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Abstract Viable microbial cells are important bio-

catalysts in the production of fine chemicals and

biofuels, in environmental applications and also in

emerging applications such as biosensors or medicine.

Their increasing significance is driven mainly by the

intensive development of high performance recombi-

nant strains supplying multienzyme cascade reaction

pathways, and by advances in preservation of the

native state and stability of whole-cell biocatalysts

throughout their application. In many cases, the

stability and performance of whole-cell biocatalysts

can be highly improved by controlled immobilization

techniques. This review summarizes the current pro-

gress in the development of immobilized whole-cell

biocatalysts, the immobilization methods as well as in

the bioreaction engineering aspects and economical

aspects of their biocatalytic applications.

Keywords Biocatalysis � Immobilization methods �
Immobilized whole-cell biocatalyst � Multienzyme
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Introduction

Whole-cell biocatalysis has been an important route to

the industrial production of some bulk and fine chem-

icals, and pharmaceuticals (Ladkau et al. 2014; De

Carvalho 2016). Heterologous enzymes and synthetic

pathways have been increasingly employed in whole-

cell biocatalysis due to the rapid development of DNA-

recombinant techniques (Carballeira et al. 2009; Milner

andMaguire 2012). In spite of industrial applications of

whole-cell biocatalysts, the potential of fundamental

biocatalytic research has not been effectively exploited

yet. One limitation is that the process development often

starts only after a biocatalyst is designed. Lima-Ramos

et al. (2014) made a thorough analysis of process

engineering aspects and solutions that should be consid-

ered in early stages of the biocatalytic process
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development to achieve industrial implementation. It

means that bioreactor anddownstreamprocessingdesign

and solutions problems optimization should be envis-

aged throughout the investigation of biocatalyst proper-

ties and performance.

An important technique to consider in the context

of applications of whole cells is immobilization

(Table 1). Immobilization of whole-cell biocatalysts

can enhance their performance mainly by extending

their lifetime (Kisukuri and Andrade 2015). Further

two important benefits of immobilized whole-cell

biocatalysts utilization are the increase of specific

biocatalyst loading, and simplification of biocatalyst

recycling and downstream processing (Liese and

Hilterhaus 2013). Industrial use of immobilized

whole-cell biocatalysts requires the knowledge of

various physical and chemical properties of specific

biocatalytic systems. Guidelines for their characteri-

zation by standardized procedures have been proposed

(Buchholz et al. 2012a) and standardization was also

applied for the comparison of the performance of

different immobilized preparations (Prüsse et al. 2008;

de Vos et al. 2009; Schenkmayerová et al. 2014).

The objective of this review is to map current trends

in the development of immobilized whole-cell bio-

catalysts and to analyze the key issues of their

successful industrial implementation. An overview

of novel trends in the immobilization methods and

applications of whole-cell biocatalysts is provided.

Furthermore, the review presents the state-of-the-art in

the bioreactor engineering employing these biocata-

lysts and analyzes economical aspects of the whole-

cell biocatalytic production processes. The second part

of the series deals with the characterization techniques

mainly employing modern methods for the determi-

nation of physiology of immobilized cells and mor-

phology of cell-containing particles.

Whole-cell biocatalysis with viable free

and immobilized cells

Methods to provide technically useful whole-cell

catalysts include ‘‘classical’’ methods such as screen-

ing a wide range of strains for desired activities

(Carballeira Rodriguez et al. 2004) or genetic engi-

neering. Genetic engineering can provide whole-cell

catalysts with a missing activity, or multiple activities

creating a pathway. Strategies and tools to develop

complex industrial host organisms through systems

biotechnology (Kuhn et al. 2010) and directed evolu-

tion (Cobb et al. 2013) have been reviewed recently.

Advances in molecular biology enable rational engi-

neering of whole-cell biocatalysts for multiple fields of

application including industrial biotechnology, biosen-

sors, biofuels and remediation. Available reviews sum-

marize the advances in the application of genetic

engineering in new drug development (Stryjewska et al.

2013), production of fine chemicals (Liese and Villela

Filho 1999), stereoselective redox reactions (Carballeira

et al. 2009), and engineering ofwhole-cell biocatalysts for

neurotoxic organophosphates detoxification (Kim et al.

2014a). Perspectives of biodiesel production by biotech-

nology have also been reviewed (Uthoff et al. 2009).

Many processes utilizing genetically engineered

catalysts have the potential to be further engineered or

improved by immobilization techniques. The most

notable recent applications of immobilized genetically

engineered whole-cell biocatalysts in various fields

are summarized in Table 2.

Production of fine chemicals is currently the fastest

growing area of genetically-modified whole-cell bio-

catalysts applications. Natural compounds and their

derivatives are the main class of chemicals produced

by biotransformations including processeswithwhole-

cell biocatalysts (Straathof 2006). Escherichia coli is

the most frequently used host organism for expressing

an enzymatic activity not dependent on a coenzyme.

E. coli, Saccharomyces cerevisiae and Corynebac-

terium glutamicum as synthetic platforms have been

reviewed by Becker and Wittmann (2015). Environ-

mental applications focus on the decontamination of

organophosphates. In addition to immobilization in

various materials as it is being reviewed here also

direct adsorption to surface is an accepted approach in

environmental application and its use in bioremedia-

tionwas reviewed recently (Bayat et al. 2015). Another

aspect of use of recombinant microorganisms in

environmental applications is the legal approval by

EEA, EPA and national agencies. Currently, the

legislative processes in environmental applications

are to certain extent in the shadow of public discussion

on the use of genetically-modified organisms (GMO)

in agriculture and food production. The potential of

genetically-modified biocatatalysts for biofuel pro-

duction, including bioethanol, biobutanol and biodie-

sel, is clearly recognized as well (Sakuragi et al. 2011).

