximum 
absorption. This alteration in the size of the optical 
cross-section induces changes in refractive index and 
reflectivity. Color shifts from yellow to light pink 
(Fig. 2A) suggest that the nanocomposites’ size may 
exceed 25 nm, and the shape may deviate from per-
fect spherical, indicative of the LSPR relationship of 
gold. Various endophytic fungi have demonstrated the 
production of Au NCs with a similar UV–Vis spec-
trum. Furthermore, the peak absorbance of SF-TP@
Au NCs exhibited a slight red-shift compared to that 
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of TP@Au NCs (Fig. 2B), implying that the diameter 
of SF-TP@Au NCs is expected to be larger than that 
of TP@Au NCs, or the shape of SF-TP@Au NCs may 
differ from that of TP@Au NCs. The concentration of 
TPP, its absence, or the method of SF encapsulation 
may also play a role in the observed size variations 
(Elamin et al; 2023).

Dynamic Light Scattering (DLS) was employed 
to characterize SF-TP@Au NCs and TP@Au NCs 
for their diameter, polydispersity index (PDI), and 
δ-potential. The measurements indicated that TP@

Au NCs had a size of 57.24 ± 2.58 nm, while SF-TP@
Au NCs measured 92.48 ± 3.21 nm (Fig. 3A, B). The 
δ-potential, representing the charge on the particle’s 
exterior, is crucial for stability and dispersion. TP@
Au NCs displayed a δ-potential of −59.48 ± 3.78 mV, 
while SF-TP@Au NCs exhibited a δ-potential 
of 46.79 ± 1.25  mV (Fig.  4A, B). The negative 
δ-potential of TP@Au NCs and the positive charge 
of SF-TP@Au NCs, as revealed by the zeta find-
ings, indicate the stability conferred by the capping 
and encapsulating of SF and fungal metabolites. The 

Fig. 2   Assessment of 
UV–Vis spectrophotometer. 
(A) Different time interval 
effects of fabrication of 
TP@AuNCs. (B) UV–Vis 
spectral investigation of 
mycelial extract TP, AuCl, 
TP@AuNCs, and SF-TP@
AuNCs

Fig. 3   Particle size 
measurements investigated 
by DLS. The fabricated 
myogenic gold nanocom-
posites (TP@AuNCs) and 
silk fibroin encapsulated 
(SF-TP@AuNCs) were 
prepared covalent bonding, 
and ionic gelation methods 
for the size were determined 
by DLS analysis
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stability of the Ap-SF-TP@AuNCs was examined in 
particle diameter and polydispersity index (PDI) of 
the in water, PBS, and culture medium for 7  days. 
The particle diameter and polydispersity index (PDI) 
underwent no substantial changes in different condi-
tions during the 7 days, which indicates the medical 
suitability of SF-TP@AuNCs (Fig. 5A, B).

Moreover, the X-ray diffraction (XRD) meas-
urements confirmed the crystalline nature of both 
nanocomposites (Fig.  6A). In TP@Au NCs, peaks 
at (220), (200), and (111) with 2ɵ values of 66.24°, 
45.44°, and 31.73°, respectively, were identified as 
signatures of TP@Au NCs. SF-TP@Au NCs dis-
played Bragg reflection peaks at (222), (311), (220), 
(200), and (111), with respective 2θ values of 83.98°, 
75.27°, 56.48°, 45.48°, and 31.72° (Fig. 6B). Intense 

diffraction at 31.73° for TP@Au NCs and 45.48° for 
SF-TP@Au NCs indicated the growing size direction 
of zero-valent Au in the (111) directions for TP@
Au NCs and the (200) direction for SF-TP@Au NCs. 
The distinctive XRD patterns of SF-TP@Au NCs 
and TP@Au NCs with different angle values confirm 
their differences in form and size.

