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Abstract

Objectives To characterize methyltransferases

involved in the biosynthesis of benzylisoquinoline

alkaloids in Stephania intermedia.

Results Three N-methyltransferases, SiCNMT1,

SiCNMT2, SiCNMT3, and O-methyltransferase

SiSOMT were identified in Stephania intermedia.

Then, four methyltransferase genes were cloned into

the pGEX-6P-1 vector. The recombinant vectors were

transformed into Escherichia coli BL21(DE3) for

expression and were functionally tested. SiCNMT1,

SiCNMT2, and SiCNMT3 could methylate (R)-co-

claurine to produce (R)-N-methylcoclaurine.

SiCNMT2 further methylated the product of (R)-N-

methylcoclaurine to produce (R)-magnocurarine. Sim-

ilarly, (R)-norcoclaurine was continuously catalyzed

to yield (R)-N-methylnorcoclaurine and (R)-N, N-

dimethylnorcoclaurine by SiCNMT2. Furthermore,

SiSOMT was shown to catalyze the conversion of (S)-

scoulerine to (S)-tetrahydropalmatine.

Conclusions The key methyltransferases, which

were in the last step biosynthesis of (R)-magnocu-

rarine, (R)-N, N-dimethylnorcoclaurine and (S)-te-

trahydropalmatine were revealed and their activities

were verified in vitro. Four novel methyltransferases

will be promising candidates for methylation of

benzylisoquinoline alkaloids.

Keywords Benzylisoquinoline alkaloids �
Biosynthetic pathway � N-methyltransferase � O-
methyltransferase � Stephania intermedia

Introduction

Stephania intermedia H. S. Lo (SI), belonging to the

genus Stephania (Menispermaceae), is an important

medicinal herbaceous vine plant that allows for

treatment of pain. SI contains many types of ben-

zylisoquinoline alkaloids (BIAs), such as the analgesic

(S)-tetrahydropalmatine ((S)-THP), the anti-microbial

berberine and (S)-corydalmine, which reduces mor-

phine tolerance (Facchini and De Luca 2008; Zuo et al.
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2011). (S)-THP has been used for more than 40 years

as an analgesic in China and exhibits hepatoprotective,

anti-arrhythmic, and anti-inflammatory activities

(Kang et al. 2016; Sun et al. 2018). (S)-corydalmine,

the main metabolite of (S)-THP in vivo, substantially

reduces morphine tolerance and relieves bone cancer

pain (Dai et al. 2016, 2017; Tang et al. 2016).

In recent years, researchers have focused on several

plant species to provide insight into major BIAs,

including morphine found in Papaver somniferum,

berberine in Coptis japonica, and sanguinarine in

Eschscholzia californica (Hagel and Facchini

2010, 2013; Purwanto et al. 2017; Yamada et al.

2016). Other species that accumulate a wide-range of

BIAs, such as SI, have not been reported yet. SI is rich

in (S)-THP, suggesting its suitability as a plantmaterial

for the purpose of this study, to elucidate the biosyn-

thetic pathway of (S)-THP. However, the genome of SI

has not been sequenced and the transcriptome data

resources are also scarce. A previous study found that,

(R)-N-methylnorcoclaurine, (R)-N, N-dimethylnorco-

claurine, (S)-THP, and their precursors were detected

from SI, respectively (data not available here).

Furthermore, some of the methyltransferases (MTs)

are capable of successive methylation. For example,

pavine N-methyltransferase (PavNMT) found in Thal-

ictrum flavum and reticuline N-methyltransferase in P.

somniferum (RNMT) could catalyze pavine and reti-

culine, respectively (Morris and Facchini 2016; Torres

et al. 2016). It was, therefore, proposed that N-

methylation and O-methylation reactions were medi-

ated by N-methyltransferase and O-methyltransferase,

respectively, in the biosynthetic pathway of (R)-N-

methylnorcoclaurine, (R)-N, N-dimethylnorcoclau-

rine, and (S)-THP. Furthermore, due to abundant (S)-

THP in SI, we predicted that special biosynthetic

pathways, highly efficient or highly expressed

enzymes are different in activity from other plants.

Based on the above reasons, we proposed the biosyn-

thetic pathway of (S)-THP (Fig. 1; Table 1).