Biodiesel production requires a lipase as a single
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enzymatic activity catalyzing transesterification of oils

from various sources. Overexpression of lipase has the

potential to further improve the effectiveness and

economic feasibility of biodiesel production. Addi-

tionally, one-step whole-cell biotransformations of

non-natural substrates for the preparation of chiral

intermediates for the synthesis of chemical specialties

have been introduced in the last decades (Bornscheuer

et al. 2012). This includes intermediates for the

synthesis of drug candidates such as antivirally acting

C-nucleosides using recombinant whole-cell biocata-

lysts (Bianchi et al. 2013).

Table 1 Overview of industrial processes employing immobilized whole cell biocatalysts published in Liese et al. (2006)

Production

strain

Immobilization

method

Product Capacity

(tonnes/

year)

Company

Bacillus coagulans Novo-Nordisk (Denmark)

Actinplanes

missouriensis

Not specified High fructose corn

syrup

[7 9 106 DSM (The Netherlands)

Streptomyces

rubiginosus

Nagase & Co., Ltd. (Japan)

Protaminobacter

rubrum

Not specified Palatinose

(isomaltulose)

[4000 Südzucker AG (Germany)

Mitsui Seito Co., Ltd. (Japan)

Rhodococcus

rhodochrous J1

Not specified Nicotinamide (vitamin

B3)

6000 Lonza AG (Switzerland)

Escherichia coli,

Kluyveromyces

citrophila, Bacillus

megaterium

Not specified Beta-lactam antibiotics:

cefaclor, cephalexin,

cefadroxil, ampicillin,

amoxicillin

2000 DSM (The Netherlands)

Pseudomonas

pseudoalcaligenes

Not specified D-Maleic acid Not

specified

DSM (The Netherlands)

Recombinant

Escherichia coli

Not specified 4-Cyanopentanonic acid Not

specified

Du Pont de Nemours & Co. (USA)

Pseudomonas

chloraphis B23

Entrapment in calcium

alginate

5-Cyano-valeramide Several Du Pont de Nemours & Co. (USA)

Alcaligenes sp.,

Pseudomonas sp.

Entrapment in calcium

alginate

R-3-Chloropropane-1,2-

diol

Not

specified

Daiso Co. Ltd. (Japan)

Fusarium oxysporum or

Brevibacterium

protophormia

Entrapment in calcium

alginate

Pantoic acid;

enantiopure

D-pantolactones and L-

lactones, respectively

Not

specified

Fuji Chemical Industries Co., Ltd.

(Japan)

Bacillus brevis Not specified Amino acid derivatives:

D-N-carbamoyl D-

hydroxyphenyl

glycine; 5-(4-hydroxy-

phenyl)-

imidazolidine-2,4-

dione

300–700 Kanegafuchi Chemical Industries Co.,

Ltd. (Japan)

Rhodococcus

rhodochrous J1

Entrapment in

polyacrylamide

Acrylamide and related

products

[30,000 Nitto Chemical Industry Co., Ltd.

(Japan)

Pseudomonas dacunhae

and Escherichia coli

Not specified L-Alanine and D-

Aspartic acid

61 Tanabe Seiyaku Co., Ltd. (Japan)

114

Brevibacterium flavum Entrapment in

j-carrageenan
S-Maleic acid 468 Tanabe Seiyaku Co., Ltd. (Japan)

Escherichia coli B

ATCC 11303

Entrapment in

polyacrylamide or

j-carrageenan

L-Aspartic acid 700 Tanabe Seiyaku Co., Ltd. (Japan)
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Cell surface-displayed enzymes

Display of proteins on the surface of whole-cell

biocatalysts has become an increasingly popular

strategy to prepare genetically-modified biocatalysts.

The displayed protein is fused to the anchoring motif

through N-terminal, C-terminal or sandwich fusion as

schematically presented in Fig. 1.

Using a spacer can further customize the surface

display for its intended use for biocatalysis, biosen-

sors, vaccines or other. Surface display is a well-

developed and understood technology. This has been

Table 2 Recent examples of the application of immobilized genetically-modified whole-cell biocatalysts

Area of

application

Genetic modification and host organism Immobilization material References

Fine chemicals 4-Oxalocrotonate tautomerase Alginate Djokic et al. (2015)

L-Arabinitol dehydrogenase Alginate Gao et al. (2015)

L-Amino acid deaminase in E. coli Alginate Song et al. (2015)

L-Arabinitol dehydrogenase (coupled with

NAD ? regeneration)

Alginate Gao et al. (2015)

L-Amino acid deaminase from Proteus mirabilis Alginate Hossain et al. (2014)

Monoamine oxidase in E. coli Polyvinylalcohol Zajkoska et al. (2015)

Cyclopentatnon monooxygenase Polyvinylalcohol Rebroš et al. (2014)

L-Amino acid deaminase Alginate Hossain et al. (2014)

Arabinose isomerase in E. coli Alginate Kim et al. (2014b)

Ammonia lyase and ammonia transferase Polyvinylalcohol Casablancas et al. (2013)

Cyclopentanone monooxygenase in E. coli PEC capsules Schenkmayerová et al.

(2012)

Omega transaminase in E. coli Polyvinyalcohol Cardenas-Fernandez et al.

