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Abstract Cell–cell communication in bacteria needs

chemical signals and cognate receptors. Many Gram-

negative bacteria use acyl-homoserine lactones

(AHLs) and cognate LuxR-type receptors to regulate

their quorum sensing (QS) systems. The signal

synthase-receptor (LuxI–LuxR) pairs may have co-

evolved together. However, many LuxR solo (orphan

LuxR) regulators sense more signals than just AHLs,

and expand the regulatory networks for inter-species

and inter-kingdom communication. Moreover, there

are also some QS regulators from the TetR family.

LuxR solo regulators might have evolved by gene

duplication and horizontal gene transfer. An increased

understanding of the evolutionary roles of QS regu-

lators would be helpful for engineering of cell–cell

communication circuits in bacteria.
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Introduction

Bacteria communicate with each other for their

adaption and survival in the complex environment

(Mukherjee and Bassler 2019; Sperandio et al. 2003).

The representative bacterial communication system is

quorum sensing (QS), which involves signals and

receptors (Waters and Bassler 2005; Whiteley et al.

2017). The dependency of QS relies on the signal

concentration in a bacterial quorum, silent at low level

and active at high level (Mukherjee and Bassler 2019;

Waters and Bassler 2005). In the Gram-negative

bacteria, acyl-homoserine lactones (AHLs) are widely

used as signaling molecules (Camilli and Bassler

2006; Welsh and Blackwell 2016). AHLs are biosyn-

thesized by LuxI-type synthases and sensed by

cognate LuxR-type receptors, which may have co-

evolved together as LuxI–LuxR pairs (Gray and Garey

2001; Lerat and Moran 2004). However, many LuxR

solo (orphan LuxR) regulators, which are not associ-

ated with a synthase but sense more signals than just

AHLs, have been characterized (Patankar and Gonza-

lez 2009; Subramoni et al. 2015; Subramoni and

Venturi 2009; Venturi and Ahmer 2015).

AHL molecules and cognate LuxR receptors have

been well summarized on the Quorum Sensing Site

(www.nottingham.ac.uk/quorum/index.htm). The

characterized LuxR solos and their roles in molecular

regulation and evolution were also reviewed previ-

ously (Patankar and Gonzalez 2009; Subramoni and
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Venturi 2009). LuxR solos, which are widespread in

the Proteobacteria, are major regulators in bacterial

communication systems (Rajput and Kumar 2017;

Subramoni et al. 2015). LuxR solos sense AHLs and

other signals, and play diverse signaling roles in

eavesdropping, intra-species, and inter-kingdom

communication by extending bacterial regulatory

networks (Patankar and Gonzalez 2009; Subramoni

et al. 2015). The known diversity of signals and

receptors in microbial communication is still

expanding (Chen et al. 2002; Mukherjee and Bassler

2019). Here this mini-review mainly focuses on the

evolution of LuxR solo regulator homologs in cell–

cell communication.

Evolution of LuxR solo regulator homologs

In order to study the evolution of LuxR solo homologs,

I conducted phylogenetic analyses by MEGA6 using

the Neighbor-Joining method (Tamura et al. 2013). It

indicates that many LuxR solos are clustered together

with LuxR homologs from the same species (Fig. 1).

For example, the LuxR solo TrlR and the AHL

receptor TraR in Agrobacterium tumefaciens, the

ExpR2 and ExpR in Erwinia chrysanthemi, the CarR

and SmaR in Serratia odorifera, and the BisR and

CinR in Rhizobium leguminosarum, etc (Supplemen-

tary Table 1). It’s speculated that gene duplication and

divergence might play a main role during the evolution

of LuxR solo homologs (Lerat and Moran 2004;

Patankar and Gonzalez 2009). Whereas in some

bacteria, the LuxR homologs are relatively scattered

in different clusters (Fig. 1); such as the LuxR solo

QscR and the AHL receptors LasR and RhlR in

Pseudomonas aeruginosa, and the LuxR solos AviR,

AvhR and the AHL receptor AvsR in Agrobacterium

vitis, etc (Chugani and Greenberg 2014; Hao and Burr

2006). This suggests that the horizontal gene transfer

might be involved during their evolution process

(Lerat and Moran 2004; Patankar and Gonzalez 2009;

Subramoni et al. 2015).

