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Abstract The Cas9 nuclease initiates double-

stranded breaks at the target position in DNA, which

are repaired by the intracellular restoration pathways

to eliminate or insert pieces of DNA. CRISPR-Cas9 is

proficient and cost-effective since cutting is guided by

a piece of RNA instead of protein. Emphasis on this

technology, in contrast with two recognized genome

editing platforms (i.e., ZFNs and TALENs), is

provided. This review evaluates the benefits of

chemically synthesized gRNAs as well as the integra-

tion of chemical amendments to improve gene editing

efficiencies. CRISPR is an indispensable means in

biological investigations and is now as well trans-

forming varied fields of biotechnology and agricul-

ture. Recent advancement in targetable epigenomic-

editing tools allows researchers to dispense direct

functional and transcriptional significance to locus-

explicit chromatin adjustments encompassing gene

regulation and editing. An account of diverse sgRNA

design tools is provided, principally on their target

competence prediction model, off-target recognition

algorithm, and generation of instructive annotations.

The modern systems that have been utilized to deliver

CRISPR-Cas9 in vivo and in vitro for crop improve-

ment viz. nutritional enhancement, production of

drought-tolerant and disease-resistant plants, are also

highlighted. The conclusion is focused on upcoming

directions, biosafety concerns, and expansive pro-

spects of CRISPR technologies.

Keywords Cas9 nucleases � CRISPR-Cas9 �
sgRNA � ZFNs � TALENs � Biotechnology �
Epigenomic editing

Introduction

Genome editing is a kind of genetic engineering

mechanism wherein DNA is introduced, obliterated,

modified or substituted in the genome of a living

individual. Homologous recombination is the founda-

tion of genome engineering, but its occurrence at low

frequencies limits the editing efficiency (Chen et al.

2019). To improve editing frequency, researchers took

over the utility of enzyme endonucleases that intricate

to restore DNA double-stranded breaks (DSB). There

are various genome altering technologies like zinc

finger nuclease (ZFN) and transcription activator-like

effector nuclease (TALEN) already been discussed for

targeted modifications of the genome (Zhang et al.

2010; Adli 2018).

Clustered regularly interspaced short palindromic

repeats (CRISPR)/CRISPR-associated9 (Cas9) tech-

nology is being widely used to incorporate high
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specificity and activity, at the preferred target locus.

As endonucleases, Cas proteins are known to use a

single guide RNA (sgRNA) to make complementary

base pairs with target DNA followed by cutting the

DNA at explicit sites (Agrotis and Ketteler 2015).

Supposedly, using CRISPR a method can be devel-

oped to engineer just about any DNA sequence in the

genome as it offers flexibility, easy multiplexing, and

scaling. Nowadays, its applications have reached a

variety of fields, counting biotechnology, biological

investigation, human medicinal application, and agri-

cultural research (Veres et al. 2014; Chen et al. 2019).

The guide RNA (gRNA) of the CRISPR-Cas9

system is the RNA element that possibly comprises

either the chimeric sgRNA or the dual RNAs

(crRNA:tracrRNA) (Arroyo et al. 2016). The gRNAs

can be swiftly created by the use of chemical synthesis

methods and offer correspondent characteristics and

advantages, such as integration of chemical modifica-

tions to improve on-target precision, gene editing

proficiencies, and genome-scale high throughput

range analysis for practical genomic studies (Ryan

et al. 2018). The CRISPR-Cas9 genome complex and

epigenome editing can be introduced into living cells

for precise and dynamic manipulation of an epigenetic

state that would facilitate its employment in plants.

Abiotic stresses such as drought, salinity, etc., can

decrease crop yield up to 50% (Afzal et al. 2019).

CRISPR technology has been used to study some

significant drought stress-related genes such as

AREB1 and OsSAPK2 in Arabidopsis and rice,

respectively (Shinwari et al. 2020). It has been

documented that CRISPR is used to manipulate the

genome of different plant species, including Ara-

bidopsis,Medicago truncatula, tomato, potato, wheat,

corn, rice, and mushroom (Khatodia et al. 2016; Gong

et al. 2002; Papikian et al. 2019). Some mainstream

problems allied with nucleic acid-based application

analysis are off-target effects, ethical concerns, and a

need for safe and proficient delivery systems.

