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Abstract

Objective Chinese hamster ovary (CHO) cells are

the leading cell factories for producing recombinant

proteins in the biopharmaceutical industry. In this

regard, constraint-based metabolic models are useful

platforms to perform computational analysis of cell

metabolism. These models need to be regularly

updated in order to include the latest biochemical

data of the cells, and to increase their predictive

power. Here, we provide an update to iCHO1766, the

metabolic model of CHO cells.

Results We expanded the existing model of Chinese

hamster metabolism with the help of four gap-filling

approaches, leading to the addition of 773 new

reactions and 335 new genes. We incorporated these

into an updated genome-scale metabolic network

model of CHO cells, named iCHO2101. In this

updated model, the number of reactions and pathways

capable of carrying flux is substantially increased.

Conclusions The present CHO model is an impor-

tant step towards more complete metabolic models of

CHO cells.

Keywords CHO cells � Constraint-based modeling �
Gap-filling � Metabolic network models � Systems

biology

Introduction

A genome-scale metabolic network model (GEMs) is

a mathematical formulation that summarizes all data

about genes, proteins, and reactions known to be
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involved in the metabolism of a specific cell. Using

reliable metabolic models, one can perform virtual (in

silico) experiments in a rapid and inexpensive manner

(Fouladiha and Marashi 2017; Gu et al. 2019).

Therefore, GEMs can be helpful tools in cell biology

and metabolic engineering by predicting the metabolic

state of cells under certain growth conditions (Zhang

and Hua 2016).

Chinese hamster ovary (CHO) cells are the main

workhorse in the biopharmaceutical industry for

producing recombinant proteins, such as humanized

monoclonal antibodies. These cells were originally

obtained from a Chinese hamster (Cricetulus griseus)

in 1957. Several studies have focused on the opti-

mization of the production of CHO cells using cellular

and metabolic engineering methods (Wells and

Robinson 2017). Experimental manipulation and

maintenance of CHO cells, like many other mam-

malian cell lines, are costly and time-consuming. A

reliable metabolic model of CHO cells can be used as a

platform to perform computational analyses of cell

metabolism to aid in experimental design. Such a

model-driven analysis may predict the outcome of

experimental tests and reduce the possibility of having

false experimental results. Moreover, a CHO meta-

bolic model can be helpful in suggesting genetic

engineering and media-design strategies for improv-

ing recombinant protein production (Calmels et al.

2019; Fouladiha et al. 2020; Traustason et al. 2019).

Another appreciated application of metabolic models

is their role in interpreting ‘‘omics’’ data (Hyduke et al.

2013; Kildegaard et al. 2013; Lakshmanan et al. 2019;

Richelle et al. 2019a). For example, transcriptomic

and proteomic data can be mapped onto the models to

infer new knowledge about the physiological charac-

teristics of cells (Richelle et al. 2019b; Schaub et al.

2011).

One major challenge in the development of

genome-scale metabolic network models is our lim-

ited knowledge of a cell’s metabolism. Specifically,

genome-scale metabolic network reconstructions must

be iteratively expanded as novel data emerges on

enzymes and reactions that occur in the cell of interest.

For example, several updates of the GEMs of

Saccharomyces cerevisia have been published (Cas-

tillo et al. 2019), from iND750 (Duarte et al. 2004) and

iIN800 (Nookaew et al. 2008), to Yeast 5 (Heavner

et al. 2012), and ecYeast7 (Sánchez et al. 2017). A

variety of algorithms have also been developed to

predict additional reactions and potential genes that

could catalyze such reactions (Karlsen et al. 2018),

where using machine-learning methods have been

helpful (Medlock et al. 2020; Medlock and Papin

2020). These algorithms are particularly useful for

expanding the metabolic networks of non-model

organisms (Biggs and Papin 2017).

The previous version of the CHO model,

iCHO1766, has been used in several studies. For

example, iCHO1766 was used to predict the lethality

of CHO genes (Ley et al. 2019), to improve the

predictive power of the model by modifying flux

analysis (Chen et al. 2019; Lularevic et al. 2019), to

assess heterogeneity in cell culture (Fernandez-de-

Cossio-Diaz and Mulet 2019), and to improve bio-

production capability of CHO cell by designing cell

feeds (Fouladiha et al. 2020; Schinn et al. 2020).

iCHO1766 has also been a helpful tool in studying

metabolism of the cells, together with fluxomics

(Hong et al. 2020), transcriptomics (Zhuangrong and

Seongkyu 2020), and proteomics (Zhuangrong and

Seongkyu 2020). In order to have more reliable and

accurate results, especially in ‘‘omics’’ data integra-

tion, the metabolic model needs to be regularly

updated to cover the latest molecular and biochemical

knowledge (Schinn et al. 2020; Yeo et al. 2020).

