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Abstract 
Objectives  Apiosidases are enzymes that cleave 
the glycosidic bond between the monosaccharides 
linked to apiose, a branched chain furanose found in 
the cell walls of vascular plants and aquatic mono-
cots. There is biotechnological interest in this enzyme 
group because apiose is the flavor-active compound 
of grapes, fruit juice, and wine, and the monosaccha-
ride is found to be a plant secondary metabolite with 
pharmaceutical properties. However, functional and 
structural studies of this enzyme family are scarce. 
Recently, a glycoside hydrolase family member 
GH140 was isolated from  Bacteroides thetaiotaomi-
cron and identified as an endo-apiosidase.

Results  The structural characterization and func-
tional identification of a second GH140 family 
enzyme, termed MmApi, discovered through man-
grove soil metagenomic approach, are described. 
Among the various substrates tested, MmApi exhib-
ited activity on an apiose-containing oligosaccharide 
derived from the pectic polysaccharide rhamnoga-
lacturonan-II. While the crystallographic model of 
MmApi was similar to the endo-apiosidase from Bac-
teroides thetaiotaomicron, differences in the shape 
of the binding sites indicated that MmApi could 
cleave apioses within oligosaccharides of different 
compositions.
Conclusion  This enzyme represents a novel tool for 
researchers interested in studying the physiology and 
structure of plant cell walls and developing biocata-
lytic strategies for drug and flavor production.Marcelo Vizona Liberato and Douglas Antonio Alvaredo 

Paixao have contributed equally to this work.
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Introduction

The d-apiose (Api) is a non-standard furanose found 
in all higher plants and is important for plant growth 
and development (Matoh et  al. 2000; Ishii et  al. 
2001; Ryden et  al. 2003; O’Neill et  al. 2004). Api 
(3-C-(hydroxymethyl)-d-glycerotetrose) is a highly 
unusual branched-chain monosaccharide with a ter-
tiary alcohol, which is a component of the pectic 
structure of rhamnogalacturonan-II (RG-II) and api-
ogalacturonan from aquatic monocots (Pičmanová 
and Møller 2016). Furthermore, Api is present in a 
large number of naturally occurring secondary metab-
olites (glycosides) that are commercially appealing 
because of their beneficial health properties and their 
role in flavor release in food and beverage production. 
The aglycones of these glycosides include phenolics, 
terpenes, terpenoids, saponins, cyanogenic nitriles, 
alcohols, and lactones (Pičmanová and Møller 2016).

Api has a range of biological and chemical prop-
erties that make it useful for various applications in 
medicine and food industry: apiose is a sugar compo-
nent in red wines, which could impact in grape juice 
and wine industries (Kashyap et al. 2001; Maicas and 
Mateo 2005; Guerriero et al. 2018). More than 1000 
apiosylated compounds have been identified as sec-
ondary metabolites from plants, which can be used 
to develop novel pharmaceuticals with antigenotoxic 
(Kaur et  al. 2009), antiulcerogenic, (Shiraga et  al. 
1988) and antiviral properties (Kernan et  al. 1998). 
Apiose-containing glycoside precursors, includ-
ing phenolics, terpenes, saponins, and aliphatic and 
aromatic alcohols, are associated with several vital 
physiological functions in plants, such as pollina-
tor attraction, symbiosis establishment, and cell wall 
construction (Guerriero et  al. 2018). The enzymatic 
breakdown of these glycoside precursors releases 
flavor compounds that are useful for food and phar-
maceutical applications (Guo et  al. 1999; Sarry and 
Gunata 2004; Mastihuba et  al. 2019). Nonetheless, 
only a few apiosidases have been comprehensively 
characterized biochemically and structurally (Dupin 
et al. 1992; Gunata et al. 1997; Guo et al. 1999; Ndeh 

et  al. 2017; Mastihuba et  al. 2019; Potocka et  al. 
2021).