Although several methods have been developed to

detect the off-target mutations such as SITE-seq,

Digenome-seq, GUIDE-seq, and DISCOVER-seq,

etc. (Wada et al. 2020) yet these major bottlenecks

exist in plant system. Hence the emphasis is given on

the current modern systems developed to transport and

consequently deliver CRISPR in vivo and in vitro for a

variety of advantageous applications.

In the present communication, the salient features

of the CRISPR-Cas9 system, a comprehensive com-

parison, as well as chemical synthesis and modifica-

tions of the sgRNA elements are discussed. A brief

description of the bioinformatics tools used to design

sgRNA is also mentioned. Epigenetic changes, regu-

lation mechanisms, and their possible implications in

the plants are highlighted. Finally, the focus is laid on

possible delivery strategies and genome editing

applications in plants.

A comparative mechanism of genome editing

by CRISPR-Cas9, ZFNs, and TALENs

Technologies for the introduction of site-specific

alterations and amendments in the genome of cells

and individuals remain exclusive. Supplementary

examples of programmable genome editing machin-

ery consist of TALENs and ZFNs (Fig. 1). TALENs

and ZFNs function as dimers and only the protein

components are required.

A ZFN is a heterodimer in which every subunit

comprises a zinc finger domain and a FokI endonu-

clease domain (Urna et al. 2010). Genome editing by

ZFNs has been demonstrated in plants, including rice

and Arabidopsis (Ainley et al. 2013; Gallego-Bar-

tolome et al. 2019). ZFNs are effectual genome editing

elements; however, they were not extensively adopted

because of the complexity in nature of the contact

between zinc fingers and DNA. Other limitations

include the inherent difficulty in designing, interest-

dependent specificity, and difficulty in authenticating

such proteins for a particular DNA locus of context

(Sander et al. 2011).

TALENs are dimeric transcription nucleases or

factor built from arrays of 33 to 35 amino acid

modules, each one of which is targeted to a single

nucleotide. Researchers can easily design TALENs

because there is a one-to-one recognition convention

among protein repeats and nucleotide sequences;

hence it can target nearly any sequence of interest

presently by assembling the arrays (Luo et al. 2019).

TALENs has been used to edit the genomes of a wide

variety of plants, including barley (Budhagatapalli

et al. 2015), rice (Shan et al. 2015), soybean (Du et al.

2016), sugarcane (Jung and Altpeter 2016), maize

(Char et al. 2015), and potato (Clasen et al. 2016).

TALENs were simpler to construct and authenticate,
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facilitating an inexpensive, faster method of genome

editing; however, the difficulties in synthesis, protein

designing, and corroboration remained an obstruction

to its extensive adoption in genome editing

applications.

CRISPR-Cas consists of a single distinct mono-

meric protein and a chimeric RNA unit. Unlike ZFNs

or TALENs, CRISPR-Cas is like a DNA-targeted form

of RNA interference. CRISPR-Cas has revolutionized

the genome-editing field as it is simple, inexpensive,

Fig. 1 A diagrammatic evaluation of various pliable sequence

explicit genome editing nucleases that cleaves adjoining DNA

sequences to generate nicks on corresponding strands: A Zinc-

finger nucleases (ZFNs) are dimer, with every monomer

comprising of DNA binding domain (3–6 zinc finger recurs

identifying 9–18 nucleotides) and type II restriction endonucle-

ase Fok1 domain. B Transcription activator-like nucleases

(TALENs) are dimers with every subunit consisting of DNA

binding domain (conserved, 23–28 amino acid sequence explicit

for each nucleotide) and Fok1 nuclease domain. C CRISPR/

Cas9: Cas9 naturally evolved, RNA-guided endonuclease

directed by sgRNA, (crRNA and tracrRNA) for precise

objective cleavage. It recognizes about 20 nucleotide recogni-

tion spot upstream of protospacer adjacent motif (PAM) of its

DNA target
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easily programmed. It is also well efficient, as only 20

nucleotides in the gRNA need to be customized to

identify a diverse target. The targeting of endonucle-

ases to a specific locus results in DNA cleavage and

induces the cell to undertake homology-directed repair

(HDR), microhomology-mediated end joining

(MMEJ) or non-homologous end joining (NHEJ).