Here, we have conducted an in-depth gap-filling of

the genome-scale metabolic network reconstruction of

the Chinese hamster, iCHO1766 (Hefzi et al. 2016),

and introduce iCHO2101, an updated version for

enhanced genome-scale modeling of CHO cell

metabolism. Compared to the previous version of the

CHO model, the number of genes and reactions has

been increased, and the numbers of blocked reactions

and dead-end metabolites have been reduced by about

10% and 15%, respectively. In other words, more parts

of the metabolic model can be active, and more

reactions are able to carry fluxes in this new version.

These improvements increase the accuracy and preci-

sion of the predictions made by the analysis of the

metabolic model.

Methods

Analysis of iCHO1766

The COBRA toolbox (Becker et al. 2007) was used for

the constraint-based analysis of the metabolic model
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of CHO cells (iCHO1766). Flux variability analysis

(FVA) (Burgard et al. 2001) was used to find the

possible bounds of every flux in steady-state condi-

tions, with no constraints on the flux bounds. If the

lower and upper bounds of a specific flux were both

equal to zero, that reaction was assumed to be blocked.

In the same way, if the upper and lower bound of the

exchange flux of a metabolite was zero, that metabo-

lite was considered as a ‘‘non-producible and non-

consumable’’ or a ‘‘dead-end’’ metabolite.

Filling the gaps and validation of the results

In the present study, four independent approaches

were used for the gap-filling of iCHO1766. The first

two approaches were based on automatic gap-filling

tools, namely, GapFind/GapFill (Kumar et al. 2007)

and GAUGE (Hosseini and Marashi 2017). The

GapFind algorithm uses mixed integer linear pro-

gramming (MILP) to find all metabolites that cannot

be produced in steady-state. The ‘‘root’’ gaps are those

non-producible metabolites whose filling will unblock

the other non-producible (or, ‘‘downstream’’) gaps.

Then, the GapFill algorithm selects a minimal subset

of reactions from a universal reaction database that

must be added to the model in order to convert a non-

producible metabolite to a producible one.

In the second approach, we used GAUGE as our

computational tool. GAUGE uses transcriptomics data

to determine the inconsistencies between genes co-

expression and flux coupling in a metabolic model.

Then, GAUGE finds a minimal subset of reactions in

the KEGG database whose addition can resolve the

inconsistencies.

Reactions suggested by GapFind/GapFill and

GAUGE (and their associated genes/proteins) were

validated before being added to iCHO1766 as follows.

If the gene ID of the new reaction or the gene ID that is

attributed to the enzyme of the new reaction is found in

Chinese hamster according to the KEGG database,

that new reaction is confirmed. Otherwise, the valida-

tion is performed based on the results of BLASTp

against the Cricetulus griseus (Chinese hamster)

transcriptome, using the enzyme of the new reactions

and CHO cell transcribed genomic sequences. For

each enzyme, in the KEGG database, the amino acid

sequences from different species were examined, and

the best BLASTp hit was reported. A gene/protein was

assumed to be present in Chinese hamster metabolism

if a BLAST search hit is found with e-

value\ 1 9 10-10. To have a stricter standard, we

only considered hits with query coverage[ 70%, or,

those hits which were of[ 30% sequence similarity.

Our third gap-filling approach was based on manual

assessment of the blocked reactions in iCHO1766. In

several cases, the absence of an exchange or transport

reaction was the cause of reaction blockage in the

model. In such cases, we checked if each non-

producible or non-consumable metabolite is reported

in the Human Metabolome Database (HMDB)

(Wishart et al. 2017). If the blocked metabolite was

reported to be present in any of the human biofluids

(including blood, saliva, and urine), it was assumed

that the transport of the metabolite across extracellular

membrane of a typical mammalian cell is possible, and

therefore, an exchange reaction of that metabolite was

added to the model with a high confidence score. If a

metabolite was ‘‘expected’’ to be present in biofluids

by HMDB, the exchange reaction of that metabolite

was added to the model with a low confidence score.

In the fourth approach, the BiGG database (King

et al. 2015) was used to retrieve all known biochemical

reactions and their corresponding enzymes. Then, the

KEGG database was queried to extract the full list of

Chinese hamster genes and their association with

biochemical enzymes. The intersection of these two

lists was considered as the list of potential reactions.

Then, the 1766 genes that were present in iCHO1766

were subtracted from the list of potential reactions to

find those CHO reactions that have counterparts in

BiGG, but are not present in iCHO1766.