The discovery-based omics of natural lignocel-
lulolytic systems has boosted the discovery of new 
carbohydrate-active enzymes (Tomazetto et al. 2020; 
de Figueiredo et  al. 2021). However, by providing 
a global view, these omics approaches offer general 
insights into lignocellulolytic systems (Franco Cairo 
et al. 2016; Mandelli et al. 2017; Brenelli et al. 2019; 
Granja-Travez et  al. 2020; Carvalho et  al. 2022). To 
support the development of biocatalytic strategies 
for the conversion of plant biomass to value-added 
products, it is necessary to move beyond a discovery-
based approach and focus on enzyme characteriza-
tion, engineering, and optimization initiatives (Santos 
et  al. 2010; Alvarez et  al. 2013, 2015; Diogo et  al. 
2015; Pimentel et al. 2017). In this sense, the abun-
dance of available data represents a great opportu-
nity for the discovery of novel biological functions 
and contributes to the advancement of knowledge in 
molecular and cell biology, particularly within bio-
technological applications (Franco Cairo et al. 2013; 
Tramontina et  al. 2017; Cairo et  al. 2022; Liberato 
et al. 2022).

In this context, the present study aimed to deter-
mine the structural and functional properties of a 
GH140 Apiosidase (MmApi), isolated from a ligno-
cellulolytic-enriched mangrove microbial commu-
nity (LignoManG) (Paixao et  al. 2021). We solved 
the three-dimensional molecular structure of MmApi 
at 2.1 Å, disclosing its folding and substrate binding 
site, which present similarity to the endo-apiosidase 
isolated from Bacteroides thetaiotaomicron. The bio-
chemical data provided insights into the specificity 
of the enzyme, contributing to fundamental concepts 
regarding the structure and function of apiosidases, 
which can be useful in the future for medical and food 
industry applications.

Experimental

Phylogenetic analysis

For phylogenetic analysis, over 200 sequences 
belonging to glycoside hydrolase family GH140 were 
selected from the CAZy server (www.​cazy.​org), cov-
ering major taxonomic groups within the bacterial 
domain. Accession numbers were used to retrieve 

http://www.cazy.org
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sequences from the GenBank database. The GH140 
catalytic module sequences were aligned using 
Clustal Omega (Sievers et  al. 2011) and ambigu-
ously aligned positions were removed using BMGE 
(Criscuolo and Gribaldo 2010). The phylogenetic 
tree was constructed using maximum likelihood with 
1000 ultrafast bootstraps, as implemented in raxML 
(Stamatakis 2014).

Molecular cloning

Previously predicted protein sequence containing the 
DUF4038 domain from LignoManG data were used 
for the current investigation (Paixao et al. 2021). The 
sequence (Mmapi) was amplified by PCR (1350 bp) 
using the primers F (5′- ATA​TAT​GCT​AGC​CAG​ACT​
TAC​ACT​GTA​AGC​-3′) and R (5′- ATA​TAT​GGA​TCC​
TTA​TGG​CTT​CAG​AAA​ATT​C-3′) and the total DNA 
of LignoManG as a template (Paixao et  al. 2021). 
For catalytic domain construction (Mmapi_Cat), the 
Mmapi gene was used as a template for primers F 
(5′- ATA​TAT​GCT​AGC​CAG​ACT​TAC​ACT​GTA​AGC​ 
– 3′) and R (5′- CTC​GAG​TTA​AAA​AGG​GCG​TGA​
TTC​TAT​GAG​ – 3′). The sequences were inserted 
into the pJET1.2/blunt vector for plasmid propagation 
and further cloned into the pET-28a(+) vector using 
the restriction enzymes NheI and BamHI for Mmapi 
and NheI and XhoI for Mmapi_Cat. Escherichia coli 
DH5α was used for genetic manipulations and main-
tenance plasmids. E. coli BL21 (DE) was used as a 
host for recombinant protein expression.