(2012)

Nitrilase in E. coli PVA/SA copolymer Liu et al. (2012)

PNPase expressed in E. coli Agar Luo et al. (2011)

Cyclopentanone monooxygenase in E. coli PEC capsules Bučko et al. (2011)

L-Arabinose isomerase in E. coli Alginate Zhang et al. (2010)

Cyclopentanone monooxygenase in E. coli PEC capsules Hucı́k et al. (2010)

Alcohol dehydrogenase in E. coli Alginate Ng and Jaenicke (2009)

Toluene ortho-monooxygenase in E. coli Alginate Garikipati et al. (2009)

Nitrile hydratase in E. coli Alginate Mersinger et al. (2005)

Environmental Organophosphorus hydrolase Surface display Tang et al. (2014)

Nitrilase Surface display Detzel et al. (2013)

Organophosphorus hydrolase Surface display, glass

beads

Mansee et al. (2000)

Organophosphate hydrolase Propylene fabric Mulchandani et al. (1999)

Biofuels Lipase expressed in P. pastoris, Not immobilized Yan et al. (2014a, b)

Genetically modified R. oryzae Not immobilized Chen et al. (2008)

Lipase from R. oryzae expressed in yeast Surface-displayed Matsumoto et al. (2002)

Substrate-induced lipase Biomass support

particles

Ban et al. (2001)

Other Resistance to ethanol Surface display Perpina et al. (2015)

Chitinolytic activity on yeast Surface display Li et al. (2014)

Lipase expressed in E. coli Suface display Kranen et al. (2014)

Lipase in P. pastoris Surface display Pan et al. (2012)
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extensively reviewed with focus on the display of

proteins in microorganisms (Lee et al. 2003), bacteria

(Samuelson et al. 2002), Gram-positive bacteria

(Hansson et al. 2001) and yeasts (Schreuder et al.

1996). The use of synthetic scaffolds for pathway

enhancement was also recently reviewed (Siu et al.

2015). Currently, the most frequent use of the surface

display provides whole-cell catalysts with missing

enzymatic activities which is not co-factor dependent,

e.g. lipase, hydrolase, oxidase etc. (listed in Table 2).

Modification of the cell surface with non-catalytic

molecules aimed at the increase of solvent resistance

has also been reported (Perpina et al. 2015).

Surface display has immense potential in the

preparation of whole-cell biocatalysts. It can be

considered an immobilization technique employing

recombinant technology which is also used to effec-

tively solve engineering problems such as reduction of

diffusion limits and the need for chemical immobi-

lization. Further development in this field towards

multiple surface-displays can be expected; maybe

even a combination of intracellular and surface-

displayed activities creating a multi-step compart-

mentalized designer biocatalyst.

Creating multi-step and cascade pathways

Designing multi-enzyme cascade reactions in vivo

presents a challenge beyond just expressing the

enzymatic activities using molecular biology tools.

Multi-enzyme systems need to be efficiently assem-

bled within intracellular environments to interact well

with the intracellular background, e.g. the supply of

cofactors. In addition to molecular biology, also other

tools need to be implemented to design custom whole-

cell biocatalysts such as systems biology tools (Kuhn

et al. 2010), combinatorial biocatalysis (Rich et al.

2002) as well as protein engineering and directed

evolution methods (Turner and O’Reilly 2013).

Recent reviews summarize advances in the use of

multi-enzyme cascade reactors (Ricca et al. 2011),

multi-enzyme reactions carried out in a single reactor

(so called ‘‘in-pot’’ process) (Santacoloma et al. 2011)

and the use of multi-enzyme systems to produce fine

chemicals (Kohler and Turner 2015; Liese and Villela

Filho 1999). Primary field of practical applications of

cascade systems is the synthesis of complex products

requiring multiple enzyme activities such as chiral

compounds (Ricca et al. 2011), complex saccharides

(Härle and Panke 2014) and amino acids (Hibi et al.

2015).

The potential of multi-step synthesis using whole-

cell organisms is clearly understood. Application of

retrosynthesis allows syntheses by transforming a target

molecule into simpler precursors using the concept of

‘‘one-pot’’ cascade reactions (Oberleitner et al. 2013).

Cascade reactions allow shifting the reaction equilib-

rium in favor of enantiomerically pure products from

prochiral or racemic substrates, eliminate product

inhibition problems and avoid degradation and dilution

of substrates (Oroz-Guinea and Garcia-Junceda 2013).

Cascade reactions have become a useful tool for the

synthesis of extremely important C–C bond formation

(Ricca et al. 2011) andC–O functional group chemistry

(Schrewe et al. 2013). However, only a few practical

examples of using multi-enzyme whole-cell biocata-

lysts have been reported. Single cell biocatalysts

designed de-novo with a two-enzyme pathway, con-

taining transketolase and transaminase, expressed in

E. coli, was reported to produce amino-alcohols

(Ingram et al. 2007). A whole-cell biocatalyst contain-

ing an even more complex ‘‘mini pathway’’ designed

de-novo was reported to produce functionalized chiral

compounds in high yields (Oberleitner et al. 2013). This

Fig. 1 Principle of surface-

displayed enzymes in cells
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‘‘mini pathway’’ consisting of alcohol dehydrogenase,

enoate reductase, and Baeyer–Villiger monooxygenase

was co-expressed in E. coli (Oberleitner et al.

2013, 2014). Cascade catalysis, strategies and chal-

lenges en route to preparative synthetic biology have

been reviewed by the same team (Muschiol et al. 2015).

An even longer pathway, consisting of four enzymes,

was used for the enantioselective synthesis of various D-

amino acids (Nakajima et al. 1988) though only in an

ex vivo system. Engineered metabolic pathways often

suffer from flux imbalance since they do not have any

regulatorymechanisms.An approach to solve this using

synthetic protein scaffolds that spatially recruit meta-

bolic enzymes in a designable manner was reported

(Dueber et al. 2009). Overall, the recent advances in

surface displaying, designing metabolic pathways,

including scaffolding and compartmentalization, seems

to be significantly enhancing the potential for applica-

tion of recombinant microorganisms.