Most ligands of these LuxR receptor homologs are

AHLs with similar core structure and variable

branches (Fig. 1). However, some functionally char-

acterized LuxR solos have been reported to sense

signals form other bacteria and even their host plants

as well as endogenously produced non-AHLs

(Brameyer and Heermann 2017; Gonzalez and Venturi

2013; Patel et al. 2013). For example, PauR (Pho-

torhabdus asymbiotica) senses dialkylresorcinols

(DARs), PluR (Photorhabdus luminescens) senses

photopyrones (PPYs), and QscR (P. aeruginosa)

detects AHLs produced by other bacterial species

(Brachmann et al. 2013; Brameyer et al. 2015; Ha et al.

2012). On the phylogenetic tree, these LuxR solos are

not clustered separately from the LuxR-type receptors

that have a cognate synthase (Fig. 1). It seems that only

these LuxR solos which might respond to plant

compounds are clustered as a separate clade (Patel

et al. 2013; Subramoni et al. 2011). For instance, XccR

(Xanthomonas campestris), OryR and XocR from

(Xanthomonas oryzae), and PsoR (Pseudomonas flu-

orescens) may play roles in the inter-kingdom com-

munication with plants (Gonzalez et al. 2013;

Subramoni et al. 2011; Xu et al. 2015; Zhang et al.

2007). It’s speculated that these unknown ligands

might be some plant hormones or signals mediating

host-microbes interactions (Amin et al. 2015; Kabbara

et al. 2018; Wang et al. 2017; Xu et al. 2018).

Recently, PipR from Pseudomonas sp. GM79 was

determined to sense an ethanolamine derivative, N-(2-

hydroxyethyl)-2-(2-hydroxyethylamino) acetamide

(HEHEAA) (Coutinho et al. 2018; Schaefer et al.

2016).

Structure-based multiple sequence alignment

(MSA) analyses were assembled using MUSCLE

and visualized using ESPript 3.0 server (Robert and

Gouet 2014; Tamura et al. 2013). As shown in

Supplementary Fig. 1, LuxR_Vfi (Vibrio fischeri)

homologs have several conserved residues both in the

ligand-binding domain (Y-W-Y-DP-W-A-G-G) and

the DNA-binding domain (E-W-GK-I-V) (Bottomley

et al. 2007; Patankar and Gonzalez 2009). Although

LuxR solos sense other signals than AHLs, they still

share relatively high (* 50%) homology with these

canonical LuxR-type receptors. Especially, the DNA-

binding domain is highly conserved, while only the

ligand-binding domain has local variations (Patankar

and Gonzalez 2009). The variations in the ligand

binding domain result in selective detection of cognate

signals by LuxR-type receptors.

Protein structure modeling using evolutionary

information was conducted by the SWISS-MODEL

server (Biasini et al. 2014). The predicted structure of

LuxR_Vfi is very similar to the reported LuxR family

receptor homologs (Supplementary Fig. 2); such as
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SidA, TraR, CviR, LasR and QscR, which is likely to

indicate common folds (Bottomley et al. 2007; Chen

et al. 2011; Lintz et al. 2011; Yao et al. 2006; Zhang

et al. 2002). The evolutionary conservation in

LuxR_Vfi homologs was also estimated by the

ConSurf server (Ashkenazy et al. 2016). These

conservations may ensure the specificity of the

DNA-binding target and the recognized ligands (Sup-

plementary Fig. 3). The ligand binding domain of

LuxR-type receptors is relatively variable and it seems

likely that this variability leads to signal specificity

during microbial communication.

