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Abstract

Objective The 9_2 carbohydrate-binding module

(C2) locates natively at the C-terminus of the GH10

thermophilic xylanase from Thermotoga marimita.

When fused to the C-terminus, C2 improved ther-

mostability of a GH11 xylanase (Xyn) from Aspergil-

lus niger. However, a question is whether the C-

terminal C2 would have a thermostabilizing effect

when fused to the N-terminus of a catalytic module.

Results A chimeric enzyme, C2-Xyn, was created by

step-extension PCR, cloned in pET21a(?), and

expressed in E. coli BL21(DE3). The C2-Xyn exhib-

ited a 2 �C higher optimal temperature, a 2.8-fold

longer thermostability, and a 4.5-fold higher catalytic

efficiency on beechwood xylan than the Xyn. The C2-

Xyn exhibited a similar affinity for binding to

beechwood xylan and a higher affinity for oat-spelt

xylan than Xyn.

Conclusion C2 is a thermostabilizing carbohydrate-

binding module and provides a model of fusion at an

enzymatic terminus inconsistent with the modular

natural terminal location.

Keywords Aspergillus niger � Carbohydrate-
binding module 9_2 � N-terminal fusion � Xylanase

Introduction

Hydrolases play a pivotal role in carbohydrate recy-

clization and renewable energy production. A hydro-

lase usually contains a carbohydrate-binding module

(CBM) and 69 families of CBMs have been isolated

(Carvalho et al. 2015). Xylanase (EC 3.2.1.8) is a

hydrolase that breaks down the b-1,4-xylan backbone

of a polysaccharide. It is widely used in food, feed,

paper and pulp industry (van Gool et al. 2013; Zhao

et al. 2013). An Aspergillus niger xylanase (Xyn) is

a typical of family GH11 xylanase (GenBank:

EU375728) (Chen et al. 2006), which usually contains

no CBM. To fulfil biotechnological demands, the

thermostability of Xyn needs to be improved because

its thermal inactivation half-life (t1/2) is only 21 min at

50 �C. To fuse a thermophilic CBM is a straight-

forward rational engineering strategy.

A thermophilic family 9 CBM (CBM9) locates

natively at the C-terminus of a multimodular family
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GH10 xylanase 10A from Thermotoga marimita. The

CBM9 was first recognized as a cellulose-binding

domain for binding to insoluble microcrystalline

cellulose and was later identified as a xylan-binding

module (Meissner et al. 2000; Notenboom et al. 2001;

Winterhalter et al. 1995). When fused to the C-

terminus of Xyn, the CBM9 caused an improvement of

2 �C in enzyme optimal temperature (Topt) (Liu et al.

2011). The CBM9 contains two smaller modules,

CBM9_1 (C1) and CBM9_2 (C2). When fused to the

C-terminus, both the modules C1 and C2 improved the

Xyn catalytic activity, and C2 additionally improved

the enzyme’s thermostability (Liu et al. 2012b).

Which terminus to fuse is the first consideration in

module fusion. Presently, the terminus is intuitively

selected consisting with a CBM natural terminal

location (Furtado et al. 2015; Li and Shao 2006; Liu

et al. 2011, 2012b; Mai-Gisondi et al. 2015; Ye et al.

2011). A puzzle is whether the C-terminal C2 would

have a thermostabilizing effect when fused to the N-

terminus of an enzyme. Only when the C2 also

improves enzyme thermostability at the N-terminus,

can it be regarded as thermostabilizing. A thermosta-

bilizing CBM is more attractive than those only

binding substrate (Furtado et al. 2015; Khan et al.

2013; Kittur et al. 2003; Mai-Gisondi et al. 2015;

Mangala et al. 2003). To elucidate this puzzle, the C2

is fused to the Xyn N-terminus through a natural 29

amino acid linker peptide selected from the T.

marimita xylanase 10A because it had been success-

fully used in module fusion (Liu et al. 2011, 2012a, b).

Besides engineering the Xyn properties and elucidat-

ing the C2 functions, the study also provides a model

of fusing a CBM at another enzyme terminus incon-

sistent with its natural terminal location.

Materials and methods

Materials and regents

The C2-Xyn was created using the following primers

synthesized by Genewiz Inc (Beijing, China): P1

(GAAGGAGATATACATATGATGGTAGCGACAG

CAAAAT)/P2 (AGGACCTCAGGCTTGATGAGCC

TGAGGTTAC)/P3 (GTAACCTCAGGCTCATCAA

GCCTGAGGTCCT)/P4 (GTG GTGGTGCTCGAGA

GAGGAGATC). The primers P2 and P3 had a

homologous sequence to allow the related PCR

products to combine with each other in an overlap

extension process. For cloning into pET21a(?) (No-

vagen), the primers P1 and P4 respectively had

restriction sites (shown in italics) digested by NdeI

and XhoI (Takara). ExTaq DNA polymerase (Takara)

was used to ensure DNA sequences correctly amplified.