Protein expression and purification

Escherichia coli BL21 (DE3) cells were grown in LB 
medium containing 50 µg/mL kanamin at 37 °C until 
an OD600 of 1.0. The recombinant cells were induced 

with 0.5 mM IPTG for 16 h at 20 °C. The cells were 
harvested by centrifugation and resuspended in 
20 mL/L culture buffer A (100 mM sodium chloride 
and 25 mM Tris–HCl, pH 8.0), followed by disruption 
using sonication. The soluble fraction was isolated by 
centrifugation and the supernatant was loaded onto 
a TALON resin (BD Biosciences), washed with 10 
column volumes of buffer B (100 mM sodium chlo-
ride, 5  mM imidazole, and 25  mM Tris–HCl, pH 
8.0), and eluted with buffer C (100 mM sodium chlo-
ride, 100  mM imidazole, and 25  mM Tris–HCl, pH 
7.0). The fraction containing the purified protein was 
then concentrated and loaded onto a HiLoad 16/600 
Superdex 200 column (GE Healthcare) for size-exclu-
sion chromatography. Buffer (100 mM sodium chlo-
ride and 25 mM Tris–HCl, pH 8.0) was used for col-
umn equilibration and protein elution.

Enzymatic assay

As shown in Table  1, several natural polysaccharides 
and synthetic oligosaccharides were used as substrate 
on enzymatic assays. For natural polysaccharides and 
oligosaccharides, the reactions were tested in different 
buffers (Tris–HCl and sodium phosphate 20 mM) in a 
final volume of 100 µL. The substrates were added to 
a final concentration of 2  mM (or 0.5% considering 
polysaccharides) and the protein concentration varied 
from 1 μg/mL to 5 mg/mL. The reaction mixtures were 
incubated at 40 °C from 1 to 16 h. Enzymatic activities 
were quantitatively determined based on the reducing 
sugar released from the substrates using the 3,5-dini-
trosalicylic acid (DNS) method (Damasio et al. 2017). 
A volume of 100 μL of DNS solution were added to 
final reactions and, after boiling the reaction for 5 min, 
the absorbance was measured at 540 nm. The reactions 
of the oligosaccharides were revealed by thin-layer 

Table 1   Carbohydrates tested as potential substrates in MmApi activity assay

Substrates

Polysaccharide CMC, PASC, Avicel, bacterial microcrystalline cellulose, xylan, xyloglu-
can, arabinan, arabinoxylan, laminarin, lichenan, β-glucan, mannan

Oligosaccharide Cellobiose, cellotetraose, cellohexaose, chitobiose, chitotetraose, xylobiose
PNP-monosaccharides α-Arabinopyranoside, β-arabinopyranoside, α-fucopyranoside, 

β-fucopyranoside, α-galactopyranoside, β-galactopyranoside, 
β-glucopiranoside, α-mannopyranoside, α-rhamnopyranoside, 
α-xylopyranoside, β-xylopyranoside
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chromatography (TLC). TLC plates were placed in 
glass tanks containing running buffer (50% n-butanol, 
25% water, and 25% acetic acid) for 45 min. The plates 
were dried and embedded in different staining solu-
tions depending on the substrate: 3% (v/v) sulfuric acid, 
75% (v/v) ethanol, 0.1% (w/v) orcinol monohydrate, for 
gluco- and xylooligosaccharides, and 42% n-butanol, 
33% methanol, 17% ammonia, and 8% water for chitoo-
ligosaccharides. Finally, the plates were dried again and 
heated to approximately 100 °C for visualization. Reac-
tions with monosaccharides modified with p-nitrophe-
nol (pNP) were determined by measuring the absorb-
ance at 405  nm as previously described (Cota et  al. 
2015). Because no significant activity was detected, the 
concentration of pNP was not determined.