Traditionally, a multi-enzyme system would be

contained within a cell or a capsule serving as an

‘‘artificial cell’’. A few non-conventional and innova-

tive approaches to assemble multi-step systems have

been published recently. For example, a multi-enzyme

system consisting of 3a-hydroxysteroid dehydroge-

nase, diaphorase and NADH was confined in a novel

hollow nanofiber-based artificial cell that performs

multi-step reactions involving efficient coenzyme

regeneration (Ji et al. 2014).

Immobilization methods

Utilization of recombinant cells with non-natural

cascades of enzymes as biocatalysts for complex

reaction sequences is currently one of the main trends

in biocatalysis. Since these reactions can only be

performed by viable cells, their immobilization should

keep the cells in a viable state allowing stabilization of

their catalytic efficiency and enable their repeated use.

Several methods for whole cells immobilization are

available and thoroughly reviewed (Carballeira et al.

2009). Additionally, transformations mediated by

novel Baeyer–Villiger monooxygenases (BVMOs)

including cascade reactions as well as whole-cell

BVMOs immobilization strategies have been reviewed

(Bučko et al. 2016). A newly-discovered cyclohex-

anonemonooxygenase from the family ofBVMOswas

tested also in the form of viable whole cells as a

promising industrial biocatalyst due to broad spectrum

of substrates as well as high regio-, enantio- and

chemo-selectivity (Romero et al. 2016). Regardless of

the utilized immobilization technique, higher enzyme

stability of immobilized cells compared to free cells is

considered as the original motivation for the immobi-

lization of living microorganisms explained by more

efficient (re)synthesis of enzymes and cofactors, and

their regeneration (Buchholz et al. 2012b).

Cell immobilization, in particular by their inclusion

in the structures of semi-permeable polymer matrices,

shows many advantages over the use of free cells. The

main advantages include higher cell density, increased

specific productivity, easier separation of products and

biocatalysts, the possibility of continuous bioreactors

arrangement without cell wash-out (Obradovic et al.

2004) as well as the biocatalyst reuse and reduction of

cost (Rao et al. 2006). The main additional benefits of

immobilization, notably encapsulation in capsules

with semi-permeable membrane are the highly defined

encapsulation process and biocompatible microenvi-

ronment for viable cells (Hucı́k et al. 2010).

The most used technique of whole-cell biocatalysts

immobilization is based on the formation of

stable porous gels based on ionotropic gelation of

water-soluble polyelectrolytes, usually polysaccha-

rides containing charged functional groups (alginate,

pectate, carrageenan, chitosan) with oppositely

charged ions (usually Ca2?, K?, polyphosphates)

(Buchholz et al. 2012b). Among the hydrogels,

calcium alginate, j-carrageenan and polyacrylamide

were used in industrial bioprocesses (Table 1). Ther-

moreversible gelation of poly(vinylalcohol) in form of

LentiKats (Jekel et al. 1998) also found applications in

industry due to improved properties such as higher

catalytic activity, mechanical stability, lower mass

transfer resistance and lower cost (Rebroš et al. 2009;

Trögl et al. 2012). Other types of biomaterials used for

cell immobilization include natural polymers such as

collagen, hyaluronic acid and agarose as well as

synthetic polymers such as poly(glycolide), poly(lac-

tide), polyanhydrides, poly(ethylene oxide) and poly(-

ethylene glycol) (Riddle andMooney 2004). Efforts to

obtain alternative organic–inorganic composite mate-

rials with alginate as organic and silica hydrogels as

inorganic components for viable cells immobilization

were also described (Spedalieri et al. 2015).

Biocatalytic efficiency of viable recombinant cells

E. coli with overexpressed Baeyer–Villiger monooxy-

genase (BVMO) was improved by their encapsulation
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in biocompatible polyelectrolyte complex (PEC) cap-

sules of controlled size, membrane thickness, perme-

ability and mechanical strength (Bučko et al. 2012).

For this purpose, a unique multiloop reactor (Anilku-

mar et al. 2001) was used for continuous encapsulation

based on polyelectrolyte complexation of sodium

alginate and cellulose sulfate as polyanions, poly

(methylene-co-guanidine) as polycation, CaCl2 as

gelling and NaCl as antigelling agents (Lacı́k 2006).

Additionally, a rare comparative study of the key

physical and bioengineering parameters of PEC cap-

sules and LentiKats showed, that highly defined PEC

capsules are suitable for laboratory investigation of

encapsulated cells (Schenkmayerová et al. 2014). On

the other side, the use of LentiKats for cell immobi-

lization is also attractive in terms of potential indus-

trial applications including viable whole-cell BVMOs

biocatalysts (Rebroš et al. 2014).

The scale-up of hydrogel particles production from

laboratory quantities to the operational scale is

important for the application of immobilized whole-

cell biocatalysts. Development of instrumentation

techniques for biocatalysts immobilization by entrap-

ment within hydrogel particles allowed acceleration of

research in this field in the 1980s (Bučko et al. 2012;

Prüsse et al. 2008). Current commercially available

high-performance devices operating on different

physical principles enable to produce hydrogel parti-

cles in amounts of up to tens of kg per hour (Büchi

Labortechnik AG, geniaLab BioTechnologie—Pro-

dukte und Dienstleistungen GmbH, LentiKat AS,

Nisco Engineering AG). Utilization of immobilized

viable cells for larger scale biocatalytic purposes is a

promising application due to the adaptability of the

most frequent entrapment and encapsulation materials

to the mentioned high performance devices and the

significant progress in the characterization techniques.