Analysis of iCHO2101

The COBRA toolbox (Becker et al. 2007) was used for

performing flux balance analysis (FBA) and flux

variability analysis (FVA) of the updated CHO model

when uptake fluxes were unconstrained/constrained.

In the unconstrained state, no restrictions were applied

to the flux bounds. In the constrained state, on the other

hand, only the metabolites of the cell culture medium

were allowed to be imported to the model, with a

limited flux as defined in iCHO1766 (Hefzi et al.

2016). Here, FBA was used to predict the maximum

growth rate, and FVA was used to calculate possible

flux bounds of each reaction while maintaining the

maximum growth rate. The reactions with non-zero
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flux bounds in FVA were considered as ‘‘active’’

reactions.

Gene expression analysis

In order to evaluate the new version of the model and

compare it with iCHO1766, the transcriptomic data of

CHO cells were used. These normalized data include

expression levels of more than 23,000 genes of CHO-S

and CHO-K1 cells across 191 different samples,

including published data (Hefzi et al. 2016; Van Wijk

et al. 2017) and unpublished data sets. Data were

processed as follows: FastQC v11.1 (Andrews 2010)

was used to assess read quality. Trimmomatic v0.33

(Bolger et al. 2014) was used to trim reads with

adapters or low-quality scores. STAR2.4.2a (Dobin

et al. 2013) was used to align trimmed reads to the

CHO-K1 genome (Xu et al. 2011), followed by

calculating fpkm using cufflinks (v2.2.1).

To represent the expression of each gene, the

average expression was computed across all 191

samples. The expression of a single-gene reaction was

assumed to be proportional to its gene expression. In

case of reactions associated with multiple genes, we

restricted our analysis to those reactions whose genes

were linked either with ‘‘OR’’ or ‘‘AND’’. If all genes

of a reaction were linked by ‘‘OR’’/’’AND’’, the

maximum/minimum amounts of gene expressions

were attributed to that reaction. Then, we assessed

expressions of the reactions in a pathway and

compared it with the percentage of blocked reactions

in that pathway.

Results

A quarter of reactions in iCHO1766 are blocked

The community-consensus genome-scale metabolic

models of CHO cells, iCHO1766, includes 1766

genes, 6663 reactions, and 4455 metabolites. Using

constraint-based modeling (see Methods), one can

observe that about 23% of the reactions (1503

reactions out of the total 6663 reactions) of iCHO1766

are blocked. These blocked reactions cannot carry a

non-zero flux in steady-state conditions. The reactions

of iCHO1766 are categorized in 125 metabolic

pathways, of which 83 pathways include ten or more

reactions. Among these, there are 16 pathways in

which at least 50% of the reactions are blocked

(Table 1). The distribution of blocked reactions in all

metabolic pathways has been shown in Supplementary

Table 1. In addition, about 21% of the metabolites

(955 metabolites out of total 4455 metabolites) in

iCHO1766 are ‘‘dead-end’’ metabolites, i.e., they

cannot be produced nor consumed in steady-state.

These metabolites belong to different subcellular parts

of the model (Table 2).

These blocked reactions and dead-end metabolites

suggest that iCHO1766 includes metabolic gaps (Orth

and Palsson 2010), which is common in genome-scale

metabolic models. Other gaps may also exist in the

model, all of which may result in the inconsistencies

between model predictions and experimental results.

In other words, gaps may decrease the reliability of

phenotypic predictions of a metabolic model. Several

gap-filling methods have been designed to find the

gaps and predict the ways of removing them from the

model (Pan and Reed 2018). The majority of these

methods use a comprehensive dataset of all known

biochemical reactions, which is often obtained from

the KEGG database (Kanehisa et al. 2016). These

methods try to find a subset of reactions to be added to

the model to fill the gaps and improve model

predictions. Gap-filling methods can be classified into

three groups. The first group consists of solely-

computational methods, which use different compu-

tational algorithms and linear or mixed integer linear

programming (MILP) to fill the gaps of a model.

GapFind/GapFill (Kumar et al. 2007), BNICE (Hatz-

imanikatis et al. 2005), FBA-Gap (Brooks et al. 2012),

MetaFlux (Latendresse et al. 2012), FastGapFill

(Thiele et al. 2014), and FastGapFilling (Thiele et al.

2014) are some examples of the first group of methods.

The second group of gap-filling methods is phenotype-

based methods. These methods take advantage of

phenotypic data of the cells, such as viability on

different carbon or nitrogen sources, to acquire new

data regarding the biochemical reactions of the cell

and fill the gaps of the metabolic model of the cell.