Crystallization, X‑ray data collection and processing

Purified MmApi was concentrated to 9.0  mg/mL and 
subjected to initial crystallization trials with a Honey-
Bee 963 robot (Genomic Solutions) using sitting drop 
vapor-diffusion plates at the Robolab facility (Brazilian 
Biosciences National Laboratory, CNPEM, Campinas, 
Brazil). The drops were composed of 0.5 μL protein 
solution and 0.5 μL reservoir solution from commercial 
kits (Hampton and Qiagen). Refinement of the crystal-
lization conditions were set up in hanging drop vapor 
diffusion plates, where the drops contained 2 μL protein 
solution and 2 μL reservoir solution. All plates were 
incubated at 291 K.

The crystals that were completely grown were added 
to cryoprotective solution, consisting of 20% glycerol 
added to reservoir solution, and flash-cooled in liquid 
nitrogen. X-ray diffraction data were collected at the 
MX-2 beamline of the Brazilian Synchrotron Light 
Laboratory (CNPEM, Campinas, Brazil) using a PILA-
TUS 2M detector (Dectris) with a radiation wavelength 
of 1.46  Å. Images were indexed using XDS (Kabsch 
2010) and scaled using Aimless (Evans 2006). The 
molecular replacement was performed using a Phaser 
(McCoy et  al. 2007). Coot (Emsley et  al. 2010) was 
used for density fitting, and refinement was performed 
using PHENIX (Adams et  al. 2010). The crystallo-
graphic structure of MmApi was deposited under PDB 
accession code 8T9W.

Results and discussion

Gene origin and sequence analysis

In a previous study (Paixao et  al. 2021), our group 
successfully established the LignoMang microbial 
consortium using a mangrove soil sample and sug-
arcane bagasse as the microbial and carbon sources, 
respectively. Similar to the previously described 
metagenomic discovery platform (Vilela et al. 2023), 
we analyzed the genetic content responsible for lig-
nocellulose degradation and enzymatic produc-
tion within the consortium using metagenomic and 
metaproteomic analyses, along with high throughput 
screening protocols. The gene encoding the enzyme 
MmApi was initially identified as a false positive dur-
ing cellulase screening from a metagenomic library. 
Consequently, we selected this enzyme for further 
functional and structural analyses, employing a simi-
lar approach as previously described (Campos et  al. 
2016).

BLASTp sequence search analysis revealed 
that MmApi shares a high identity with a group of 
enzymes classified as glycoside hydrolases from fam-
ily GH140. Functional and structural studies of the 
GH140 family were first described by Ndeh et  al. 
(2017), where it was referred as BT1012, which was 
identified as an apiosidase and shares 38.3% iden-
tity with MmApi. BT1012 cleaves the β-1,2 linkage 
between galacturonic acid (GalA), from the RGII 
backbone, and apiose, and it was the founding mem-
ber of the CAZy GH140 family.

Based on GH140 sequences retrieved from the 
CAZy database, most sequences were clustered 
according to their taxonomic origin at the phy-
lum level, even though located in different clades 
(Fig. 1A). Notably, MmApi is closely related to mem-
bers of the Cyclobacteriaceae family, specifically the 
genera Spirosoma, Fibrella, Arcticibacterium, Aqui-
flexum, and the Flavobacteriaceae genus Euzebyella, 
all belonging to the Bacteroidetes phylum (Fig. 1B). 
The sequence exhibits 70% amino acid sequence 
identity to Spirosoma montaniterrae (AQG81514), 
69% to Fibrella sp. ES10-3-2-2 (ARK11034), fol-
lowed by 68% to Spirosoma pollinicola (AUD04523), 
55% to Cytophagales bacterium (SOE21399), and 
Euzebyella marina (AYN69348). Thus, we can infer 
that the MmApi sequence likely originated from the 
Bacteroidetes phylum. The considerable evolutionary 
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Fig. 1   Phylogenetic tree 
of MmApi based on amino 
acid sequences, using 
enzymes classified in the 
family glycoside hydrolase 
140 (http://​www.​cazy.​org/). 
The amino acid sequences 
were downloaded from the 
NCBI and only the catalytic 
domains were used for the 
phylogenetic analysis. The 
tree was constructing using 
maximum likelihood as 
implemented in raxML. 
Each protein is labelled by 
its Genbank accession num-
ber, followed the species 
name.  BT1012 (highlighted 
in bold) represented the 
first protein sequences 
from family GH140 with 
crystallographic structure 
elucidated and comprehen-
sive biochemical characteri-
zation. A.1 and A.2 denote 
specific branches within the 
complete phylogenetic tree, 
encompassing the MmApi 
and BT1012 enzymes
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distance between MmApi and BT1012, both located 
in different clades, may support divergent enzymatic 
characteristics enzymes (Aspeborg et al. 2012; Fors-
berg et al. 2018).