Construction of the C2-Xyn

The C2 DNA fragment was amplified in 50 ll
containing 1 lM primers P1/P2, 54 ng pET20b-Xyn-

C2 template (Liu et al. 2012b), 1 U ExTaq DNA

polymerase, 4 lmol of dNTPs, and polymerase buffer.

The PCR procedure was: pre-denaturation at 94 �C for

5 min, 25 cycles of denaturation at 94 �C for 1 min,

annealing at 64.9 �C for 1 min, and extension at 72 �C
for 1 min. Containing the linker peptide sequence, the

Xyn DNA fragment was amplified in 50 ll containing
1 lM P3/P4 primers, 49 ng pET20b-Glu-Xyn tem-

plate (Liu et al. 2012a), 1 U ExTaq DNA polymerase,

4 lmol of dNTPs, and polymerase buffer. The PCR

procedure was: pre-denaturation at 94 �C for 5 min,

25 cycles of denaturation at 94 �C for 1 min, anneal-

ing at 61.9 �C for 1 min, and extension at 72 �C for

1 min. The fragments C2 and Xyn were purified with a

DNA extraction and clean kit (Qiagen).

The C2-Xyn DNA was created in an overlap

extension PCR. A 50 ll mixture contained 1 lM
primers P1/P4, 49.8 ng C2 and 68.4 ng Xyn fragments,

1 U ExTaq DNA polymerase, 4 lmol dNTPs, and

polymerase buffer. The PCR procedure was: five cycles

of self-extension by annealing at 68.3 �C for 1 min, and

then 22 cycles of annealing at 63.8 �C for 1 min and

extension at 72 �C for 1.5 min. The products were

purified with a DNA extraction and clean kit. After

being digested withNdeI and XhoI, the DNA fragments

and pET21a(?) were ligated with T4 DNA ligase at

16 �C overnight. The ligation product was transformed

to 200 ll E. coli BL21(DE3) competent cells using a

standard procedure. Recombinant plasmid was

extracted from positive transformants, and gene accu-

racy was confirmed by DNA sequencing with an ABI

3730 automated sequencer (Genewiz Inc). Transfor-

mant containing pET21a(?)-C2-Xyn was incubated

until the cell OD600 reached 0.6. Enzyme expression

was induced by 1 lMIPTG at 25 �C for 6 h. Cells were

collected and lysed ultrasonically. Enzyme was col-

lected and purified using Co2?-binding resin (Amer-

sham Bioscience), because a 6-His tag was added at the
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xylanase C-terminus. Active fractions were collected

and further purified using Sephadex G-25.

Enzyme properties

Enzyme activities were assayed in parallel with the

wild-type Xyn using the DNS method (Liu et al.

2011). Each value was an average of three indepen-

dent assays. Activities were assayed from pH 2.6 to 4.4

and from 38 to 54 �C on beechwood xylan (Sigma) in

phosphate buffer. Enzyme thermostability was deter-

mined by assaying residual activities after incubation

at 50 �C for 10 min; the t1/2 was calculated using the

Arrhenius function (y = A 9 exp-x/t) (OriginPro 8).

Kinetics was assayed under optimal conditions at

substrate concentration ranging from 0.625 to

12.5 mg/ml, and the data were fitted to the Hill

function: y = Vmax 9 [S]/(Km ? [S]) (OriginPro 8).

Kinetics were also assayed on oat spelt xylan to

analyze enzyme affinity for insoluble substrate.

Protein concentration was assayed by the Bradford

method. One unit of enzyme activity was defined as

the amount of enzyme that produced 1 lmol xylose

after hydrolysis for 1 min under optimal conditions.

Results

Construction of the C2-Xyn

The chimeric C2-Xyn DNA created a band at*1.2 kb

on a 1.4 % agarose gel (Fig. 1), approximately the

combined molecular masses of contributing gene

fragments C2 (*750 bp) and Xyn (*700 bp). The

C2-Xyn DNA was cloned in pET21a(?) and trans-

formed BL21(DE3) E.coli competent cell. Recombi-

nant plasmid pET21a(?)-C2-Xyn was extracted from

a positive transformant, and gene accuracy was

confirmed by DNA sequencing analysis. Having 403

amino acid residues, the chimeric enzyme C2-Xyn

created a band at *55 kDa (Fig. 1), about two times

larger than the 185 residue Xyn (*29 kDa).