Smiley (Reed et al. 2006), GrowMatch (Kumar and

Maranas 2009), OMNI (Herrgård et al. 2006), and

MinimalExtension (Christian et al. 2009) belong to the

second group. All methods that use various kinds of

‘‘omics’’ data to fill the gaps of a metabolic model are

in the third group, e.g., Sequence-based (Krumholz

and Libourel 2015) and Likelihood-based (Benedict
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et al. 2014) methods, Mirage (Vitkin and Shlomi

2012), and GAUGE (Hosseini and Marashi 2017).

In the present study, we decided to use GapFind/

GapFill and GAUGE methods to fill the gaps of

iCHO1766. The results of these two methods were

manually validated and added to the model. Besides,

two manual gap-filling approaches have been used

(see Methods). In the end, representing statistics of the

new model and mapping gene expression data will

indicate significant improvements in CHO metabolic

model.

Gap filling approaches

Two automatic approaches, namely, GapFind/GapFill

and GAUGE, and two manual approaches, were used

to fill the gaps of iCHO1766. The GapFill method

suggested the addition of 121 reactions to the model in

Table 1 A list of metabolic pathways of iCHO1766 that more than 50 percent of the metabolic reactions in that pathway is blocked

Biochemical pathway Number of

blocked reactions

Total number

of reactions

Percent blocked

reactions (%)

Chondroitin synthesis 45 45 100

Linoleate metabolism 14 14 100

Selenoamino acid metabolism 16 16 100

Vitamin E metabolism 23 23 100

Xenobiotics metabolism 25 25 100

Arachidonic acid metabolism 72 73 98.63

Androgen and estrogen synthesis and metabolism 49 50 98

Eicosanoid metabolism 212 244 86.89

N-glycan biosynthesis 64 77 83.12

Vitamin D metabolism 22 29 75.86

Miscellaneous 45 69 65.22

Vitamin C metabolism 8 14 57.14

Tyrosine metabolism 59 106 55.66

Tryptophan metabolism 36 66 54.55

Glycosphingolipid metabolism 7 13 53.85

Urea cycle 33 63 52.38

Table 2 The distribution of dead-end metabolites of iCHO1766 in each subcellular part

Subcellular part Total number

of metabolites

Number of the

blocked metabolites

Percent of the dead-end

metabolites (%)

Extracellular [e] 606 56 9.24

Cytoplasm [c] 1652 323 19.55

Endoplasmic reticulum [r] 479 153 31.94

Mitochondrion [m] 620 171 27.58

Peroxisome [x] 318 133 41.82

Nucleus [n] 158 66 41.77

Lysosome [l] 260 33 12.69

Golgi apparatus [g] 361 20 5.54
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order to enable 123 metabolites to be producible

(listed in Supplementary Table 2). Some of these 121

reactions can make more than one metabolite to be

producible. We validated the predictions by manually

searching the KEGG database and also using

BLASTp. For example, 4-coumarate (C00811) was a

‘root’ gap in iCHO1766 (a non-producible metabolite

in steady-state). In addition, caffeate (C01197) can

only be produced from 4-coumarate, and therefore,

caffeate was a ‘downstream’ gap. A reaction

(R00737), which is catalyzed by tyrosine ammonia-

lyase, can fill both of the aforementioned gaps by

transforming tyrosine to 4-coumarate and ammonia.

The possibility of tyrosine ammonia-lyase expression

in CHO cells was approved using the BLASTpmethod

and therefore, R00737 was added to the model. In

total, the addition of 56 reactions was validated, which

enabled 87 metabolites to be producible in iCHO1766

(Table 3). These new reactions were associated with

30 new genes, which were added to the latest version

of the model.

Using the GAUGE method, the inconsistencies

between gene co-expression and flux coupling relation

of 146 gene pairs were found. GAUGE also suggested

solutions for removing the inconsistencies of 64 pairs

of them (listed in Supplementary Table 3). Only 37

out of 64 pairs had validated reactions as solutions. In

total, 29 reactions were added to iCHO1766 using the

GAUGE method (Table 4). These new reactions were

associated with 3 new genes, which were added to the

new version of the model.

In the third gap-filling approach, all non-producible

and non-consumable metabolites were searched in the

HMDB database, and the equivalent IDs were

retrieved. If any of the metabolites were detected in

human biofluids, the exchange reaction of that

metabolite was added to the model with a high level

of confidence. This approach added 257 new reactions

to the model (a full list of reactions and HMDB IDs are

available in Supplementary Table 4). For example,

nonanoate was a dead-end metabolite, which was

detected in blood, feces, saliva, and sweat

(HMDB0000847). The extracellular export of non-

anoate enabled a blocked reaction to carry flux in the

linoleate metabolic pathway. There was another group

of metabolites that were labeled as ‘‘expected to be

detected in human biofluids’’ by HMDB. The

exchange reactions of 196 metabolites of this group

were added to the model with a low level of confidence

(a full list of reactions and HMDB IDs are available in

Supplementary Table 5).