Herein, we have identified four novel MTs

(SiCNMT1, SiCNMT2, SiCNMT3 and SiSOMT)

from the transcription data of SI. Four MTs were

cloned into the pGEX-6P-1 expression vector. Then,

the recombinant vectors were transformed into E. coli

BL21 (DE3) and induced with IPTG for expression.

The fusion proteins were purified using GST-tag

Protein Purification Kit and their properties were

characterized in detail.

Materials and methods

Materials

Six wild tuberous roots of SI from different plants

(each weighed roughly 500 g, and were 10 cm in

diameter) were collected in 2017 from the Yunnan

province of China. The voucher specimens

(S2017070) were deposited in the school of Tradi-

tional Chinese Pharmacy, China Pharmaceutical

University. Tuberous roots were transplanted into

the field. The next year, leaf and root, were harvested

separately and frozen using liquid nitrogen before

storing at - 80 �C until RNA extraction.

(R)-coclaurine, (S)-tetrahydrocolumbamine, (R)-

norcoclaurine, (S)-scoulerine, (S)-tetrahydropalmatru-

bine, Norlaudanosine and (S)-THP were purchased

from Yuan Ye Biotechnology Co., Ltd. S-Adenosyl-L-

methionine (SAM) was purchased from Sigma–

Aldrich. Acetonitrile, methanol, and formic acid

(HPLC grade) for LC analysis were purchased from

Merck (Darmstadt, Germany). Ethanol and iso-

propanol were purchased from Nanjing chemical

reagent co. LTD.

RNA extraction

Total RNAwas extracted from the samples using Plant

RNA Kit (Omega Bio-tek, Norcross, GA, USA). First

strand cDNA synthesis was performed on 2 lg of

RNA using HiScript III 1st Strand cDNA Synthesis

Kit (Vazyme, Nanjing, China). MTs open reading

frames were amplified from cDNA using 2 9 Phanta

MaxMasterMix DNA polymerase (Vazyme, Nanjing,

China).

Identification of candidate genes

The leaf and root transcriptomes of SI were searched

to identify the sequence encoding the N-methyltrans-

ferase and O-methyltransferase candidates. The

assembled unigenes were blasted against public

databases (E value\ 1 9 10-5), including the non-

redundant protein (NR) database, Nucleotide collec-

tion (NT), the SwissProt database, the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database,

Cluster of Orthologous Groups of proteins (COG) and

Gene Ontology (GO) (He et al. 2018). Four unigenes

of MTs were isolated from the SI transcriptome data.
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Three unigenes were highly similar to CNMT and

were named as SiCNMT1, SiCNMT2 and SiCNMT3,

respectively. One unigene was highly similar to

SOMT, which was named as SiSOMT.

Phylogenetic analysis

To characterize the evolutionary relationships

between four MTs from SI and MTs from other plant

species, 20 amino acid sequences of N-

Fig. 1 Proposed pathways for BIAs biosynthesis in SI.

Enzymes abbreviated in red text have been characterized

in this study. NCS norcoclaurine synthase, 6OMT norcoclau-

rine 6-O-methyltransferase, SiCNMT2 coclaurine N-

methyltransferase, NMCH N-methylcoclaurine 30-hydroxylase,
40OMT 40-O-methyltransferase, BBE berberine bridge enzyme,

SiSOMT (S)-scoulerine 9-O-methyltransferase

Table 1 Enzymes involved in the proposed pathways for BIAs biosynthesis

Abbreviations Full name Sources and references

NCS Norcoclaurine synthase Thalictrum flavum ssp. glaucum (Nailish and Facchini, 2002), Nelumbo

nucifera Gaertn (Menendez-Perdomo and Facchini, 2018)

6OMT Norcoclaurine 6-O-methyltransferase Eschscholtzia californica (Takayuki et al., 2007), Thalictrum flavum

(Robin et al., 2016)

SiCNMT 1, 2, 3 Coclaurine N-methyltransferase Stephania intermedia

NMCH N-methylcoclaurine 30-hydroxylase Papaver somniferum (Isabel and Facchini, 2012)

40OMT 40-O-methyltransferase Coptis japonica (Morishige et al., 2000)

BBE Berberine bridge enzyme Eschscholzia californica(Andreas et al., 2006), Papaver somniferum L.

(Facchini et al., 1996),

SiSOMT (S)-scoulerine 9-O-methyltransferase Stephania intermedia
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methyltransferases and 22 amino acid sequences ofO-

methyltransferases were used to construct the phylo-

genetic tree of N-methyltransferase and the phyloge-

netic tree of O-methyltransferase, respectively.