Since MmApi probably belongs to a Gram-nega-
tive bacterium, the secretion signal peptide was pre-
dicted using Gneg-mPLoc (Shen and Chou 2010). 
The SignalP server (Almagro Armenteros et al. 2019) 
designated a cleavage site between residues A21 and 
Q22. Similar to other GH140 members, MmApi pos-
sesses a catalytic domain (residues Q22-F352) and 
a C-terminal accessory module (AM; L353-P455), 
which was predicted to be a collagen-binding domain.

Catalytic activity evaluation

Two constructs of MmApi were cloned to evaluate 
the influence of the accessory module on enzyme 
activity: full-length (MmApi) and catalytic domain 
(MmApi_Cat). MmApi was expressed and purified, 
resulting in 40 mg of protein per liter of cell culture. 
However, even after testing different E. coli strains 
and expression conditions, MmApi_Cat was always 
found to be insoluble (data not shown). This suggests 
that the C-terminal domain is crucial for the stability 
of MmApi.

MmApi was subjected to an activity assay 
using the same substrate prepared for BT1012 
(Ndeh et  al. 2017). Initially, different concentra-
tions of MmApi (0.1–10  mg/mL) were incubated 
with 2  mM of the trisaccharide d-galacturonic 

acid-β1,2-d-apiose-α1,3′-l-rhamnose (RAG1), which 
is a degradation product of RG-II, but no activity 
was observed after a short incubation period (1  h) 
(Fig. 2A).

A second assay was performed with overnight 
incubation at 20 and 37 °C, in phosphate buffer and 
5  mg/mL enzyme concentration. After incubation, 
two bands were observed (indicated by arrows in 
Fig. 2B), indicating the breakdown of the RAG1 tri-
saccharide into GalA and d-apiose-α1,3′-l-rhamnose 
(Rha-Api). The hydrolysis product resembled that 
previously observed for BT1012 activity. The degra-
dation products were confirmed through TLC using 
the disaccharide Rha-Api and GalA as controls 
(Fig. 2C). According to our data, the control reaction 
and the MmApi-Cat hydrolysis product exhibit a faint 
band attributed to the presence of Rhamnose (Rha). 
In this sense, according to our data, Rha is not a prod-
uct of the MmApi-Cat activity. On the other hand, 
it is essential to highlight that although weak, the 
bands corresponding to the degradation product of 
MmApi-Cat (GalA and Rha-Api) are only observed 
as the hydrolysis product. Several reaction conditions 
were tested (different pH, temperatures, buffers, and 
the presence of different salts and ions) to determine 
the optimal conditions for the enzymatic reaction; 
however, the activity detected was always very low. 
MmApi was subjected to activity assays using a large 
range of potential carbohydrate substrates (Table  1) 
however, no other enzyme activity was detected. 
Although the MmApi underwent activity assays with 

Fig. 2   TLC analysis of MmApi reactions with RAG1. A 
No activity observed after 1 h of reaction at 37 °C at pH 7.0. 
GalA was used as reference. B Overnight reaction at 20 °C and 
37  °C. Rha, Api, and GalA were used as reference. C Over-

night reaction at 20 and 37  °C. Rhamnose-α1,3′-d-Apiose 
(Rha-Api), Rhamnose (Rha), Apiose (Api), and Galacturonic 
acid (GalA) were used as reference. The black arrows points to 
reaction products
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a wide range of potential carbohydrate substrates (see 
Table 1), and various temperatures and buffers were 
tested, the biochemical data presented in our study 
offer insights solely into the enzyme’s specificity.