With a manual assessment of the blocked reactions

in iCHO1766, we found that there was a lot of

repetition of reactions in different subcellular com-

partments of the model. In other words, these reactions

have the same reactants and products, with precisely

the same stoichiometric coefficients, but in different

subcellular compartments. In such cases, the absence

of appropriate transport reactions caused a lot of

blocked reactions. There were 178 blocked repetitive

reactions in the iCHO1766, which have no genes,

which we therefore suggest for deletion in future

curation efforts (all such reactions are listed in

Supplementary Table 6). Furthermore, if there was a

transport reaction for a metabolite in a subcellular part

with no genes in iCHO1766, the addition of another

transport reaction for that metabolite between other

subcellular parts of the new version of the model had a

high confidence score. These 139 reactions were

added to the new model (Supplementary Table 7).

We found 314 new genes in the fourth approach by

searching the BiGG and KEGG databases (see Sup-

plementary Table 8). Twelve of these 314 new genes

were also predicted by GapFind/GapFill, and 1 out of

314 new genes was also predicted by GAUGE. The

addition of these new genes updated the gene associ-

ation data of 30 reactions of iCHO1766 and also

caused 42 new reactions to be added to the new model.

Analysis of iCHO2101

Using the four mentioned gap-filling approaches, a

total number of 773 new reactions, 335 new genes, and

72 metabolites were added to iCHO1766. In addition,

we reviewed the names of metabolites and reactions of

the model and renamed the unknown IDs based on

BiGG database. The new version of iCHO1766, which

is named iCHO2101, has 2101 genes, 7436 reactions,

and 4527 metabolites (see Supplementary Table 10).

In iCHO2101, 58 pathways contain no blocked

reactions, and only 5 pathways have more than 50%

blocked reactions (Table 5). In addition, the distribu-

tion of dead-end metabolites of iCHO2101 in different

subcellular compartments has been reduced to less

than 10% (Table 6). Figure 1 summarizes the

improvements made in the current study for the

metabolic model of CHO cells by creating a visual

comparison of model statistics, blocked reactions, and
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Table 3 New validated reactions predicted by using the GapFill method to be added to the model.

Blocked metabolite ID Predicted

reaction’s

KEGG ID

KEGG Gene ID (for the predicted

reaction)

Blast result (if needed, in case of

no gene or enzyme KEGG ID)

Comments

3deccrn[c], C05264[c],
C05264[m]

R03778 100,753,943, 100,754,813,
100,758,239, 100,765,829

4

R04743 100,754,698, 100,757,947,
100,761,491

4

ak2gchol_cho[c],
ak2gp_cho[c], and
ak2gpe_cho[c],
dak2gpe_cho[c],
C03201[c], C03715[c]

R04311 100,756,809 4

R05190 – ERE79474.1 (acyl-CoA synthetase
family member 3) with
WP_012013866 = (95% 3e-36
28%)

R10104 100,758,702 4

C00243[l] R01100 100,766,856, 100,767,446 4 3.2.1.108:
100,766,856;
3.2.1.23:
100,767,446

C00247[c], C01507[c] R02925 – EGW06281.1 (Carbonyl reductase
[NADPH] 2) with
WP_011337990 = (98% 5e-25
29%)

C00257[c] R01738 – EGW06281.1 (Carbonyl reductase
[NADPH] 2) with
YP_002410598 = (98% 5e-34
32%)

1.1.1.69

R01740 EGW06281.1 (Carbonyl reductase
[NADPH] 2) with
WP_011565275 = (97% 7e-34
32%)

1.1.69

C00265[c] R03511 100,755,703, 100,757,934,
103,162,274

4

R05830 ERE75446.1 (vitamin K epoxide
reductase complex subunit 1-like
protein 1) with Q8N0U8 = (72%
5e-71 84%)

C00309[c] R01895 – EGW01280.1 (Dehydrogenase/
reductase SDR family member
7B) with WP_015365771 = (93%
2e-26 33%)

C00437[c] R10466 ERE85082.1 (arginase-1-like
protein) with D2Z025 = (75% 5e-
09 27%)

C00461[c] R01206 100,750,633, 100,750,757,
100,760,661, 103,161,867,
103,161,868, 103,163,420

4

C00499[c], C01551[c],
C11821[c], C12248[c]

R02106 100,768,251 4

C00811[c], C01197[c] R00737 – ERE91835.1 (histidine ammonia-
lyase-like protein) with
NP_719898 = (91% 8e-90 38%)

C00988[c] R04620 100,750,903, 100751196,100751774,
100,771,587, 103,159,036,
103,159,088