Molecular phylogenetic trees were constructed by

the neighbor joining algorithm method and bootstrap

frequencies for each clade were based on 1,000

iterations (Chang et al. 2015; He et al. 2017).

Abbreviations and GenBank accession numbers for

sequences were used to construct the phylogenetic tree

(shown in Supplementary Table 1).

Expression and purification of recombinant protein

SiCNMT1 (GenBank accession number, MK749412),

SiCNMT2 (GenBank accession number, MK749413),

SiCNMT3 (GenBank accession number, MK749414)

and SiSOMT (GenBank accession number,

MK749415) genes were obtained from the cDNA of

SI by PCR amplification using primers (Supplemen-

tary Table 2) and cloned into the pGEX-6P-1 vector,

respectively. Recombinant plasmids were transformed

into the E. coli BL21(DE3) (TransGen Biotech,

China) for protein expression. The 5 lL of recombi-

nant plasmid was added into a tube containing 50 lL
of chemically competent cell on the ice and mixed

them gently. The mixture was on ice for 30 min and

then heated for 45 s at 42 �C. The tube was quickly

transferred to the ice for 2 min. Next, 500 lL LB

medium was added to the tube, mixed well and placed

under 37 �C while spun at 200 rpm for 1 h to revive

the bacteria. Plasmid-transformed E. coli BL21(DE3)

cells were inoculated in TB medium containing

100 mg/l ampicillin and the expression cultures were

grown at 37 �C and shaken at 200 rpm. When the OD

at 600 reached 0.6, the cells were induced with

0.1 mM IPTG and the cultured at 16 �C while shaking

at 200 rpm for 18 h. The cells were harvested by

centrifugation (60009g, 3 min, at 4 �C) and resus-

pended in binding buffer, and the suspension was

subsequently homogenized for 20 min and applying

200-W sonication (JY99-IIDN Sonicator; scientz,

China). Cell debris was subsequently removed by

centrifugation at 60009g for 10 min. After centrifu-

gation, the supernatant was purified using GST-tag

Protein Purification Kit (Beyotime, China). The purity

of the GST-tagged protein was analyzed by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) with

Coomassie Brilliant Blue staining.

Enzyme assays

The enzyme assay for SiSOMT activity was per-

formed using a reaction mixture in 100 lL of 100 mM

Tris-HCl (pH 9.0), 5 mM SAM, 25 mM sodium

ascorbate, 10% (v/v) glycerol, 1 mM b-mercap-

toethanol, 0.5 mM potential alkaloid substrate, and

10 lg of purified recombinant enzyme. SiCNMT1,

SiCNMT2, and SiCNMT3 activities were performed

using a reaction mixture in 100 lL of 100 mM Tris-

HCl (pH 7.0), 5 mM SAM, 25 mM sodium ascorbate,

10% (v/v) glycerol, 1 mM b-mercaptoethanol,

0.5 mM potential alkaloid substrate, and 10 lg of

purified recombinant enzyme. Kinetic parameters

were determined at 37 �C in a Thermomixer

(200 rpm) for 2–20 min by varying alkaloid substrate

concentrations from 10 lM to 500 lM. Reactions

were extracted by acetonitrile. The products were

confirmed by HPLC-Q-TOF-MS/MS and the products

amounts were determined from the conversion ratio

using area under-peak of product from the HPLC

chromatograms. Kinetic constants were determined by

fitting the initial velocity-versus-substrate concentra-

tion to the Michaelis–Menten equation using Graph-

Pad Prism 5.

HPLC-Q-TOF-MS/MS analysis of enzyme assays

The analysis of the products was carried out using an

Agilent 1260 high-performance liquid chromatogra-

phy system. Substrates and their biocatalytic products

were separated on a reversed-phase C18 column

(250 mm 9 4.6 mm, 5 lm, Zorbax, Agilent). The

mobile phase consisted of water that contained 0.1%

formic acid and 1 mM ammonium formate (phase A)

and acetonitrile (phase B) with the following gradient

system: 15% B at 0–5 min, 15–20% B at 5–10 min,

20–22% B at 10–15 min, 22% B at 15–17 min,

22–30% B at 17–20 min, 30–95% B at 20–22 min,

95–15% B at 22–23 min, 15% B at 23–25 min. The

flow rate was kept at 1 mL/min with an injection

volume of 10 lL. Detection was performed at 280 nm.