HDR occurs as a repair template-specific desired

genomic modification that enables precise editing

(Bassett et al. 2013). MMEJ is an error-prone repair

system that involves the arrangement of microhomol-

ogous sequences internal to broken ends prior to

joining and is coupled with insertions and deletions

(Yanik et al. 2018). In the case of NHEJ, no DNA

repair template is provided, and its error-prone nature

often leads to inactivating mutations (Chen et al. 2019)

(Fig. 2). Some other repair mechanisms also exist like

single-stranded annealing (SSA) pathway of HDR,

which requires only a single DNA duplex and uses the

repeat sequences as the identical sequences as in HDR

(Yanik et al. 2018). A specialized form of MMEJ is

known as polymerase theta-mediated end joining

(TMEJ) and can repair breaks using C 1 bp of

homology (Schimmel et al. 2019).

Chemical synthesis of the guide RNA

The RNA unit of the CRISPR-Cas9 complex can be

created enzymatically or via the chemical synthesis

process (Helm et al. 1999). Enzymatic synthesis is a

cost-effective method, and the process of in vitro

transcription requires a DNA template, T7, T3, or

SP6RNA polymerases and ribonucleoside triphos-

phates. A 50-triphosphate remains on the gRNA after

transcription that necessitates elimination by phos-

phatase enzyme following purification (Cho et al.

2013). Solid-phase synthesis chemistry is used to

create synthetic gRNAs. There is greater flexibility in

time consumption, yield, length, and higher precision

in the synthesized RNAs with no obligation for several

cloning and sequencing steps. Chemical production of

gRNAs employs amalgamation (solid phase) through

nucleoside phosphoramidite structure blocks for con-

structing gRNA (Kelly et al. 2016). 20-Silyl (20-
TBDMS, 20-TOM), 20-O-thionocarbamate (TC) (Cul-

lot et al. 2019) and 20-bis(acetoxyethoxy)-methyl ether

(20-ACE) (Scaringe et al. 1998) are some of the RNA

synthesis chemistries offered.

Researchers successfully generated gRNA

sequences intended for Streptococcus pyogenes Cas9

structures using a chemical synthesis approach (An-

derson et al. 2015). A two-RNA approach with a

crRNA and tracrRNA to program Cas9 or a sgRNA

approach can be used. Conventional chemistries such

as 20-TOM or TBDMS (Pitsch et al. 2001) are capable

of synthesizing RNA[ 70 bases whereas long RNA

(* 150 nucleotides) are characteristically synthesized

employing TC or 20-ACE chemistries (Cullot et al.

2019). Jinek et al. (2012) reported that in S. pyogenes,

the crRNA, tracrRNA, and sgRNA are in the order of

40, 70, and 100 nucleotides in length, respectively.

Hence use of 20-ACE or TC chemistries is ideal for

synthesis providing high throughput, greater purity,

rapid coupling rates, and higher production than any

other RNA chemistries.

The tools used for CRISPR/Cas9 designing

The precision of the CRISPR-Cas system depends on

well-designed sgRNA as it is a critical aspect of the

successful editing of target genes. The design tools

differ in parameters and design specifications, pre-

dominantly highlighting the on-target efficacy calcu-

lation models and off-target calculation algorithms to

ultimately improve sgRNA specificity (Zhu 2015).

Various computational tools have been created to

design sgRNA with improved specificity and effi-

ciency. Certain representatives are described (Table 1)

that has been developed to assemble information and

offer useful purpose to study CRISPR-Cas organiza-

tion. Wong et al. (2015) developed WU-CRISPR; the

program is suggested for its ease of use and proficient

sgRNA design using a machine learning technique.

The tool recognizes several sequences and structural

arrangements from Doench’s dataset (Doench et al.