4

C01083[c] R01557 - ERE74261.1 (neutral and basic
amino acid transport protein
rBAT-like protein) with
WP_002548616 (83% 4e-66 32%)

C01127[c] R04445 100,764,994 4

123

Biotechnol Lett (2021) 43:73–87 79



Table 3 continued

Blocked metabolite ID Predicted

reaction’s

KEGG ID

KEGG Gene ID (for the predicted

reaction)

Blast result (if needed, in case of

no gene or enzyme KEGG ID)

Comments

C01176[c], C05138[c] R08516 100,758,683 4 4.1.2.30:
100,758,683

C01189[c] R07215 100,752,960 4

C01241[c], C04308[c] R02056 100,767,954 4

C01528[c], C05172[c] R03595 100,770,125, 100,775,017 AND 4

R04620 100,750,903, 100,751,196,
100,751,774, 100,771,587,
103,159,036, 103,159,088

4

C01601[c], C04717[c],
C08261[c], CE2006[c],
CE2576[c], CE2577[c],
CE6504[c], CE6506[c]

R03626 – ERE67202.1 (arachidonate
5-lipoxygenase) with
XP_002516771 = (70% 7e-46
27%

C01802[c], C05107[c] R07507 100,769,920 4

C02576[c], peracd[c] R03945 – ERE88510.1 (alcohol
dehydrogenase 6-like protein) with
A0A0K2YIV5 = (97% 9e-43
31%)

AND

EGW05976.1 (quinone
oxidoreductase) with
A0A084FZJ5 = (93% 2e-38 34%)

C03366[c] R04620 100,750,903, 100751196,100751774,
100,771,587, 103,159,036,
103,159,088

4

C03681[c], C13712[c],
CE5072[c]

R02208 100,761,447, 100,766,917,
100,770,660

4

C03845[c] R07215 100,752,960 4

C04722[r] R04807 100,751,584 4

C04805[c] R07034 100,751,356, 100,756,109,
100,764,638, 100,766,519,
100,766,810, 100,771,188,
100,775,000

4

C04853[c], CE2056[c],
CE3554[c]

R03866 100,755,384, 100,761,725,
100,773,031, 100,773,326,
100,774,306, 100,774,594

4

R08516 100,758,683 4 4.1.2.30:
100,758,683

C05141[c], C05504[c] R03089 100,751,269 4

C05141[r], C05504[r] R04681 100,750,866, 100,751,291,
100,751,897, 100,762,147,
100,766,230, 100,767,580

4

C05638[c]

C05639[c]

C05651[c]

R04911 100,773,211 4

C05688[c] R03599 ERE85901.1 (selenocysteine lyase)
with NP_057926 = (99% 0.0
90%)

R07933 100,757,464 4

C05691[c] R04620 100,750,903, 100,751,196,
100,751,774, 100,771,587,
103,159,036, 103,159,088

4
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Table 3 continued

Blocked metabolite ID Predicted

reaction’s

KEGG ID

KEGG Gene ID (for the predicted

reaction)

Blast result (if needed, in case of

no gene or enzyme KEGG ID)

Comments

C05698[c], C05699[c] R04941 – EGW06584.1 (Cystathionine
gamma-lyase) with
WP_002493862 = (92% 2e-85
40%)

C05768[c]

C05769[c]

R03166 4 R03166 is a
spontaneous
reaction

R04972 100,753,284 4

C05839[c], C06738[c] R04998 100,757,820 4

R04999 4 R04999 is a
non-enzymatic
reaction

C05947[c] R04444 100,764,994 4

C06128[c] R04018 100,689,090, 100,689,301,
100,689,373, 100,774,175

4

C06133[c] R03354 100,689,438 4

R03488 100,754,838 4

R04583 100,768,920 4

C06178[c] R01153 EGW12892.1 (spermidine synthase)
with XP_002534321 = (64% 5e-
76 50%)

R01920 100,756,588 4

R04027 100,762,635, 100,762,926 4

C06196[c] R04620 100,750,903, 100,751,196,
100,751,774, 100,771,587,
103,159,036, 103,159,088

4

R10235 100,768,978, 100,769,259 4

C14825[c], CE2047[c] R07055 100,751,762, 100,752,064,
100,753,681, 100,754,177,
100,754,462, 100,755,851,
100,756,757, 100,764,171,
100,764,471, 100,764,768,
100,765,057, 100,765,891,
100,766,524, 100,767,391,
100,772,776, 100,773,059,
100,773,351

4

C14826[c], CE2049[c] R07056 100,751,762, 100,752,064,
100,753,681, 100,754,177,
100,754,462, 100,755,851,
100,756,757, 100,764,171,
100,764,471, 100,764,768,
100,765,057, 100,765,891,
100,766,524, 100,767,391,
100,772,776, 100,773,059,
100,773,351

4

C15610[c] R08726 100,751,584 4

R08727 100,754,734 4

C16216[c], C16217[c] R07758 100,763,438 4

CE1292[c], CE1298[c] R01463
AND
R08505

100,689,275 and 100,751,584 4
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dead-end metabolites between iCHO1766 and

iCHO2101.