Crystallographic structure

MmApi was crystallized in condition containing 
12.5% PEG8000 and 0.1 M HEPES, pH 7.5. The ini-
tial phases were obtained by molecular replacement 
using BT1012 as the template (PDBid 5MSY), and 
the crystallographic structure was solved to 2.2 Å res-
olution. The data acquisition and processing statistics 
are presented in Table 2.

The asymmetric unit contains 36.8% solvent and 
four protein monomers with high structural similar-
ity among them, calculated as 0.28  Å alpha-carbon 
root-mean-square deviation (cRMSD) in average. 
Disregarding the signal peptide for numbering, the 
monomers were modeled from residues 22 (chains C 
and D) or 23 (chains A and B) to 449 (chain A) or 
455 (chains B, C, and D), respectively. Two residues, 
K425 and G426, from chain A, located in a loop at 
the accessory module, could not be modeled due to 
high mobility.

The final MmApi model clearly shows the pres-
ence of two domains that are tightly packed against 
each other, although we are not completely sure 
whether such packing occurs in solution or whether 
it is a crystallographic effect (Fig. 3A). The catalytic 
domain was comprised of residues Q22–R350 and the 
accessory module D358–P455, which agreed with the 
limits previously predicted for MmApi_Cat cloning.

Structural features of MmApi accessory module

MmApi_AM is mainly composed of a β-sheet layer 
with five twisted anti-parallel β-strands, and a sec-
ond layer of loops, two short β-strands and one short 
α-helix (Fig.  3A, B). The most similar structure in 
the PDB was the AM from BT1012. The subsequent 
three  most similar proteins, which were character-
ized biochemically and structurally belong to the GH 
superfamily (Supplementary Table  1). However, all 
the other three proteins depicted have more than 2.2 
cRSMD and reached a maximum sequence identity 
of 15% in comparison to MmApi  (Supplementary 
Table 1).

As mentioned previously, the AM is packed against 
the catalytic domain. Several contacts were observed 
with a clear distribution of buried hydrophobic inter-
actions at the center of the surfaces and polar con-
tacts (hydrogen bonds and salt bridges) on the bor-
ders (Fig.  3C). The presence of such hydrophobic 
areas on the surfaces of both domains indicates that 
the packing observed in the crystallographic structure 
may be real in solution. Moreover, the hydrophobic 
exposed area could be a reason for the instability of 
MmApi_Cat observed during the expression trials. 
Although the AM has a similar length (in number of 
amino acids) to most CBMs, and a fold similar to the 
classical CBM β-sandwich, no evidence of a carbohy-
drate-binding site was identified. AM has no aromatic 

Table 2   Data collection, processing and structure refinement

Values in parentheses are for the highest resolution shell

Mmapi

Data-collection
 Space group P212121
 Cell dimension
  a, b, c (Å) 112.09, 113.39, 158.16
  α, β, γ (°) 90, 90, 90

 Resolution (Å) 48.19–2.20 (2.24–2.20)
 Total number of reflections 655,800 (28,473)
 Number of unique reflections 102,431 (5019)
 Completeness 0.997 (0.998)
 Redundancy 6.4 (5.7)
 I/σI 8.5 (1.9)
 Rpim 0.084 (0.486)
 CC1/2 0.991 (0.704)

Refinement statistics
 Rwork/Rfree 0.2022/0.2353
 No. of non-H atoms
  Protein 13,802
  Water 1106

 RMSD
  Bonds (Å) 0.003
  Angles (°) 0.57

 Average B factors (Å2)
  Protein 38.12
  Water 36.85

 Ramachandran plot (%)
  Favoured regions 96.10
  Additionally allowed 3.55
  Outliers 0.35
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residues exposed at the protein surface (Gilbert et al. 
2013).