2014) and constructs a sgRNA effective estimate

model with SVM. Chari dataset was used to assess and

compare the tool for superlative performance (Chari

et al. 2015). The preceding off-target scoring process

cannot be quickly contained through organisms, so the

researchers wished for a novel procedure to evaluate

the off-target action and termed it CASPER (Mendoza

and Trinh 2017). The model was derived from Hsu–

Zhang matrix and appraised for its off-target activity

even in the absence of adequate experimental statistics

(Hsu et al. 2013).
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Additionally, several other tools are also reported,

such as Cas-OFFinder (Baltes et al. 2014), SSFinder

(Upadhyay and Sharma 2014), CRISPR-P (Lei et al.

2015), and Cas OT (Xiao et al. 2014) that eases the

sgRNA designing process. The assembly of expres-

sion vectors and delivery of those vectors in plant

systems involves the use of diverse methodologies

essential for amplifying editing efficiencies. There is

still a great deal to be experimented and optimized for

the exploitation of CRISPR-Cas9 in plant systems.

CRISPR mediated epigenetic regulations in plants

Examining the usage of the Cas9 system to inspect

regulatory sequences that can transform gene expres-

sion through epigenetic mechanisms, and chromatin

modifications are the outcomes of the discovery of a

versatile RNA-guided DNA-targeting platform (Naito

et al. 2015). Canver et al. (2017) showed that the

majority of the gRNAs did not affect gene expression

regulation when aimed to create indel mutations in

recognized enhancer regions. This led to the under-

standing that only a few critical domains are

Fig. 2 A diagrammatic representation of Cas9 in genomic

editing with endogenous cellular site-specific nucleases: The

double stranded breaks (DSBs) generated by CRISPR/Cas9

system be repaired by non-homologous end joining (NHEJ),

microhomology-mediated end joining (MMEJ) or homologous

recombination (HR) pathways. NHEJ produces random inser-

tions or deletions (indels) of random base pairs as a result of

homozygous, heterozygous or biallelic mutations. Diminutive

microhomologies (* 5–25 bp) bordering DSB recombine

through MMEJ, resulting in deletion amid homology arms.

HDR can produce desired precise nucleotide substitution

mutations or indels by homologous recombination guided

through donor DNA digested with the identical endonuclease

following related overhangs
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significant for enhancer function (Oldridge et al. 2015;

Maurano et al. 2012). Sumoylation has majorly been

linked to transcriptional repression mechanism (Dec-

que et al. 2016). However, its functional roles are

focused on proteasome-dependent proteolysis, activa-

tion of DNA damage signaling cascades (Wu et al.

2014), cellular localization, and assembly (Deshaies

and Joazeiro 2009) fitting in the general principle of

the dCas9-KRAS system.

Numerous reports simultaneously established the

concept for up- or down-regulation of target genes

drawn out by dCas9 fusions to catalytic domains,

directing methylation and demethylation of CpG

islands that span promoter regions (McDonald et al.

2016; Vojta et al. 2016). Similarly, evidence of the

production of synergistic effects leading to increased

methylation of the promoter by targeting multiple

promoter sites and by co-expression of diverse

sgRNAs is provided. The study was demonstrated

using a dCas9-DNMT3A fusion (with a Gly4Ser

flexible linker). Which showed competent and precise

CpG island methylation of the BACH2 and IL6ST

promoters (Vojta et al. 2016). In a Transgenic

Arabidopsis plant overexpression of a chromatin

remodeling gene AtCHR12 shows evidence of growth

termination in stem and bud. On the contrary, the

response under unfavorable conditions was fewer in

the AtCHR12-knockout mutant than in the wild type

plants (Mlynarova et al. 2007). The current advance-

ment in understanding various epigenetic control

mechanisms and in developing effective and flexible

tools to study these procedures makes it easy to exploit

it for crop management and improvement (Fig. 3).

Gene/ genome editing applications using guide

RNA for crop plant improvement

Genome editing by CRISPR is adaptable to edit any

gene in any monocot or dicot plant species. CRISPR-

Cas9 has already been used to improve tolerance to

biotic pathogens (fungal, viral or bacterial), or abiotic

stresses (cold, heat, drought, salt), enhance metabolic

pathways, improve nutritional value, grain quality,

increase shelf life, obtain haploid seeds, and upsurge

agricultural yield (Wang et al. 2014, 2016). Decline of

phytic acid content in maize (Liang et al. 2008) and the

formation of acrylamide free potatoes (Halterman

et al. 2016) has also been reported. Representative

applications of CRISPR-Cas in plant improvement

have been discussed in the subsequent section

(Table 2).