An Agilent 6530 Q-TOF mass spectrometer (Agilent

Technologies, USA) equipped with an electrospray

ionization source was used to perform the MS

analysis. The acquisition parameters were as follows:

drying gas (N2) flow rate, 10.0 L/min; drying gas

temperature, 350 �C; capillary voltage, 4 kV; OCT

RFV, 750 V; fragmentor voltage, 120 V; and
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nebulizer, 35 psig. The mass range was recorded from

m/z 100 to 1500 with collision energies that range from

10 to 50 eV. Peaks were detected in positive ionization

mode for MS and MS/MS detection. To guarantee

mass accuracy, the TOF mass spectrometer was

calibrated by means of a calibrant solution before

sample analysis. The calibrant solution contains the

internal reference masses of purine (C5H4N4) at m/z

121.0509 and HP-921 [hexakis-(1H, 1H, 3H-tetraflu-

oro-pentoxy) phosphazene] (C18H18O6N3P3F24) atm/z

922.009. All operations, data acquisition, and data

analysis were carried out by Agilent Mass Hunter

Workstation software (version B.07.00).

Results

Isolation and characterization

of methyltransferases

The full-length cDNAs of MT genes were obtained

from the leaf and root transcriptome databases of SI.

The candidate selection strategy was based on a cutoff

of 40% amino acid sequence identity, compared with

at least one functionally characterized MTs involved

in BIAs metabolism (Chang et al. 2015). The open

reading frames of SiCNMT1, SiCNMT2, SiCNMT3,

and SiSOMT genes were 1065, 1065, 1077, and

1050 bp, respectively. ExPASy database (http://

expasy.org/tools/) was used for predicting molecular

weight and isoelectric point of the protein (pI). Protein

analysis indicated that SiCNMT1, SiCNMT2,

SiCNMT3, and SiSOMT had a predicted molecular

weight of 41.60 kDa, pI of 6.43; 41.14 kDa, pI of 5.11;

41.08 kDa, pI of 5.98; and 37.67 kDa, pI of 5.55,

respectively.

Phylogenetic analysis

To characterize the evolutionary relationships

between MTs from SI and known MTs from other

plant species, 20 amino acid sequences of N-methyl-

transferases and 22 amino acid sequences of O-

methyltransferases were used to construct the phylo-

genetic tree of N-methyltransferase and the phyloge-

netic tree of O-methyltransferase, respectively.

Phylogenetic analysis showed that SiCNMT1,

SiCNMT2, SiCNMT3, and SiSOMT formed separate

clades with characterized MTs (Fig. 2), whereas

SiCNMT1 and CjCNMT from C. japonica formed a

new clade. SiCNMT3 and TfCNMT from T. flavum

formed a new clade. SiCNMT2 formed a new clade

and showed 59% sequence identities with PsTNMT4

and TfpavTNMT. SiSOMT showed 81% sequence

identities with CjSOMT and TfSOMT.

Purification and in vitro characterization

of methyltransferases

The complete coding sequences of MTs were cloned

into the pGEX-6P-1 expression vector with a N-ter-

minal GST-tagged translational fusion. Recombinant

MTs were purified from the total protein extracts using

GST-tag Protein Purification Kit (Beyotime, China).

All purified recombinant enzymes were analyzed by

10% SDS-PAGE. (Fig. 3). Enzyme assays were

conducted in 100 mM Tris–HCl, pH 7.0 and 9.0,

using 0.5 mM alkaloid, 5 mM SAM, and 10 lg of

recombinant proteins to screen methylation activity.

Mixtures were incubated for 18 h at 37 �C and

quenched with the addition of 100 lL of acetonitrile

(Morris and Facchini 2016). Several similar substrates

were tested to determine the substrate specificity of

SiCNMT1, SiCNMT2, SiCNMT3, and SiSOMT.

SiCNMT1, SiCNMT2, and SiCNMT3 exhibited

activity with (R)-coclaurine (conversion, 30%, 60%,

and 45%, respectively) (Supplementary Table 3).