MmApi catalytic domain

The structure of MmApi_Cat presents an (α/β)8 bar-
rel, the most widespread fold amongs GH families, 
where a circular eight stranded β-sheet is surrounded 
by eight α-helices (Fig. 3A), with two small N-termi-
nal strands positioned at the bottom of the barrel.

The catalytic cleft is formed by loops that start at 
the C-terminus of the β-strands and end at the N-ter-
minus of the α-helices (Fig. 3B). Despite only 38.3% 
sequence identity, MmApi’s model is highly similar 
to BT1012, with cRMSD of 1.25  Å (Fig.  4A). The 
catalytic residues, predicted to be D177 and E265, 
and the surrounding amino acids, which probably 
coordinate the monosaccharides linked by scissile 
bond, were identical to BT1012 in composition and 

tri-dimensional location (Fig. 4B, C). The exceptions 
were F275, W311, and N322, which were substituted 
in BT1012 with the chemically related amino acids 
L294, M330, and Y341, respectively (Fig. 4B). How-
ever, the shapes of the catalytic clefts differ signifi-
cantly. Loops L1 (connecting β-strand 4 with α-helix 
2) and L2 (connecting β-strand 5 with α-helix 3) are, 
respectively, 2 and 7 residues longer in MmApi, and 
together with loop L4 (connecting β-strand 10 with 
α-helix 8), block the binding cleft from one side, 
while in BT1012 it remains wide open. Conversely, 
loop L3 (connecting β-strand 8 with α-helix 6) was 
16-residues shorter in MmApi, leaving the other side 
open, while in BT1012 it is blocked (Fig. 4C).

In summary, these structural characteristics sug-
gest that MmApi and BT1012 can perform the same 
catalytic mechanism but have different substrate spe-
cificities. BT1012 showed the highest activity against 
GalA-Api-Rha, with a tenfold decrease against 

Fig. 3   Crystallographic structure of MmApi. A MmApi com-
prises two distinct domains, which are closely associated and 
are connected by a short 7-residues loop (orange): a catalytic 
domain, with (α/β)8 barrel folding (cyan); and an accessory 
module (mainly composed of a 5-stranded β-sheet and a sec-
ond layer of loops and short β-strands and α-helices. B 90° 
rotation of A evidencing the catalytic-cleft formed by loops 
originated from the C-terminal of β-strands. C MmApi sur-

face model with the domains rotated 90° apart from each other, 
where a section (purple area) and an axis (black line) were 
used as origin. This picture evidences the hydrophobic sur-
face in the center and the hydrophilic surface in the border of 
both domains at the crystallographic contact interface. Carbon 
atoms are colored in green for catalytic domain and cyan for 
accessory module, nitrogen are colored in blue and oxygen in 
red
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methylated GalAmet-Api-Rha (Ndeh et  al. 2017). 
Moreover, it is still active with higher polymeric oli-
gosaccharides extending from Rha, which possibly 
occupy the open side of the catalytic cleft. Interest-
ingly, BT1012 had no activity when arabinofuranose 
(Araf) was linked to the GalA residue due to steric 
clash with the blocked side of the catalytic cleft.

It is possible to hypothesize that MmApi activ-
ity is restricted to substrates with a lower degree of 
polymerisation  that comes after the apiose mono-
saccharide due to steric impairment caused by loop 
L1, and is more permissive to substrates with a 
higher polymeric degree before apiose. To deter-
mine the enzymatic activity of this newly described 
apiosidase enzyme, alternative approaches, such as 
high-throughput screening of secondary metabo-
lites, pigments, and plant aromas, or purification of 
oligosaccharides with varying structures, could be 
pursued.

MmApi is the second enzyme of the GH140 fam-
ily to be structurally described and, according to its 
different features, could potentially be a novel tool for 

other researchers interested in studying the physiol-
ogy and structure of plant cell walls, as well as for the 
development of drugs and flavors.
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