Using FBA after applying our published uptake and

secretion constraints, we found the maximum growth

rate in the constrained state was similar for iCHO1766

and iCHO2101 (0.03 h-1). By performing FVA in the

constrained state of iCHO1766 and iCHO2101, we

found the number of ‘‘active’’ reactions in each

metabolic pathway had been significantly improved

in the gap-filled version of the model. Figure 2 shows

the percent of activities of fluxes in 14 metabolic

pathways with more than 5 reactions, where the

changes between iCHO1766 and iCHO2101 are more

than 30%. For example, all reactions of ‘sphingolipid

metabolism’ are ‘‘active’’ in modeling the growth

using iCHO2101, thus enabling the analysis of this

process, which has been previously reported to be of

importance for the growth of CHO cells (Hanada et al.

1992).

Gene expression analysis

We subsequently analyzed the expression of the genes

in the metabolic models in 191 RNA-Seq samples. We

computed the expression levels of reactions (see

Methods). Then, considering the expressions of reac-

tions in the metabolic pathways of the iCHO1766, it

was revealed that some of the pathways with a high

level of expression had a high percent of blockage. For

example, ‘androgen and estrogen synthesis and

metabolism’ had the highest level of expression

among blocked pathways, where 98% of the reactions

were blocked. In the new model, only 56% of the

reactions in the mentioned pathway are still blocked.

In another example, ‘glyoxylate and dicarboxylate

metabolism,’ ‘methionine and cysteine metabolism,’

and ‘galactose metabolism’ are among the top ten

highly expressed pathways, while about 30% of the

reactions are blocked in the pathways in iCHO1766. In

iCHO2101, the blocked reactions of the three path-

ways have been reduced to 11%, 15%, and 7%,

respectively. A full list of the pathways and expression

levels is available in Supplementary Table 9.

Discussion

In the present study, four approaches were used to fill

the gaps of iCHO1766. At first, we used GapFill that

successfully filled 12% (124 out of 1049) of no-

production metabolites. Then, using GAUGE, 40%

(28 out of 71) of the inconsistencies between genes co-

expression and flux coupling relations of reaction pairs

were fixed. Furthermore, exchange and transport

reactions of the model were revised, using HMDB

database. Finally, new genes were added to the model

based on KEGG and BiGG databases. All newly

predicted reactions and metabolites were subsequently

added to the model to generate a new version of the

CHOmetabolic model, named iCHO2101. In total, the

percentage of blocked reactions was 21.6% (1441 out

of 6663) in iCHO1766, which has been reduced to

11.3% (837 out of 7336) in iCHO2101. In addition, the

percentage of dead-end metabolites from 21.4% (955

out of 4456) in iCHO1766 has been reduced to 6.6%

(298 out of 4527) in iCHO2101. The addition of these

new reactions, metabolites, and genes can increase the

scope of pathways that can be simulated in CHO cells,

and increase the reliability of the model predictions in

general for CHO cells with more comprehensive

models of CHO cell metabolism.

The importance of CHO cells in the pharmaceutical

industry producing recombinant protein drugs is

Table 3 continued

Blocked metabolite ID Predicted

reaction’s

KEGG ID

KEGG Gene ID (for the predicted

reaction)

Blast result (if needed, in case of

no gene or enzyme KEGG ID)

Comments

CE2084[c]

CE5815[c]

CE7096[c]

R07034 100,751,356, 100,756,109,
100,764,638, 100,766,519,
100,766,810, 100,771,188,
100,775,000

4

The numbers in parenthesis are query coverage, e-value, and sequence similarity, respectively
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evident. In this regard, due to the notable drawbacks of

the present kinetic models (Carinhas et al. 2012), a

constraint-based metabolic model can be beneficial to

have an in silico platform to mechanistically model the

metabolism of CHO cells. For example, the limiting

factors of cell culture can be easily modelled by

Table 4 New validated reactions predicted by using the GAUGE method to be added to the model

Predicted

reaction ID

KEGG Gene ID (for

the predicted reaction)

Blast results (if needed, in case of no gene or enzyme

KEGG ID)

Comments

R00270 – 4 Non-enzymatic hydrolysis

R00524 – ERE88882.1 (bis(50 -adenosyl)-triphosphatase-like
protein) with XP_002410848 = (20% 6e-23 52%)