Evolution of QS regulators in the TetR family

Interestingly, not all QS regulators are from the LuxR

family; the known diversity of cognate receptors is

still growing (Mukherjee and Bassler 2019; Papenfort

and Bassler 2016; Whiteley et al. 2017). Some QS

regulators belong to the TetR family, such as

LuxR_Vha (Vibrio harveyi), SmcR (Vibrio vulnificus)

and HapR (Vibrio cholerae) (Ball et al. 2017; De Silva

et al. 2007; Kim et al. 2010). These SmcR and HapR

homologs also have some relationships to the multi-

drug resistance (MDR) regulators (Fig. 2). As listed in

Supplementary Table 2, the SmcR is closely related to

HapR, QacR, TtgR, and EthR, etc (Ball et al. 2017;

Kim et al. 2018). Although these proteins have very

low (* 30%) sequence conservation (De Silva et al.

2007), they all have the similar secondary structure,

which has several a-helixes (Supplementary Fig. 4).

The predicted structure of the LuxR_Vha is also very

similar to the QS regulators SmcR and HapR (Sup-

plementary Fig. 5). The N-terminal has characteristic

HTH motif for the DNA binding, with relatively high

conservation. The C-terminal is a regulatory domain,

which contains several a-helixes, with relatively low

conservation (Supplementary Fig. 6). However, it also

shows some similarity to the MDR regulators, such as

Fig. 1 Evolutionary relationships of the LuxR solo homologs in

Gram-negative bacteria. Phylogenetic analyses were conducted

in MEGA6 using the Neighbor-Joining method (Tamura et al.

2013). The evolutionary distances were computed using the

p-distance method. Only bootstrap test (1000 replicates) values

more than 50% are shown. Some specific ligands of these LuxR

solo (*) and LuxR receptors are shown with chemical structures.
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QacR, TtgR and EthR (Alguel et al. 2007; Frenois

et al. 2004; Schumacher et al. 2001). They all belong

to the TetR family regulators, which have many other

known biological functions. The highly similar overall

structures suggest that these regulators might have

some evolutionary relationships (Ball et al. 2017;

Cuthbertson and Nodwell 2013; Yu et al. 2010).

Based on the reported crystal structures, these

above mentioned QS regulators mainly divided into

two types: the LuxR-family, like LuxR_Vfi, TraR,

SidA, CviR, LasR, and QscR; and the TetR-family,

such as LuxR_Vha, HapR, and SmcR, etc (Ball et al.

2017; Patankar and Gonzalez 2009). Although they

have similar regulatory functions in the QS systems,

the two types of regulators might have different

evolutionary history (Gray and Garey 2001; Lerat and

Moran 2004). Some of the ligand-binding domain is

also relatively conserved, so that the AHL signal

molecules they bind are very specific. Whereas, the

ligand-binding pockets of the MDR regulators are

relatively large enabling the recognition of various

compounds with different structures (Cuthbertson and

Nodwell 2013). Some TetR-like QS regulators, such

as HapR, could also be regulated at the post-

transcriptional level (De Silva et al. 2007). The higher

structures of these regulatory proteins might deter-

mine the ligand-binding specificity for environmental

adaption. Moreover, there are also the peptide-based

systems, which widely distributed in Gram-positive

bacteria, and the quinolone-based PQS system used by

Pseudomonas aeruginosa, etc (Mukherjee and Bassler

2019; Waters and Bassler 2005).

In summary, LuxR solos might be obtained by gene

duplication and horizontal gene transfer. They could

sense endogenous and exogenous AHLs and signals

other than AHLs. LuxR solos extend bacterial regu-

latory networks for more diverse communications,

like eavesdropping, intra-species and inter-kingdom

signaling. Moreover, there are also some QS regula-

tors from the TetR family which are related to the

MDR reguators. The chemical diversity of signals

requires diverse cognate receptors for specific and

efficient cell-cell communications. There are many

roles for QS systems in biotechnology or bioengi-

neering (Daniel et al. 2013; You et al. 2004). These

new regulatory circuits could be useful tools for

synthetic biology in the future (Biarnes-Carrera et al.

2015; Patankar and Gonzalez 2009).
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