In dicotyledons

Characteristic and evident research work has been

done for the production of non-browning apples, and

potatoes employing Polyphenol oxidase (PPO) gene

mutant (Halterman et al. 2016). In a recent study,

Ortigosa et al. (2018) reported the creation of a tomato

variety resistant to the bacterial speck disease caused

by Pseudomonas syringae pv. tomato (PtoDC3000)

without reducing resistance to necrotrophs. The func-

tional ortholog of AtJAZ2 in tomato favorably aggre-

gates in stomata showing that SlJAZ2 is a key co-

receptor of coronatine (COR) in stomatal guard cells.

Using CRISPR-Cas9 SlJAZ2 was modified to create

dominant JAZ2 repressors that lacked the C-terminal

Jas domain (SlJAZ2Djas) and disallowed stomatal

reopening by COR providing resistance to

PtoDC3000. Furthermore, it also established a novel

CRISPR-Cas-built tactic for crop protection that could

be employed in the field.

Li et al. (2017a) worked on a Chinese herb Salvia

miltiorrhiza with documented vasorelaxation and

antiarrhythmic properties. The researchers targeted

the diterpene synthase gene (SmCPS1) concerned in

the biosynthesis of tanshinone that utilizes geranyl-

geranyl diphosphate (GGPP) as substrate. The tanshi-

none biosynthesis metabolic flux was switched to the

taxol synthesis pathway by using SmCPS1 knockout

(post-GGPP synthesis step) mutants as GGPP is also a

substrate for taxol biosynthesis. Three homozygous

mutants with zero tanshinone accumulation and a

decreased proportion of eight chimeric mutants were

produced. Using CRISPR/Cas9-Agrobacterium rhizo-

genes mediated alteration from twenty-six indepen-

dent transgenic hairy root lines of Salvia. Malzahn

et al. (2019) demonstrated CRISPR-Cas12a mediated

genome editing in two target genes (TT4 and GL2) in

transgenic Arabidopsis. Cas12a was also used for

targeted genome editing in Nicotiana benthamiana,

Solanum lycopersicum, and Arabidopsis thaliana

(Bernabé-Orts et al. 2019).

In an experiment, researchers demonstrated Cpf1-

mediated gene targeting in protoplasts isolated from

wild tobacco and soybean. The result led to effective

mutational induction in AOC in wild tobacco and

123

Biotechnol Lett (2020) 42:1611–1632 1619



123

1620 Biotechnol Lett (2020) 42:1611–1632



FAD2 paralogues in soybean (Kim et al. 2017). In

Solanum tuberosum CRISPR-Cas9 was used to knock

out the gene encoding granule-bound starch synthase

(GBSS) by a single transfection. It resulted in the

generation of amylopectin producing potato, which is

an extremely required marketable trait (Andersson

et al. 2017). An experimental study on CRISPR-Cas9

targeted modification in Citrus sinensis for disease

resistance against Xanthomonas citri causing citrus

canker was conducted. Deletion of the intact EBEPthA4

sequence series from susceptibility gene Lateral organ

boundaries 1 (CsLOB1) alleles examined the intensity

of resistance to wanjincheng orange as CsLOB1

promoter augments disease resistance (Peng et al.

2017). Chandrasekaran et al. (2016) created non-

transgenic homozygotic mutant cucumber plants that

were resistant to several viruses such as cucumber vein

yellowing virus, papaya ringspot mosaic virus, etc.

The researchers inactivated elF4E (eukaryotic trans-

lation initiation factor gene) using the CRISPR-Cas9

system.