Reaction engineering and process economics

A SciFinder database search showed that the total

number of scientific papers on cell immobilization has

increased exponentially during the last four decades;

from about 2000 journal articles published in

1976–1985 to 15,000 articles in 2006–2015. It is,

however, interesting that the total share of the papers

dedicated to reactor issues decreased significantly

from 6% to only 2.8%.

The boom of bioreaction engineering research of

immobilized biocatalysts occurred from the mid of

1970s to the mid of 1990s. Most books and reviews

dealing with immobilized cell reactors were written in

this period and they are still the key reference sources

of general information (Kasche 1979; Moo-Young

1988; Webb et al. 1986; Webb and Dervakos 1996;

Willaert and Baron 1996; Willaert et al. 1996).

The last two reviews with a broad scope surveying

the results of intensive activities were published in the

last century (Freeman and Lilly 1998; Riley et al.

1999). The paper of (Riley et al. 1999) was essentially

an epilogue to the vivid research on the quantitative

characterization of diffusion properties of immobi-

lized cell systems. Relatively few works dealt with the

determination of effective diffusivities of substrates

and products of biocatalytic processes in the following

period (Fidaleo et al. 2006; Polakovič et al. 2001;

Schenkmayerová et al. 2014; Xiao et al. 2008).

Freeman and Lilly (1998) analyzed in their review

the ways ensuring a stable continuous operation of

aerobic fermentations and cultivations in immobilized

cell reactors. However, these processes found only a

few applications on industrial scale. On the other hand,

some of these research achievements are pertinent to

the systems with immobilized non-growing cells and

should be considered in a larger extent in the current

research activities in the area of biocatalytic oxida-

tions using air oxygen. Recent literature contains

several review papers dedicated to various applica-

tions of immobilized cell reactors mainly for the

production of alcoholic beverages and wastewater

treatment (Table 3).

Biocatalyst productivity, stability and process

costs

Dicosimo et al. (2013) showed an evident disparity

between the thriving immobilization science and the

very modest industrial application of immobilized

biocatalysts in the last 20 years. It is evident that a

successful implementation of immobilization technol-

ogy can be achieved only by mastering the material

science for efficient immobilization, process engi-

neering for high bioreactor productivity and yield and

process economics for feasible production. Tufvesson

et al. (2011) have published recommendations for

early-stage economic assessment of biocatalyst pro-

duction: the cost of immobilized cells can be 5–10

Biotechnol Lett (2017) 39:667–683 673
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times higher than that of free cells which can reduce or

eliminate the advantages brought by the bioreactor

applications of immobilized cells.

The cost of industrial biocatalysts used on large

scale is typically in the range of 50–500 US$ per kg

protein contained and it often forms only a small

fraction of product costs, e.g. 1 cent per liter of starch-

derived bioethanol (Dicosimo et al. 2013). The

mentioned cost is however achieved only when the

biocatalyst yield from the fermentation is in units of

g/l. The biocatalyst yield for specialty chemicals and

pharmaceutical applications can be only in hundreds

of mg/l and the biocatalyst production cost will thus

increase in inverse proportion to the concentration. A

feasible biocatalyst cost depends very much on the

biocatalyst application. Figure 2 shows that for phar-

maceutical applications it can reach up to €1000–2000
per kg of biocatalyst for the specific productivity of the

process of only 10 kg product per kg of immobilized

biocatalyst. On the contrary, biotechnological produc-

tion of bulk chemicals requires the specific produc-

tivity as high as 10,000 kg/kg.

Additional production costs include the costs for

immobilization materials, labor, and equipment.

Moreover, the development of an immobilized prepa-

ration requires additional costs and additional time.

Especially, the extra time needed for introducing a

product to the market can disqualify the application of

Table 3 Recent review articles on the applications of immobilized cell reactors

Application References

Continuous beer fermentation Brányik et al. (2005)

Continuous beer and beverages fermentation Verbelen et al. (2006)

Batch and continuous wine production Genisheva et al. (2014)

Biofilm wastewater treatment Gullicks et al. (2011), Lazarova and Manem

(2000), Yu et al. (2005)

Lactic acid production Dagher et al. (2010)

Alcohols, organic acids, antibiotics, and enzymes Demirci et al. (2007)

Biodiesel production Guldhe et al. (2015), Parawira (2009)

Fig. 2 Effect of biocatalyst cost and allowable cost contribu-

tion on the requirements for biocatalyst productivity in terms of

kilogram of product per kilogram of biocatalyst used for

production of bulk, fuel, or specialty chemicals employing

immobilized enzymes. Allowable cost contribution of 0.01 €/kg

V triangle, 0.1 €/kg rectangle, 1 €/kg open circle, 10 €/kg 9,

100 €/kg filled circle Reproduced with permission from

Tufvesson et al. (2011). Copyright by the American Chemical

Society
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immobilized biocatalysts in the production of high

added-value products. The comparison of cost advan-

tages of immobilized and free biocatalysts is thus often

unequivocal. The final decision can be affected also by

other factors such as better control and production

stability of continuously operated immobilized cell

reactors.

In each case, the immobilized biocatalyst must

provide good activity and operational stability. The

biocatalyst activity values can be found in almost

every paper dealing with the investigation of immo-

bilized whole cells. Hundreds of papers demonstrated

a good stability of developed biocatalysts, which was

typically achieved by carrying out several repeated

batch runs. Much less frequent, but more valuable, are

the works considering longer-term operation; e.g.

Samin et al. (2014) designed a packed-bed bioreactor

with a concurrent liquid and air flows for aerobic

degradation of 1,2,3-trichloropropane from wastewa-

ter using immobilized genetically engineered Pseu-

domonas putida cells that was operated in a

stable steady state for two months.