Interestingly, SiCNMT2 could further methylate the

product of N-methylcoclaurine to form (R)-magnocu-

rarine. SiSOMT showed the differential activities of

three substrates from the seven tested substrates. (S)-

scoulerine, which displayed 100% conversion, was the

preferred substrate. (S)-tetrahydropalmatrubine

(90.2%) and (S)-tetrahydrocolumbamine (58.2%)

were also converted efficiently. Next, the catalyzation

and kinetic parameters were measured to test the

reaction activity of MTs. SiCNMT1, SiCNMT2, and

SiCNMT3 were determined by (R)-coclaurine, and

SiSOMT was determined through (S)-scoulerine. The

results showed that Km of SiCNMT1, SiCNMT2, and

SiCNMT3 for (R)-coclaurine were 92.2, 74.6.5, and

97.1 lL, respectively. SiCNMT2 had better affinity

with (R)-coclaurine than SiCNMT1 and SiCNMT3.

SiSOMT displayed Km of 53.6 lL for (S)-scoulerine

(Supplementary Table 4; Supplementary Fig. 1).
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Reaction product identification

HPLC-Q-TOF–MS/MS was performed to identify the

reaction products of recombinant MTs. (R)-coclaurine

was catalyzed by SiCNMT1, SiCNMT2, and

SiCNMT3, which yielded the same peak with m/z

300.1584 at 12.12 min (Supplementary Fig. 2). The

characteristic fragmentation behavior refers to the

dissociation of the NH2CH3-generated m/z 269.1141

by retro-Diels–Alder (RDA) cleavage. This behavior

showed the existence of one - CH3 group at nitrogen

atom (He et al. 2016; Oh et al. 2018; Xiao et al. 2018).

The product was further identified as (R)-N-methyl-

coclaurine through major fragment ions (Supplemen-

tary Fig. 2; Supplementary Table 5). Furthermore,

SiCNMT2 yielded another peak m/z 314.1758 at

11.11 min, and the characteristic fragment at m/z

269.1114 was formed by losing NH2(CH3)2 group.

Thus, the product was identified as (R)-magnocurarine

by its major fragment ions. Similarly, (R)-norcoclau-

rine was catalyzed by SiCNMT2, which yielded two

peaks with m/z 286.1449 at 10.82 min and m/z

300.1595 at 9.80 min. Two peaks were identified as

(R)-N-methylnorcoclaurine and (R)-N, N-dimethyl-

norcoclaurine by their characteristic fragment ions,

respectively (Supplementary Fig. 3). Tetrahydropro-

toberberine alkaloids possessed the indicative ions

formed by RDA fragmentation at the C-ring and direct

B-ring cleavage, and the isoquinoline fragments

generated by RDA fragmentation were stronger than

those generated by B-ring cleavage (Shangguan et al.

2018). Positions of new O-methyl groups could be

inferred from the increased mass-to-charge ratio (m/z;

in multiples of 14 Da) of dissociated isoquinoline and

benzyl ion fragments. (S)-scoulerine was catalyzed by

SiSOMT and yielded two major peaks atm/z 342.1707

(10.27 min) and m/z 356.1857 (11.18 min) in addition

to the substrate peak m/z 328.1532 (8.84 min,

Fig. 2 Phylogenetic tree of MTs (A NMTs; B OMTs).

Phylogenetic tree was constructed on the basis of the deduced

amino acid sequences for the MTs (black circle marker) and

other plant MTs. Bootstrap frequencies for each clade were

based on 1000 iterations. The scale bar corresponds to 0.2 amino

acid substitutions per site

Fig. 3 GST-tagged purified recombinant MTs on 10% SDS-

PAGE gel. Lane1: marker; Lane 2: pGEX-6P-1 (vector control);

Lane 3: crude enzyme of SiCNMT1; Lane 4: purified

SiCNMT1; Lane 5: crude enzyme of SiCNMT2; Lane 6:

purified SiCNMT 2; Lane 7: crude enzyme of SiCNMT3; Lane

8: purified SiCNMT3; Lane 9: crude enzyme of SiSOMT; Lane

10: purified SiSOMT
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Supplementary Fig. 4). These findings suggested the

occurrence of single and double O-methylation events

(Chang et al. 2015). Two major peaks were identified

as (S)-tetrahydrocolumbamine and (S)-THP based on

their retention time and characteristic ions with the

standard compound (Lin et al. 2018).