In monocotyledons

Li et al. (2016) evidenced that multiple regulators of

significant traits can be edited in a single rice cultivar

Zhonghua 11 by CRISPR-Cas9. They used the

CRISPR system to mutate the genes controlling grain

number, grain size, panicle, and plant architecture, i.e.,

Gn1a, GS3, DEP1, and IPA1, respectively. The second

generation of the gn1a, dep1, and gs3 mutants showed

a higher grain number, dense, panicles, and large grain

size, respectively. Besides, semi-dwarf and grain with

a lengthy-awn phenotype were also detected in dep1

and gs3 mutants, correspondingly. The ipa1 mutants

presented two distinct phenotypes, having either fewer

or more tillers. Such studies facilitate the separation of

complex gene regulatory systems in the same genomic

background and the assembling of vital traits in

cultivated varieties. Another study was conducted in

rice plants using three engineered gRNAs with a

20–22 nucleotide seed region customized to pair with

distinctive rice genomic locations. The experimental

analysis led to the conclusion that the mismatch site

involving target DNA and gRNA seed is a substantial

determinant of the Cas9 targeting exactitude. The

resulting mutational proficiency of the target site was

expected to be 3–8% (Khlestkina and Shumny 2016).

Lawrenson et al. (2015) targeted two copies of

HvPM19 using Cas9 genome editing in barley

(Hordeum vulgare). The researchers observed Cas9-

induced mutations in the first generation of the lines.

Wang et al. (2014) have utilized CRISPR-Cas9

technology to generate transgenic Triticum aestivum

plants conferring resistance to powdery mildew. This

report has provided a methodological framework to

improve polyploid crops. The researchers have

showed that TaMLO-A1 allele (TALEN-induced

mutation in MILDEW-RESISTANCE LOCUS

(MLO) proteins) in barley plant confers herita-

ble broad-spectrum resistance to powdery mildew.

Zhou et al. (2014) reported large chromosomal

segment deletions (115–245 kb) induced by Cas9 as

well as the inheritance of genome edits in multiple

generations, by targeting four sugar efflux transporter

(OsSWEET) genes in rice. Up to 87–100% editing

efficiency was observed in T0 transgenic plants, all

with di-allelic edits.

Wang et al. (2016) indicated that gene modification

via CRISPR-Cas9 is a useful approach for enhancing

blast resistance in rice. The researchers reported the

improvement of rice blast resistance by targeting the

OsERF922 gene in rice. Among 50 T0 transgenic

plants twenty-one mutant plants were identified, and

several Indel mutations at the target site were revealed

by Sanger sequencing. Moreover, six second genera-

tion homozygous mutant lines were additionally

studied for a blast resistance phenotype and various

agronomic traits viz. plant height, panicle length,

number of grains per panicle, flag leaf length, and

width etc. It was also observed that the number of blast

lesions formed after pathogen infection was decreased

in mutant lines as compared to wild-type plants. Some

other noteworthy reports include the enhanced resis-

tance to herbicides (Endo et al. 2016) and

bFig. 3 Method of CRISPR/Cas9 action and epigenetic manip-

ulation based on the probability to allocate chromatin modifiers:

CRISPR loci after incorporation of foreign DNA is transcribed

into prime transcript and progressed into crRNA by aid of

tracrRNA, later Cas9 intricate with a crRNA, cleaves foreign

DNA. a Targeted relocation of transcriptional regulator-

enzymes accountable for modification in the DNA methylation;

DNMT, DNA methyltransferase; TET, ten-eleven translocation

enzymes. b Targeted relocation of transcriptional regulator-

histone modifiers; HDM, histone demethylase; HAT, histone

acetyltransferase; HMT, histone methyltransferase; HDAC,

histone deacyetylase; HUbq, histone ubiquitin ligase. c Gene

knockout modification
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thermosensitive genic male sterility in maize and

wheat (Li et al. 2017b; Okada et al. 2019). Producing

genetic resistance to viruses has huge potential to

manage diseases for which no natural resistance has

been reported, such as maize lethal necrosis disease

(Luria et al. 2017). These results infer advance aspects

in molecular breeding to enhance plant function

utilizing optimized CRISPR/Cas9-plant systems.

Delivery strategies with special emphasis on plants

One of the critical challenges in targeting cells in plant

systems is the secure and competent transfer of

CRISPR-Cas9 genome-editing complex (Joung et al.