Fourier transform infrared (FTIR) analysis was 
conducted to identify the molecular structures of 
TP, TP@Au NCs, and SF-TP@Au NCs (Fig. 7). The 
peaks at 1638 cm−1 and 2924 cm−1 in the TP extract 
were attributed to -C = C and -C-H alkanes stretch-
ing, and cyclic alkenes, respectively. These func-
tional vibrations indicated the presence of phenolic 
chemicals in the TP extract. The remaining peaks 
at 1547  cm−1, 1308  cm−1, 1246  cm−1, 1151  cm−1, 

Fig. 4   Zeta potential 
sizes investigated by DLS. 
Myogenic gold nanocom-
posites (TP@AuNCs) and 
silk fibroin encapsulated 
(SF-TP@AuNCs) were 
prepared covalent bonding, 
and ionic gelation methods 
for the zeta potential were 
determined by DLS analysis

Fig. 5   Stability investiga-
tions of the Ap-SF-TP@
AuNCs. (A and B) The 
stability of the Ap-SF-TP@
AuNCs were examined 
in particle diameter, and 
polydispersity index (PDI) 
of the in water, PBS and 
culture medium for 7 days
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and 1028  cm−1 were attributed to fungal metabo-
lites such as pigment, terpenoids, and enzymes. In 
the spectra of TP@Au NCs, the peaks at 2919 cm−1, 
1451  cm−1, and 1044  cm−1 were assigned to -C-N 
and -C-H stretching, respectively. These peaks were 
similar to those observed in the TP extract, confirm-
ing the capping of TP extracts on the surface of the 
nanoparticles. In SF-TP@Au NCs, significant peaks 
at 1741  cm−1 and 1631  cm−1 were observed, corre-
sponding to -N–H and -C = O stretching of amide I 
and II in SF, respectively. The nitrogen-rich AP-func-
tionalized surface of SF-TP@Au NCs did not result in 
noticeable changes in peaks. The verification of AP 

conjugation in nanocomposites was consistent with 
previous studies that utilized agarose gel electropho-
resis (saravanakumar et al. 2020).

Transmission electron microscopy (TEM) image 
illustrates the size and morphology of the nanocom-
posites (Fig. 8), both measuring less than 100 nm in 
size. Due to the inclusion of SF in their construction, 
SF-TP@Au NCs and Ap-SF-TP@Au NCs appeared 
larger than TP@Au NCs. TP@Au NCs exhibited 
spherical irregularities, while SF-Au NCs displayed 
a hexagonal crystal shape (Fig.  7). Variations in 
nanocomposite size and shape were attributed to the 
encapsulation of SF, cross-linked TP, and the pH of 
the nanocomposite solution. These TEM findings 
were consistent with the visible-light spectroscopy 
results. Ap-SF-TP@Au NCs exhibited a size and 
shape comparable to SF-TP@Au NCs (Fig.  8). It’s 
important to note that TEM evaluates the nanocom-
posites directly, while DLS is performed on particles 
in an aqueous medium. TEM examination revealed 
a reduction in particle size, while DLS measures the 
hydrodynamic size of the particles. The pH-depend-
ent release of the nanocomposites was also evalu-
ated across a range of values (Fig. 9). Given the pH 
sensitivity of SF, the release of TP@Au NCs was 
notably more pronounced at pH 5.4 compared to pH 
7.4. pH-sensitive drug release systems are designed 
to enhance drug delivery at specific locations in the 
human body where pH levels differ. In this context, 
the responsiveness of drug to a lower pH could be 
advantageous for targeted drug delivery, such as in 
environments associated with certain types of tumors 
or inflammatory conditions.

Fig. 6   The particle size 
and defects of Ap-SF-TP@
AuNCs were confirmed by 
the XRD pattern. XRD for 
fabricated (A) myogenic 
gold nanocomposites (TP@
AuNCs) and (B) silk fibroin 
encapsulated (SF-TP@
AuNCs)

Fig. 7   FTIR investigated functional group shifts in TP, TP@
AuNCs, and SF-TP@AuNCs
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Cytotoxicity

The MTT assay was employed to assess the cytotox-
icity of TP extract, TP@Au NCs, SF-TP@Au NCs, 
Ap-SF-TP@Au NCs, and cisplatin in mouse embry-
onic fibroblasts (NIH3T3) and human liver cancer 
cells (HepG2) (Fig.  10). All tested samples exhib-
ited dose-dependent cytotoxicity in both NIH3T3 
and HepG2 cells. TP and TP@Au NCs significantly 
reduced NIH3T3 cell viability, while SF-TP@
Au NCs, Ap-SF-TP@Au NCs, and cisplatin did 
not (Fig.  10). The higher toxicity of TP and TP@
Au NCs to NIH3T3 cells was attributed to fungal 
toxic chemicals. The lower cytotoxicity of SF-TP@