A rigorous approach to the characterization of

biocatalyst stability is based on the investigation of

inactivation kinetics. The kinetics of inactivation of

immobilized whole-cell biocatalysts was evaluated for

the production of ethyl esters of fatty acids by Mucor

circinelloides (Andrade et al. 2012), reduction of

ketones by Monascus kaoliang (Quezada et al. 2009),

decolorization of an azo dye by Pseudomonas luteola

(Chen and Lin 2007), and orthohydroxylation of

bisphenol A by Agaricus bisporus containing a

tyrosinase (Kampmann et al. 2015). These authors

fitted the inactivation data at individual temperatures

with first-order kinetics and subsequently the temper-

ature dependence of the rate constant was fitted with

the Arrhenius equation. Kaul et al. (2006) used an

integral form of series-inactivation kinetics to describe

the loss of activity of Alcaligenes faecalis nitrilase at

a single temperature. They enhanced their investiga-

tion by a rigorous thermodynamic analysis of the

temperature dependence of the kinetics of stereose-

lective hydrolysis of mandelonitrile.

The combined effect of long-term stability and

activity of biocatalysts is conveniently characterized

by the total turnover number (ttn), the amount of

product obtained per amount of biocatalyst spent

during its lifetime. The comparison of ttn-values of

free and immobilized biocatalysts can provide

principal information about the suitability of immobi-

lization. Unfortunately, such data are scarce for whole

cells although they are quite common for enzymes.

We were not able to find any published ttn-values for

immobilized whole cells. Pennec et al. (2014) evalu-

ated ttn of free whole cells and crude extracts for 12

different cytochrome P450 monoxygenase mutants

catalyzing the hydroxylation of cycloalkanes and

linear alkanes. They found that ttn of the whole cells

of most active mutants was about 3000 mol/mol for

cycloalkanes and 5000 mol/mol for linear alkanes.

Since the typical enzyme concentration was about

1 lmol/g of dry cell mass, the dry cell mass-based ttn

were about 200–300 g/g.

It is often more convenient to express ttn of whole-

cell biocatalysts as the ratio of mass of product formed

per mass of biocatalyst preparation. Kratzer et al.

(2011) investigated the conversion of o-chloroace-

tophenone into chiral 1-(o-chlorophenyl)-ethanols

catalyzed by recombinant reductase whole-cell bio-

catalysts from E. coli and S. cerevisiae and determined

the ttn value of only about 0.2 g/g. Such a low value

demonstrates very low biocatalyst stability caused by

the toxic effect of the substrate. Bertóková et al. (2015)

compared the activity and stability of free and

immobilized whole-cell Gluconobacter oxydans in

the oxidation of 2-phenylethanol to phenylacetic acid

in a bubble column reactor. About thrice larger

amount of phenylacetic acid per dry cell mass was

produced using the immobilized biocatalyst in repet-

itive batch cycles compared to the free one. Moreover,

the immobilized biocatalyst had still about 50% of the

initial activity after twelve cycles whereas the free

biocatalyst was completely inactivated after seven

cycles. The ttn value of the immobilized biocatalyst

can thus be estimated to be about one order of

magnitude higher.

Difference in ttn of free and immobilized biocat-

alyst is low if substrates or products are toxic. In such a

case, immobilization is not economically feasible.

Also, high values of ttn of free biocatalysts and/or

high-added value products make immobilization only

little beneficial because the biocatalyst cost forms a

very small fraction of the overall product price.

Immobilization is thus recommended when ttn of free

biocatalysts is neither low nor high (Liese and

Hilterhaus 2013). It is difficult to specify the limits

of low and high values of ttn for whole-cell biocat-

alysts. Kragl and Dwars (2001) did this for enzyme
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catalysts and suggested that the minimal value should

be around 1000 for small-scale, expensive products

and 50,000 for large-scale, less expensive products.

Care is, however, needed in applying such rules-of-

thumb. Rogers and Bommarius (2010) demonstrated

that it is very important to determine the ttn-values at

real application temperatures and other process con-

ditions so that they correctly represent a combined

measure of biocatalyst activity and stability. On the

other hand, Gibbs et al. (2005) developed a method of

accelerated determination of ttn of industrial immo-

bilized biocatalysts to avoid long-term experiments at

process conditions. Sensitivity of ttn with respect to

process parameters should be investigated. For exam-

ple, biocatalyst lifetime near the optimal temperature

is very sensitive to the fluctuations in the reaction

mixture composition and process temperature (Fig. 3).

A difference of 1 �C can change the biocatalyst

lifetime by 100 days (Onderková et al. 2010).

Bioreactor applications

The ttn depends on bioreactor configuration and

process parameters therefore its representative value

cannot be obtained before bioreactor design and

optimization are completed. As it has been mentioned

above, a small fraction of scientific papers on immo-

bilized cells dealt with reactor operation using the

investigated biocatalysts. Many reactor studies are

straightforward tests for a single set of operation

conditions in batch stirred or packed bed bioreactors.

Some more complex experimental reactor studies for

certain important applications are worth mentioning

(Table 4). Besides a vast number of papers on
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Fig. 3 Lifetime of

Aureobasidium pullulans

fructosyltransferase versus

temperature in the reaction

mixture containing about

55 mass% of saccharides

(solid line) and a phosphate-

citrate buffer solution

(dashed line) Reproduced

from Onderková et al.

(2001)

Table 4 Packed bed bioreactor studies exploiting immobilized whole-cell biocatalysts

Bioreactor type Biocatalyst References

Two-liquid phase packed bed R. oryzae in polyurethane foam Hama et al. (2007)

Two-liquid phase packed bed A. oryzae in polyurethane foam Yoshida et al. (2012)

Packed bed C. beijerinckii on ceramic rings and pumice stones Gungormusler et al.