3.5.1.49

R00310 100,764,152 4

R00557,

R00558

100,758,127,

100,760,062,

100,769,961

4

R00648 100,753,207,

100,755,812,

100,773,063

4

R01658,

R02003

100,754,883,

100,767,405

4

R02061 100,767,405 4

R02285 – EGV96886.1: (agmatinase, mitochondrial) with

WP_057563128 = (95% 4e-10 23%,)

3.5.3.8

R03189 100,754,097 4

R03222 100,767,777 4

R03326 100,767,691 4

R04283 – 4 Multi-step reaction, non-

enzymatic, incomplete

reaction

R04666 100,762,944 4

R06127,

R06128

100,765,573,

100,771,009

4

R06238 100,768,412 4

R06895 – XP_003501431.1 (radical S-adenosyl methionine domain-

containing protein 1, mitochondrial isoform X1) with

WP_057908418 = (85% 4e-58 35%)

1.3.99.22

R07267,

R09250,

R09251

– EGV97845.1 (decaprenyl-diphosphate synthase subunit 1)

with V5V4V5 = (97% 1e-71 41%)

2.5.1.84

EGV97845.1 (decaprenyl-diphosphate synthase subunit 1)

with XP_010697478 = (97% 4e-59 35%)

2.5.1.85

R07364 100,754,671,

100,765,075

4

R07396 100,754,678 4

R08892,

R10130

– ERE70900.1 (sorbitol dehydrogenase) with

Q2MF72 = (94% 2e-22 26%)

1.1.1.329

R09248 – EGV97845.1 (decaprenyl-diphosphate synthase subunit 1)

with = WP_001513338 (97% 4e-41 30%)

2.5.1.90

R10107 – EGV91790.1 (nitric oxide synthase, endothelial) with

O34453 = (98% 2e-98 43%)

1.14.13.165

R10221 100,765,199 4
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Fig. 1 A visual comparison between the statistics of iCHO1766
and iCHO2101. Part a (upper left) shows the number of genes,

reactions, and metabolites. Part b (lower left) shows the

distribution of dead-end metabolites in different subcellular

parts. Part c (right) shows the percent of blockage in the selected
pathways reported in Table 1

Table 5 A list of metabolic pathways of iCHO2101 that more than 50 percent of the metabolic reactions in that pathway is blocked

Biochemical pathway Number of

blocked reactions

Total number

of reactions

Percent blocked

reactions (%)

Xenobiotics metabolism 25 25 100

Selenoamino acid metabolism 15 21 71.43

Androgen and estrogen synthesis and metabolism 29 51 56.86

Arachidonic acid metabolism 42 74 56.76

Eicosanoid metabolism 127 245 51.84

Table 6 The distribution of dead-end metabolites of iCHO2101 in each subcellular part

Subcellular part Total number

of metabolites

Number of the dead-

end metabolites

Percent of the dead-end

metabolites (%)

Extracellular [e] 609 2 0.33

Cytoplasm [c] 1713 156 9.10

Endoplasmic reticulum [r] 482 45 9.34

Mitochondrion [m] 625 52 8.32

Peroxisome [x] 318 26 8.18

Nucleus [n] 159 12 7.55

Lysosome [l] 260 3 1.15

Golgi apparatus [g] 361 2 0.55
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constraining the exchange fluxes of the model. In

addition, integration of ‘‘omics’’ data with a con-

straint-based metabolic model can shed light on the

metabolism of CHO cells.

Bioprocess optimization of CHO cells has been a

major topic of research, including studies which

focused on the design of compositions of cell culture

media (Galbraith et al. 2018; Ritacco et al. 2018).

Mammalian cell culture media are mostly composed

of amino acids. Amino acid metabolism greatly

influences the viability and production of CHO cells

(Salazar et al. 2016). The average percentage of

blocked reactions in the metabolic pathways of

different amino acids was reduced from 34.10% in

iCHO1766 to 13.56% in iCHO2101. Therefore, the

applicability of CHO model in bioprocess studies can

be increased by refining the metabolic models.

Recently, an extended version of the GEM of CHO

cells was released, in which new constraints were

added to the model based on enzyme capacity of the

reactions (Yeo et al. 2020). Yet, the focus of our study

is to fill the gaps and manually curate the previous

model (Hefzi et al. 2016). In conclusion, with more

active metabolic pathways and more precise gene-

protein-reaction associations in a GEM of CHO cells,

one is able to infer more accurate cell line-specific

models. Such models can address the cell-specific

metabolic signatures of different cell lines for better

predicting biopharmaceutical production capabilities

(Carinhas et al. 2013).
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