(S)-scoulerine has two O-methylation sites,

namely, C-9 and C-2 (Supplementary Fig. 4A). The

catalysis sequence at the C-9 and C-2 positions was

clarified by SiSOMT. Incubation of SiSOMT with (S)-

tetrahydrocolumbamine (m/z 342.1702) yielded one

major peak at m/z 356.1872. The product was inferred

as (S)-THP based on the detection of major fragment

ions and authentic standard (Supplementary Fig. 4B;

Supplementary Table 5). (S)-tetrahydropalmatrubine

(m/z 342.1701), as a substrate with SiSOMT, gener-

ated a peak at 11.28 min (m/z 356.1871) (Supplemen-

tary Fig. 4C), which was inferred as (S)-THP based on

the detection of major fragment ions of m/z 178

(isoquinoline moiety). These data indicated that

SiSOMT regio-selectivity catalyzes O-methylation at

C-9 and C-2, and O-methylation events occurred at

C-9 and then at C-2.

Discussion

In this study, it was reported, for the first time,

identification and characterization of four MTs from

Stephania intermedia, including three N-methyltrans-

ferases (SiCNMT1, SiCNMT2, and SiCNMT3) and one

O-methyltransferase (SiSOMT). SiCNMT1, SiCNMT2,

and SiCNMT3 could methylate (R)-coclaurine to pro-

duce (R)-N-methylcoclaurine. Notably, SiCNMT2 could

further methylate N-methylcoclaurine to form (R)-mag-

nocurarine. Similarly, (R)-norcoclaurine could be

catalyzed by SiCNMT2, yielded (R)- N-methylnorco-

claurine and (R)-N, N-dimethylnorcoclaurine, respec-

tively. Furthermore, SiSOMT exhibited high catalytic

efficiency and continuously catalyzed (S)-scoulerine to

form (S)-THP,whichmight preliminary reveal the reason

for large accumulation of (S)-THP in SI.

Phylogenetic analysis indicated that SiCNMT1 and

CjCNMT formed a new clade. In addition, SiSOMT

showed 81% sequence identities with CjSOMT and

TfSOMT. The four MTs derived from SI have high

homology with the CNMT and SOMT of C. japonica,

and there were many similarities in catalytic activity

(He et al. 2018; Takashi et al. 2010a, b). The

phylogenetic relationship between four MTs and other

plant MTs provides new insights into the evolutionary

recruitment of enzymes in plant alkaloid pathways.

The kinetic parameters of SiCNMT1, SiCNMT2,

and SiCNMT3 were determined at pH 7.0 and 37 �C,
while SiSOMT was determined at pH 9.0 and 37 �C.
SiCNMT1, SiCNMT2, and SiCNMT3 exhibited a Km

value for (R)-coclaurine lower than that for (S)-

norcoclaurine (265 lL), as was reported for

EcCNMT in E. californica (Bennett et al. 2018). This

indicated that SiCNMT1, SiCNMT2, and SiCNMT3

had better affinity for (R)-coclaurine than for (S)-

norcoclaurine (Choi et al. 2001). SiSOMT exhibited a

Km value for (S)-scoulerine higher than that deter-

mined for SOMT from Opium Poppy and Glaucium

flavum (Chang et al. 2015; Dang and Facchini 2012).

The catalytic efficiencies (kcat/Km, 47,761 M-1 S-1)

of SiSOMT were similar in G. flavum.

Three related NMTs have been characterized,

including a coclaurine NMT (CNMT) (Kum-Boo

et al. 2002), tetrahydroprotoberberine NMT (TNMT)

(Liscombe and Facchini 2007), pavine NMT

(PavNMT) (Liscombe et al. 2010). CNMT exhibits

little stereoselectivity and can methylate both (R)-

coclaurine and (S)-coclaurine, which is in agreement

with previous studies. Whereas (R)-coclaurine was the

optimal substrate for enzyme activity (Choi et al.

2001; Kum-Boo et al. 2002). The catalyzation and

kinetic parameters were measured by (R)-coclaurine

and SiSOMT was determined by (S)-scoulerine.

CNMT is mainly responsible for the N-methylation

of the central 1-benzylisoquinoline intermediate

coclaurine (Torres et al. 2016), whereas SiCNMT2

primarily accepts (R)-Coclaurine, (R)-Norcoclaurine

and possess successive methylation. Furthermore,

SiSOMT which possess successive methylation,

reflects the actions of SOMT in Glaucium flavum

and Papaver somniferum (Dang and Facchini 2012;

Limei et al. 2015).

In this study four MTs have been identified and

characterized from Stephania intermedia. The novel

MTs provide new possibilities to biocatalytic synthe-

sis of (R)-magnocurarine, (R)-N, N-dimethylnorco-

claurine and (S)-tetrahydropalmatine.
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