(2011)

Packed bed biofilm C. freundii and P. agglomerans in in polyurethane foams Casali et al. (2012)

Packed bed E. coli on methacrylate beads Andrade et al.

(2014)

Packed bed and bubble column A. faecalis in alginate–chitosan–alginate capsules Zhang et al. (2014)

Packed bed with anion-exchange column in a

recycle loop

A. faecalis in Ca alginate gel treated with polyethyleneimine

and glutaraldehyde

Xue et al. (2013)
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biodiesel production using immobilized lipase, a

significant number of works dealing with the bioreac-

tor applications of whole-cell biocatalysts for this

process have recently been published. Some of them

can be found in the recent review of Guldhe et al.

(2015). The group of Akihiko Kondo is the most active

one in this area; good illustrative examples are the

works of Hama et al. (2007) and Yoshida et al. (2012).

The former work compared the performance of packed

bed and batch reactors and the effect of the reaction

mixture emulsification. The latter one presented a

cascade of six packed bed reactors with intermittent

glycerol sedimentation separation after each reactor

and injection of fresh methanol.

Another important application is the 1,3-propane-

diol production. Gungormusler et al. (2011) and Casali

et al. (2012) investigated the effect of residence time in

a packed bed biofilm reactor and compared it with the

performance of a batch bioreactor. Andrade et al.

(2014) dealt with the immobilization of E. coli cells

containing overexpressed (R)-selective x-transami-

nase and the cofactor PLP on methacrylate beads.

These cells were used in a packed bed reactor and

stable production was achieved up to ten days. Zhang

et al. (2014) used bubble column and packed bed

bioreactors for the biotransformation of iminodiace-

tonitrile to iminodiacetic acid with encapsulated

Alcaligens faecalis. Xue et al. (2013) investigated a

packed bed reactor with immobilized whole cells with

an in situ product recovery loop for the production of

(R)-mandelic acid.

The group of Andreas Schmid has presented many

investigations in the application of biofilm-membrane

immobilized whole cells biocatalytic processes. For

example, Gross et al. (2013) studied the technical

feasibility of biofilm-based biotransformations of n-

octanol and (S)-styrene oxide by carrying out single

membrane tube microreactor experiments. A process

scale-up to industrial scale was proposed by multipli-

cation of the number of microreactors that would

result in 59 membrane fiber modules (of 0.9 m diam.

and 2 m length) consisting of 84,000 polypropylene

fibers. Halan et al. (2014) optimized a solid support

membrane-aerated biofilm reactor and scaled it up to

yield gram amounts of (S)-styrene oxide, a toxic and

instable high value chemical synthon. A polytetraflu-

oroethylene membrane was found to be best suited for

in situ substrate delivery and product extraction. Lang

et al. (2015) dealt with the continuous production of

(S)-3-hydroxyisobutyric acid. The problem of cyclo-

hexane substrate toxicity was circumvented using an

aqueous-air segmented flow biofilmmembrane reactor

with continuous cyclohexane feed (Karande et al.

2016).

Microbioreactors

Microbioreactors are a subject of intensive biochem-

ical engineering research. The most significant appli-

cations are directed to the high throughput screening

of microorganisms and enzymes with free biocata-

lysts; however, some works were also performed with

immobilized biocatalysts. Wohlgemuth et al. (2015)

reviewed the potential of microbioreactors including

those with immobilized enzymes and whole cells. The

dramatic increase in heat and mass transfer due to the

higher surface-to-volume ratio of microreactors and

the short diffusion paths are seen as the main

advantages of microbioreactors. Most studies were

made using immobilized enzymes but only a few

examples for immobilized cell microbioreactors can

be found. Fidaleo et al. (2006) developed a micro-

bioreactor with a bilayer latex coating to protect non-

growing Gluconobacter oxydans cells oxidizing D-

sorbitol to L-sorbose. Stojkovič and Žnidaršič-Plazl

(2012) investigated the production of malic acid using

S. cerevisiae cells that were first immobilized on inner

walls of microchannels and then permeabilized by a

detergent. It was demonstrated to be a low-cost and

easy-to-use tool for the development of biotransfor-

mation processes and fast optimization of reaction

conditions. Stojkovič et al. (2014) demonstrated also

the construction of microbioreactors with immobi-

lized E. coli, Pseudomonas putida, and Bacillus

subtilis cells.

The effect of the microbioreactor diameter with

respect to the structure of biofilms formed of the

phenol-degrading bacterium Pseudomonas syringae

was investigated by Akay et al. (2005). They com-

pared the performance of a monolithic microbioreac-

tor with 25 lm pores and a monolayer of immobilized

cells with other studies where a packed bed bioreactor

was used, revealing the productivity achieved in the

microbioreactor being about 20 times higher. Produc-

tivity of immobilized cell reactors is often reported in

different comparisons; however, without a reference

conversion it has little value. A high substrate

conversion results in slower reaction kinetics and
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therewith in lower productivity. It has also to be

considered that the annual production capacity of their

bioreactor was only 5 kg. If a large number of parallel

microreactors is required to scale-up the production

process, the effect of higher volumetric productivity is

quickly lost. Capital costs are multiplied by paral-

lelization of microbioreactors whereas the bioreactor

scale-up by dimensions increase is governed by the

six-tenths rule of the cost–capacity factor exponent.

For example, if the mentioned production capacity of

5 kg is increased 1000-fold, the equipment cost

increases only about 60-fold. According to Wohlge-

muth (2011), the potential drawback of higher micro-

bioreactor costs can be substantiated for aqueous/

organic two-phase biocatalytic processes employing

toxic reagents that must be efficiently stirred.