2017). Hence, an emphasis is given on the modern

systems developed to transport CRISPR-Cas9 in-vivo

and in-vitro (Han et al. 2017). Genome editing using

CRISPR-Cas9 is performed by three strategies. The

primary and foremost approach utilizes a simple and

suitable plasmid-based CRISPR-Cas system, pro-

gramming the Cas protein with sgRNA from the

identical vector (Ran et al. 2013). Cas9 protein can be

delivered using electroporation, microinjection, and

lipid nanoparticle strategies (Qin et al. 2015). The next

approach is based on carrying the fusion of the sgRNA

and Cas9 mRNA. It offers improvements in off-target

effects and limits the time of gene-editing (Niu et al.

2014). Delivery strategies such as microinjection,

electroporation, and lipid nanoparticles (Zuris et al.

2015) can be classified under this strategy. The third

approach is based on delivering the combination of the

Table 2 continued

HvPM19
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Cas protein and the sgRNA. It is used widely due to

several advantages such as elevated editing efficiency,

quick action, and no requirement of promoter choice

or codon optimization (Kim et al. 2014). This com-

bination of Cas protein and sgRNA can be delivered

using electroporation, cell-penetrating peptide (CPP),

and gold nanoparticles (Zuris et al. 2015).

Physical delivery approaches

Physical delivery strategies employ temporary disrup-

tion of physical barriers and allow cargo to reach its

targeted location. Electroporation is an extensively

used strategy, and it offers high transfection efficiency

and usage in the in-vitro and in-vivo analysis (Tebas

et al. 2014). The inadequacy of electroporation is that

the plasmid DNA is barely assimilated into approx-

imately 0.01% of target cells. Moreover, it induces

substantial cell death and also leads to nonspecific

transfection. Microinjection is another physical deliv-

ery approach where cargoes are injected to the target

site using a 0.5–5.0 lm diameter needle (Raveux et al.

2017). Protoplast transformation has been confirmed

advantageous for the evaluation of the efficiency of

CRISPR/Cas9 designs where plasmids can be deliv-

ered into protoplasts using electroporation and

microinjection (Malnoy et al. 2016). Using particle

bombardment technique that offers high transforma-

tion efficiency researchers have succeeded in deliver-

ing exotic DNA into scutellar tissues of maize,

epidermal tissues of Allium cepa, and leaf and cell

culture of several other crops (Maggio et al. 2014).

Non-viral delivery approaches

The non-viral vectors offer advantages of availability,

safety, lack of size limitation, and cost-effectiveness

(Glass et al. 2018). Agrobacterium-mediated plant

transformation is an extremely multifaceted, evolved,

and widely used method that utilizes genetic determi-

nants of bacterium and host plant cells mutually

(Gelvin 2003). Vector ZH11 was transformed via A.

tumefaciens-mediated callus transformation. Addi-

tionally, A. rhizogenes mediated-hairy roots are an

excellent transformation model system for species of

fabaceae. The transient assay can be implemented to

test the CRISPR genome editing ability (Hiei et al.

1994). PEG mediated transformation is a simple

reproducible and highly competent strategy for the

transformation of plant protoplasts (Liu and Vidali

2011). Nanoparticles composed of mesoporous silica

(Cunningham et al. 2018), gold, layered double

hydroxides (Mitter et al. 2017), and polyethylenemine

(Cunningham et al. 2018) are widely used as carriers.

Carbon nanotubes have been used as a delivery vehicle

to transfer DNA for successful protein expression in

mature plant leaves (Demirer et al. 2018). The

commonly used explants in plant transformations

include calli, i.e., unorganized cell mass (monocots

and eudicot), leaf cuttings (eudicot), and zygotic

embryos (monocots) (Ikeuchi et al. 2016).