Au NCs and Ap-SF-TP@Au NCs in NIH3T3 cells 
was explained by their reduced internalization due 
to a lack of nucleolin expression and a slower pH 
decrease, resulting in less cytotoxicity and a lower 
pH-sensitive release of nanoparticles. In contrast, 
SF-TP@Au NCs and Ap-SF-TP@Au NCs demon-
strated higher cytotoxicity in HepG2 cells compared 
to TP and TP@Au NCs, attributed to the acidic pH 
milieu and higher nucleolin expressions in cancer 
cells (Fig. 10).

Optical microscopic images depicting different 
viability concentrations are presented in Fig.  11, 
revealing morphological changes in NIH3T3 and 
HepG2 cell lines. The fabricated nanocomposites 
induced cell death in HepG2 cancer cells while 
sparing non-cancerous NIH3T3 cells. Ap-SF-TP@
Au NCs resulted in 60% cell death in HepG2 cells 
with no cytotoxicity towards NIH3T3 cells. The 
less cytotoxicity of fabricated Ap-SF-TP@AuNCs 
reveals high biocompatibility compared to can-
cer cells. These outcomes show the in  vitro safety 
aspects of Ap-SF-TP@AuNCs. With remarkable 
biocompatibility, low cost, economic safety, water 
solubility, and surface bioactivity, the resulting 
Ap-SF-TP@AuNCs could be a promising drug can-
didate for anticancer agents. The targeted and pH-
responsive release to nucleolin receptors made Ap-
SF-TP@Au NCs the most effective anticancer agent 
among the samples.

Fig. 8   Morphological shape of Ap-SF-TP@AuNCs confirmed by TEM analysis. TEM images of TP@AuNCs (scale bar 10 nm), 
SF-TP@AuNCs (scale bar 20 nm), and Ap-SF-TP@AuNCs (scale bar 100 nm)

Fig. 9   In vitro drug release profile. TP-AuNCs release from 
the silk fibroin response to the different pH at various intervals
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Fig. 10   In vitro cytotox-
icity of various samples 
assessed by MTT assay. 
NIH3T3 non-cancerous 
cells and HepG2 liver 
cancer cells subjected 
to the TP, TP@AuNCs, 
SF-TP@AuNCs, Ap-SF-
TP@AuNCs and Cisplatin 
(commercial drug) in 24-h 
incubation

Fig. 11   Optical microscopic images of NIH3T3 non-cancerous cells and HepG2 liver cancer cells. Morphological changes of the 
NIH3T3 non-cancerous cells and HepG2 liver cancer cells with Ap-SF-TP@AuNCs in for 24-h
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AO‑EB dual staining assay

Anticancer drugs typically induce apoptosis in can-
cer cells (Zhao et  al. 2019), making the investiga-
tion of apoptosis more crucial than relying solely on 
the standard MTT cell viability test, which does not 
distinguish between apoptotic and dead cells. The 
dual AO/EB assay is a fast, simple, and highly reli-
able method for detecting apoptosis. In Fig. 12, fluo-
rescence images show control HepG2 cells and cells 
treated with TP, TP@Au NCs, SF-TP@Au NCs, and 
Ap-SF-TP@Au NCs at the IC50 concentration. DNA 
staining and examination of fluorescence microscopy 
images enable the discrimination between normal, 
apoptotic, and necrotic HepG2 cell morphology (Lak-
shmeesha Rao et al. 2017).