Enzyme properties

The C2-Xyn had maximal activity at pH 3.6 and 50 �C
(Fig. 2; Table 1). The N-terminal C2 had caused a 0.2

unit shift in the optimal pH (pHopt) towards more

acidic conditions. The N-terminal C2 caused an

improvement of 2 �C in the optimal temperature

(Topt) of the enzyme, similar to the fusion of CBM9 at

the C-terminus (Liu et al. 2011). It seemed that the N-

terminal C2 covered partly, and therefore protected,

the xylanase at a 2 �C higher reaction temperature.

At 50 �C, the C2-Xyn t1/2 was 58.7 min, 2.8 times

longer than that of the Xyn (Fig. 2). The N-terminal

C2 improved both Topt and thermostability of the Xyn.

In contrast, the C-terminal C2 only improved enzyme

thermostability (Liu et al. 2012b). Topt and t1/2 are

related but different parameters with the former

indicating enzyme adaptivity to a higher temperature

and the later, enzyme longevity at a certain

temperature.

Fig. 1 Construction of the C2-Xyn. The C2-Xyn DNAwas created by an overlap extension PCR. The DNA fragments C2 and Xyn had

homologous region introduced by the primers P2/P3. The chimeric C2-Xyn enzyme created a band at 55 kDa on a 12 % SDS-PAGE
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Enzyme kinetics

Using beechwood xylan as substrate, C2-Xyn exhib-

ited a 155 % maximal catalytic velocity (Vmax) and a

similar Km value with the Xyn (Fig. 3; Table 1). The

similar Km value indicated that the N-terminal C2

contributed a little to enzyme affinity for the soluble

substrate. The*4.5 fold higher Kcat value showed that

the N-terminal C2 greatly improved catalytic effi-

ciency of the xylanase. This effect can be attributed to

an enlarged catalytic range and cooperation of the

modules C2 and Xyn. The C2-Xyn had a two fold

larger size, therefore, a two fold larger catalytic range

than the Xyn. In addition, C2 adsorbs with and

transfers substrate to the Xyn module. Consistent with

the result, all the fusions of CBM9, C2, and C1 at the

C-terminus improved activity of the GH11 xylanase

(Liu et al. 2011, 2012b). Deletion of the CBM32

indicated that it directly participated in substrate

recognition and catalysis (Kimiya et al. 2014). Other

CBM fusions also improved catalytic activities of the

related enzymes (Furtado et al. 2015; Khan et al. 2013;

Kittur et al. 2003; Li et al. 2015; Mai-Gisondi et al.

2015; Mangala et al. 2003; Ye et al. 2011).

Using oat spelt xylan as substrate, the C2-Xyn

displayed a decreased Km value and a decreased Kcat

value (Table 1, Fig. 3). The former and latter value,

respectively, indicated that the C2-Xyn had an increased

binding affinity and a slightly reduced catalytic effi-

ciency. Perhaps, the increased affinity interfered with

enzyme being released from oat spelt xylan. Consistent

with the result, a sequential deletionmutants showed that

Vmax of the T. maritima xylanase XynA increased in the

order of XynADC\XynADA1C\XynADNC (Kleine

and Liebl 2006). The N-terminal C2 thus improved

enzyme affinity for insoluble substrate.

Intending to infer structural changes of the catalytic

module of C2-Xyn, its structure was made using a

Fig. 2 The C2-Xyn Topt and thermostability. Enzyme activities

were assayed at temperatures from 38 to 54 �C (left) in

phosphate buffer. The C2-Xyn had a 2 �C higher Topt than the

Xyn. Residual activities were assayed after incubation at 50 �C

for a 10 min interval (right). The data were fitted to the equation:

y = A 9 exp(-x/t) (OriginPro8). Thermal in-activation half-

life (t1/2) values were calculated to be 58.7 and 21 min for the

C2-Xyn and Xyn, respectively

Table 1 Enzyme properties of the C2-Xyn

pHopt Topt

(�C)
t1/250

(min)

Km beechwood/oat spelt

xylan

Kcat beechwood/oat spelt

xylan

Vmax beechwood/oat spelt

xylan

C2-

Xyn

3.6 50 58.7 2.9/7 1263/1884 9.3/1.55

Xyn 3.8 48 21 2.7/7.8 282/2113 6/2

pHopt and Topt pH and temperature at which enzyme had maximal activity, t1/2 thermal inactivation half-life calculated after

incubation at 50 �C, Km (mg/ml), Vmax (lmol/min), Kcat (s
-1) enzyme kinetic parameters calculated after analysis
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homologous modeling procedure. The modeled struc-

ture displays a typical b-jelly roll of a family GH11

xylanase (Supplementary Fig 1), and is consistent

with the assayed properties of C2-Xyn. Alignment

analysis shows that the active sites are Glu297 (proton

donor) and Glu388 (nucleophile). The thumb region is

composed of ten amino acid residues (Asn335Glu3

36Pro337Ser338Ile339Thr340Gly341Thr342Ser343T

hr344). The N-terminal C2 locates near to the

substrate-binding residues (Asp255, Trp290, Tyr293,

Tyr299, and Gln347), therefore, improves enzyme

binding affinity for oat spelt xylan.