Modeling

As it has been mentioned in the initial paragraphs of

this section, very few works have dealt with mass

transfer and modeling aspects of bioreactors in the

recent period. Quezada et al. (2009) carried out a good

experimental analysis of mass transfer effects in the

reduction of cyclohexanone by Monascus kaoliang

immobilized in large particles of polyurethane foam

(mean size of 1 cm). Despite the very large particle

size, the intraparticle mass transfer limitation was

negligible. The effectiveness factor was close to one in

most cases because the intrinsic reaction rate per

particle volume was only 1.7 mmol/l h when the

initial cyclohexanone concentration was 10 mM. Such

low rates can be expected for many biocatalytic

conversions and biotransformations in which toxic

substrates are utilized. In the mentioned work, the

heterogeneous reaction rates of cyclohexanone reduc-

tion were even lower in some cases which was

interpreted by NADH regeneration becoming the rate

controlling step. The effect of particle size and

immobilization procedure on the effectiveness factor

of stereoselective nitrile hydrolysis was investigated

by Kaul et al. (2006).

The work of Xiao et al. (2008) represents one of

the rare cases where rigorous mathematical model-

ing and its comparison with experimental data was

carried out for the reduction kinetics of phenylgly-

oxylic acid to R-(-)-mandelic acid by the immobi-

lized yeast S. cerevisiae. The investigated aspects

included the influence of cell concentration and

particle size on the effective diffusivity of the

substrate and effectiveness factor of the heteroge-

neous reaction. Fidaleo et al. (2006) analyzed the

performance of a microbioreactor for D-sorbitol

oxidation to L-sorbose using a rigorous mathematical

model for which mass transfer and intrinsic kinetic

parameters were determined from independent care-

fully designed experiments. It should be underscored

that they also determined the Michaelis constant for

oxygen, 0.74 mg/l. This kinetic parameter is gener-

ally difficult to determine because the biocatalyst

affinity toward O2 is high. It is thus difficult to

achieve an accurate measurement of steady-state

dissolved oxygen concentration without avoiding an

oxygen-transfer rate controlled regime of the bio-

catalytic process. Therefore, zero-order kinetics is

often assumed for oxygen consumption in immobi-

lized cell particles. Using this assumption and

approximate estimates of effective diffusivities,

Buque et al. (2002) simulated oxygen profiles for

3-oxo ester reduction by baker’s yeast immobilized

in 1.2 mm diameter Ca-alginate particles and found

that the process became O2 limited at dry cell

concentrations above 30 g/l.

Conclusions

This review analyzes several aspects concerning the

preparation and applications of immobilized viable

whole-cell biocatalysts. A summary of existing and

promising applications of these immobilized biocat-

alysts demonstrates an enormous influence of protein

engineering methods on the progress in this area. In

this report, particular attention is given to the

description of the preparation of cell surface-displayed

enzymes and to the design of multi-enzyme cascades.

This review refrains from presenting the myriads of

immobilization methods found in scientific or patent

literature as the preference was given to the presen-

tation of some of the most useful methods based on the

entrapment or encapsulation of cells in polymer

matrices. Additionally, key reaction engineering and

economic factors determining successful applications

of immobilized whole-cell biocatalysts are discussed.

These factors must be considered in the very early

phase of research when the question is first raised if a

whole-cell biocatalyst approach should be immobi-

lized or not.
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Brányik T, Vicente AA, Dostálek P, Teixeira JA (2005) Con-

tinuous beer fermentation using immobilized yeast cell

bioreactor systems. Biotechnol Prog 21:653–663

Buchholz K, Kasche V, Bornscheuer UT (2012a) Characteri-

zation of immobilized biocatalysts. In: Buchholz K,

Kasche V, Bornscheuer UT (eds) Biocatalysts and Enzyme

Technology, 2nd edn. Wiley-Blackwell, Weinheim,

pp 411–448

Buchholz K, Kasche V, Bornscheuer UT (2012b) Immobiliza-

tion of microorganisms and cells. In: Buchholz K, Kasche

V, Bornscheuer UT (eds) Biocatalysts and Enzyme Tech-

nology, 2nd edn.Wiley-Blackwell, Weinheim, pp 359–410
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Prüsse U, Bilancetti L, Bučko M, Bugarski B, Bukowski J,

Gemeiner P et al (2008) Comparison of different technolo-

gies for alginate beads production. Chem Pap 62:364–374

Quezada MA, Carballeira JD, Sinisterra JV (2009) Monascus

kaoliang CBS 302.78 immobilized in polyurethane foam

using iso-propanol as co-substrate: optimized immobi-

lization conditions of a fungus as biocatalyst for the

reduction of ketones. Biores Technol 100:2018–2025
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(2014) Surface cell immobilization within perfluoroalkoxy

microchannels. Appl Surf Sci 320:810–817

Straathof AJJ (2006) Quantitative analysis of industrial biotrans-

formation. In: Liese A, Seelbach K, Wandrey C (eds)

Industrial biotransformations.Wiley,Weinheim, pp 515–520

Stryjewska A, Kiepura K, Librowski T, Lochynski S (2013)

Biotechnology and genetic engineering in the new drug

development. Part III. Biocatalysis, metabolic engineering

and molecular modelling. Pharmacol Rep 65:1102–1111

Tang X, Liang B, Yi T, Manco G, Palchetti I, Liu A (2014) Cell

surface display of organophosphorus hydrolase for sensi-

tive spectrophotometric detection of p-nitrophenol substi-

tuted organophosphates. Enzyme Microb Technol

55:107–112
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