Viral delivery approaches

Despite the safety distress and the chances of intro-

duction of undesirable mutations, viral delivery sys-

tems are the most proficient method to carry plasmid-

based nucleic acids to cells in the in-vitro and in-vivo

analysis (Koike-Yusa et al. 2014). Virus mediated

genome editing has been reported in both inoculated

and non-inoculated leaves. In a recent report, the

authors developed a tobacco rattle RNA virus-medi-

ated genome transduction method for N. benthamiana

(Mahas et al. 2019). Bean yellow dwarf virus,

begomovirus, cabbage leaf curl virus, and wheat

dwarf virus are some of the most widely used DNA

viruses for gene transduction. Bean yellow dwarf virus

has been used to target stALS1, stALS2 (Solanum

tuberosum acetolactate synthase1) and P-GUS:NPTII

(Promoter of GUS and neomycin phosphotransferase)

gene in S. tuberosum and Nicotiana tabacum respec-

tively (Butler et al. 2015; Baltes et al. 2014). The

wheat dwarf virus has also been used as a viral vector

to target Ubi, MLO, GFP (b-glucuronidase [GUS]

reporter controlling gene, MildewLocusO, green flu-

orescent protein) in T. aestivum (Gil-Humanes et al.

2017). These methods provide several advantages

such as immense infection efficiency, broad cell

tropism, and long-term gene expression (Zaidi and

Mansoor 2017). However, there are disadvantages of

difficulty in production, limited packaging size, and

potential for insertional mutagenesis.

Conclusion and future prospective

It is improbable for traditional plant breeding to meet

the growing food demands as well as other ecological
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challenges. On the contrary, CRISPR-Cas technology

is removing genome editing barriers and has the

potential to revolutionize plant breeding. What has

been achieved so far with this technology is just the tip

of the iceberg. The CRISPR system can be used for

several futuristic applications in plant systems, such as

for studying abiotic stress responses or adaptation

pathways. Likewise, activation or suppression of

genes can be regulated by utilizing CRISPR as a

binding tool to stimulate repressors or activators to

induce traits. CRISPR also has the capability for gene

shuffling, i.e., assembling desirable traits in the

genome that would group even in traditional cross-

breeding. This technology will allow the emerging

genomic and systems biological data to be exploited

more comprehensively in gene discovery as well as

novel trait development in countless plant species.

CRISPR has been used for improved screening for

genes and traits in human health via guide molecule

libraries. This could be potentially used in plants to

screen for characters contributing to crop yield, pest,

and disease resistance. Application in orthogonal gene

targeting is another aspect which is so far not been

tested in plant systems. Hence, it is crucial to present

parallel studies in plants to guarantee the adaptability

to different species.

Bioinformatic gRNA design tools can be used to

increase efficiency and decrease off-target effects. The

tools depend on the activity prediction models and off-

target detection algorithms; therefore, there is a need

for additional CRISPR-Cas datasets for the develop-

ment of new design tools. A substantial bottleneck to

the implementation of CRISPR tools in agriculture is

the effective packaging and delivery of CRISPR-Cas

complex to the targeted plant cells. Novel delivery

methods need to be established to achieve high-

efficiency genome editing in plants. Thus, the outlook

for improvement in reducing the size of presented Cas

proteins or the innovation of smaller Cas9 proteins is

needed.

Genome editing is a promising technology with the

ability to contribute to food generation for the use of

the rising population. However, the biosafety, social

and ethical concerns remain about the usage of

genome editing in plants. The major concern is the

risk of creating undesirable genetic changes in plants

due to off-target mutations. Fragments of the CRISPR-

Cas9 might be inserted into expected or unexpected

sites during the DNA repair mechanism or degraded

into filler DNA. Substantial work is being required

including improving gRNA design strategies, protein

engineering, ribonucleoprotein delivery, using spa-

tiotemporally controlled Cas9, or gRNAs through

chemical or environmental inducers, that can modify

CRISPR function. The human population has been

subjected to Cas9 protein homologs long before the

utilization of CRISPR-Cas9 in genome editing. The

amino acid sequence of the Cas9 protein from S.

pyogenes has * 58%, 35%, and C 80% similarity to

Cas9 protein from S. thermophilus (probiotic), Lacto-

bacillus plantarum (probiotic and in food production)

and human commensal and pathogenic bacteria such

as S. dysgalactiae subsp. equisimilis, Staphylococcus

aureus, Klebsiella pneumonia, respectively (El-Mou-

nadi et al. 2020). Nevertheless, there is a need to revise

the regulations of genome-edited plants and to

enlighten the general community about their charac-

teristics. A sustainable future for agriculture can now

be imagined along with the responsibility of contin-

uously resolving both scientific and public concerns

about its usage.
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