Discussion

Both theN- andC-terminal fusions of C2 improved the

Xyn thermostability, indicating that the C2 is a

thermostabilizing CBM distinct from those binding

only to the substrate (Furtado et al. 2015; Khan et al.

2013; Kittur et al. 2003; Mai-Gisondi et al. 2015;

Mangala et al. 2003). In addition, the N-terminal C2

improved enzyme Topt by 2 �C. Therefore, the N-

terminal C2 is a little better for thermal adaptivity of

the enzyme than theC-terminal C2. A slight difference

between the N- and C-terminal fusions can be

attributed to b jelly-roll structure of the GH11

xylanase and terminal effect of the C2. Probably, a

jelly-roll structure folds not as easily as a (b/a)8
structure of GH10 xylanase.

It is no surprise that the C2-Xyn exhibited different

affinities for beechwood and oat-spelt xylan. The C2

bound specifically to the reducing ends of amorphous

cellulose, crystalline cellulose, and unmodified insol-

uble fraction of oat-spelt xylan, whilst binding weakly

to soluble glucans, xyloglucan, and barley a-glucan
(Boraston et al. 2001). Within a solvent-exposed slot

sufficient enough to accommodate a disaccharide, a

CBM interacts with a carbohydrate ligand through an

intricate hydrogen-bonding network mainly involving

charged residues (Fisher et al. 2015; Nishijima et al.

2015), as well as stacking interactions of Trp175 and

Trp71 (Notenboom et al. 2001).

Modular function can be elucidated by truncation

and fusion analysis. Truncation mutants have often

been made (Kleine and Liebl 2006; Paloheimo et al.

2007; Wang et al. 2014). Removal of some CBMs

affects the thermostabilities of the associated xyla-

nases and, thereby, some CBM22 s were originally

described as thermostabilizing domains (Charnock

et al. 2000). These modules were later recognized as

CBMs (Dias et al. 2004; Sunna et al. 2000), and the

thermostabilizing effects of CBM deletions were

regarded as lacking discrete linker peptides separating

from the catalytic domains (Dias et al. 2004; Sunna

et al. 2000). Recently, fusion mutants were more often

Fig. 3 Kinetics of the C2-Xyn. Enzyme activities were assayed

on beechwood (left) and oat spelt xylan (right) at substrate

concentration from 0.625 to 12.5 mg/ml. The data were fitted to

the Hill’s function: y = Vmax 9 x/(km ? x) (OriginPro 8). The

Vmax and Km values on beechwood xylan were 9.33 and

6.02 lmol/min, 2.89 and 2.74 mg/ml for the enzymes C2-Xyn

and Xyn, respectively. The Vmax and Km values on oat spelt

xylan were 1.55 and 2.03 lmol/min, and 6.98 and 7.76 mg/ml

for the enzyme C2-Xyn, respectively
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made (Furtado et al. 2015; Khan et al. 2013; Kittur

et al. 2003; Liu et al. 2011, 2012a, b; Mai-Gisondi

et al. 2015; Mangala et al. 2003; Tang et al. 2014;

Voutilainen et al. 2014; Ye et al. 2011), and fusion

seems better for elucidating modular functions. Each

module should be separated by a proper linker to

provide sufficient space for a module to fold into an

intact conformation. Lack of proper linkers might be a

reason why transposition of the catalytic modules got

unexpected results (An et al. 2005; Hong et al. 2006;

Liu et al. 2012a). The natural 22 amino acid linker

used in the present study is rich in prolines, glutami-

nes, and valines.

Conclusion

Fusion of the C2 at the N-terminus improved the Topt

by 2 �C: 2.8-times in thermostability, and 4.5-times in

catalytic efficiency of the GH11 xylanase. Thus, the

C2 was confirmed to be a thermostabilizing CBM

acting at either terminus of the GH11 xylanase. The

bifunctional C2 is useful for engineering enzyme

thermostability and activity. A modular function

might be elucidated better by fusion rather than

deletion analysis.
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