Under the microscope, healthy cells exhibit green 
fluorescence (Fig.  12), while apoptotic cells fluo-
resce orange due to nuclear blebbing and shrinkage. 
Necrotic cells appear red in fluorescence (Fig.  12) 
because the toxicity of TP, TP@Au NCs, SF-TP@Au 
NCs, and Ap-SF-TP@Au NCs has compromised their 
membranes. The AO-EB assay demonstrates that 
Ap-SF-TP@Au NCs at the IC50 concentration limit 
growth and induce apoptosis, as evidenced by the 
color transition from green to red. AO staining of nor-
mal, live cells with intact membranes results in green 

fluorescence, while EB staining of damaged mem-
branes results in orange/red fluorescence following 
the intercalation of both dyes. These findings align 
with those described by Hu et al. who found that the 
addition of aptamer and chitosan-encapsulated TP@
Au NCs to liver cancer cells induced apoptosis char-
acterized by nuclear fragmentation and cell mem-
brane blebbing.

DAPI staining assay

DAPI, a nuclear fluorescent dye that strongly binds 
to DNA, was utilized to stain HepG2 cells and deter-
mine whether TP, TP@Au NCs, SF-TP@Au NCs, 
and Ap-SF-TP@Au NCs mediate cell death. Micro-
graphs of DAPI staining in control and treated HepG2 
cells at 24  h are presented in Fig.  13. When DAPI 
binds to DNA, it induces a bright blue fluorescence 
in the stained cells. In comparison to control cells, 
HepG2 cells treated with Ap-SF-TP@Au NCs exhib-
ited a more intense blue fluorescence, indicating more 
condensed or fragmented chromatin (Fig. 13). These 
results indicated that Ap-SF-TP@Au NCs induced 
enhanced dose-dependent apoptosis in HepG2 cells. 
Additionally, HepG2 cells exposed to Ap-SF-TP@Au 
NCs lost their ability to attach, and their membranes 
appeared to degrade, suggesting that the particles 

Fig. 12   Morphological changes investigated by AO-EB stain-
ing images were investigated by fluorescence microscope. 
HepG2 liver cancer cells subjected to the TP, TP@AuNCs, 

SF-TP@AuNCs, Ap-SF-TP@AuNCs for 24-h incubation. 
Respective apoptosis ratio of the fluorescence microscopy
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may dissolve cells by activating membrane-precipitat-
ing proteins.

The findings of this study suggest that Ap-SF-
TP@Au NCs have anticancer potential for use in 
other procedures. Ap-SF-TP@Au NCs show promise 
as a potential drug for cancer treatment; neverthe-
less, these possibilities need thorough examination, 
and additional studies are necessary to address these 
complexities.

Conclusion

The cytotoxicity of liver cancer cells was enhanced 
by encapsulating SF and conjugating the AP with 
newly developed myogenic TP@Au NCs. Charac-
terization data revealed that SF encapsulation sig-
nificantly influenced the size and shape of TP@Au 
NCs. TP@Au NCs were spherical with a negative 
zeta charge, while Ap-SF-TP@Au NCs were hex-
agonal and positively charged. NIH3T3 cells were 
more sensitive to the cytotoxicity of TP@Au NCs 
compared to Ap-SF-TP@Au NCs. However, Ap-SF-
TP@Au NCs exhibited greater cytotoxicity against 
HepG2 cells than control AP conjugates, likely 
due to the acidic pH of cancer cells. Additionally, 
Ap-SF-TP@Au NCs induced more cytotoxicity in 

HepG2 cells by regulating ROS production and the 
expression of apoptosis-related proteins, as deter-
mined by various cell cytotoxicity assays. The cost 
advantages of Ap-SF-TP@AuNCs stem from an 
economical three-step synthesis process involving 
TP mycelial extract and SF, both known for their 
affordability. This method not only utilizes low-cost 
materials but also demonstrates potent cytotoxic 
activity against human liver cancer cells (HepG2), 
with no harm to non-cancerous cells. The efficient 
and selective cell death induction suggests that Ap-
SF-TP@AuNCs may require lower concentrations 
for therapeutic effects, potentially reducing over-
all treatment costs. The use of sustainable sources, 
such as TP mycelial extract, further contributes to 
the cost-effectiveness of this nanocomposite, mak-
ing it a promising and economically viable candi-
date for treating various cancer cells. In summary, 
further research on animals is needed to understand 
the chemical processes involved when using Ap-SF-
TP@Au NCs.
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