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Abstract

Objectives Since uptake of xylose limits its fermen-

tation, we aimed to identify novel sugar transporters

from Scheffersomyces stipitis that allow xylose uptake

and fermentation by engineered Saccharomyces

cerevisiae.

Results An hxt-null S. cerevisiae strain, lacking the

major hexose transporters (hxt1D-hxt7D and gal2D)
but having high xylose reductase, xylitol dehydroge-

nase and xylulokinase activities, was transformed with

a genomic DNA library from S. stipitis. Four plasmids

allowing growth on xylose contained three genes

encoding sugar transporters: the previously character-

ized XUT1 permease, and two new genes (HXT2.6 and

QUP2) not previously identified as xylose trans-

porters. High cell density fermentations with the

recombinant strains showed that the XUT1 gene

allowed ethanol production from xylose or xylose

plus glucose as carbon sources, while the HXT2.6

permease produced both ethanol and xylitol, and the

strain expressing the QUP2 gene produced mainly

xylitol during xylose consumption.

Conclusions Cloning novel sugar transporters not

previously identified in the S. stipitis genome using an

hxt-null S. cerevisiae strain with a high xylose-

utilizing pathway provides novel promising target

genes for improved lignocellulosic ethanol production

by yeasts.
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Introduction

Lignocellulosic biomass, an abundant and renewable

feedstock, is an attractive raw material for bioethanol

production since it does not compete with food and

feed production (Sarkar et al. 2011; Caspeta et al.

2013; Nogueira et al. 2013). The major fermentable

sugars from hydrolysis of this lignocellulosic biomass
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are D-glucose and D-xylose, and to obtain an econom-

ically feasible industrial process for bioethanol pro-

duction it is necessary to efficiently ferment both

sugars into ethanol (Lin and Tanaka 2006; Stambuk

et al. 2008; Kim et al. 2012). The development of

robust microorganisms for xylose fermentation is

required for efficient bioethanol production, and

abundant research has been devoted to improve xylose

utilization by recombinant strains of Saccharomyces

cerevisiae, an industrial yeast that it is not able to

ferment xylose (Matsushika et al. 2009; Young et al.

2010; Kim et al. 2012; Laluce et al. 2012; Cai et al.

2012; Nielsen et al. 2013; Sànchez Nogué and

Karhumaa 2015).

A major focus in metabolic engineering for xylose

fermentation has been to establish and improve an

intracellular xylose catabolic pathway in S. cerevisiae.

Two strategies are currently being used: overexpres-

sion of xylose isomerase (XI), or overexpression of

xylose reductase (XR) and xylitol dehydrogenase

(XDH). Since both pathways transform xylose into

xylulose, it is also required to overexpress xyluloki-

nase (XK) that will enhance the entrance of xylulose

into the pentose-phosphate pathway. However, inde-

pendently of the xylose utilizing pathway used, the

uptake of xylose across the S. cerevisiae plasma

membrane occurs through a large family of hexose

transporters, encoded by the HXT1-HXT17 and GAL2

genes, that has been reported to have substantial

metabolic flux control, especially when the intracel-

lular pathway is optimized (Kötter and Ciriacy 1993;

Hamacher et al. 2002; Lee et al. 2002; Gárdonyi et al.

2003; Sedlak and Ho 2004; Saloheimo et al. 2007;

Bertilsson et al. 2008; Parachin et al. 2011; Gonçalves

et al. 2014).

A strategy to overcome this problem has focused on

the isolation of heterologous sugar transporters with

better xylose-transporting properties for functional

expression in xylose fermenting S. cerevisiae cells

(Saloheimo et al. 2007; Hector et al. 2008; Katahira

et al. 2008;Madhavan et al. 2009; Runquist et al. 2009,

2010; Young et al. 2011, 2014; Tanino et al. 2012;

Diao et al. 2013). However, up to now very few

heterologous xylose transporters have been character-

ized in S. cerevisiae, and recent surveys with over 34

heterologous known and putative sugar transporters

from seven different organisms revealed that only half

of the expressed permeases allowed significant uti-

lization of xylose by S. cerevisiae cells (Young et al.

2011, 2014). Furthermore, most of these studies have

just analyzed the capacity of the transformed cells to

grow on xylose, and very few have verified the

contribution of the permeases for xylose fermentation

by the recombinant strains.

The yeast Scheffersomyces stipitis (formerly Pichia

stipitis) is capable of fermenting a variety of sugars

present in the lignocellulosic biomass, is one of the

best xylose fermenting species found in nature, but

unfortunately has several drawbacks for industrial fuel

ethanol production mainly due to its low tolerance to

the fermentation product (Toivola et al. 1984; Nigam

2001; Jeffries et al. 2007; Farias et al. 2014; Parambil

and Sarkar 2014). Nevertheless, this yeast has been a

major source of xylose-utilizing genes for genetic

engineering of S. cerevisiae, including not only the

necessary activities of the XR and XDH enzymes

(encoded by the XYL1 and XYL2 genes), and other

enzymes of the pentose-phosphate pathway (Kötter

and Ciriacy 1993; Jin et al. 2005; Matsushika et al.

2009), but also many heterologous sugar transporters.

The analysis of xylose transport by this yeast revealed

complex kinetics, indicating the presence of several

permeases with differing properties, a situation also

found for hexose transport in S. cerevisiae (Kilian and

Van Uden 1988; Does and Bisson 1989).

Up to now 15 monosaccharide transporters from S.

stipitis have been identified and functionally analyzed

in S. cerevisiae. These include the hexose transporters

SUT1-SUT4, some of them able to mediate xylose

transport in yeast cells (Weierstall et al. 1999;

Katahira et al. 2008; Runquist et al. 2010; Moon

et al. 2013), but also several other putative transporters

encoded by the XUT1-XUT7, AUT1,HGT2, RGT2 and

STL1 genes, of which few have been shown to allow

significant xylose transport, fermentation and/or

growth when expressed in S. cerevisiae recombinant

strains (Du et al. 2010; Young et al. 2011, 2012; Moon

et al. 2013).

We have recently developed a hxt-null S. cerevisiae

strain, lacking the major hexose transporters (hxt1D-
hxt7D and gal2D), with a high activity of the XR, XDH
and XK enzymes due to overexpression (through an

integrative plasmid) of the XYL1, XYL2 and XKS1

genes, and analyzed the impact that several S.

cerevisiae HXT permeases have in anaerobic batch

fermentations using xylose, glucose, or xylose plus

glucose as carbon sources (Gonçalves et al. 2014). In

the present report, a genomic library of S. stipitis was
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screened with this hxt-null strain to identify novel

sugar transporters that allow xylose uptake and

fermentation when expressed in S. cerevisiae, a

required metabolic engineering approach to increase

catabolic rates in recombinant yeasts for biofuel

applications.

Materials and methods

Strains and media

The yeast strains used in this study are listed in

Table 1. Escherichia coli strain DH5a was grown in

lysogeny broth (1 % tryptone, 0.5 % yeast extract,

0.5 % NaCl) supplemented with ampicillin (at

100 mg l-1). Yeasts were grown in rich YP medium

(1 % yeast extract, 2 % Bacto-peptone) or synthetic

complete (SC) medium lacking uracil (0.67 % yeast

nitrogen base without amino acids, supplemented with

adequate auxotrophic requirements), containing 2 %

maltose, glucose, fructose or xylose. The pH of the

medium was adjusted to pH 5 with HCl. When

required, 2 % Bacto-agar and 0.5 mg aureobasidin A

l-1 (Takara Bio, Japan) were added to the medium.

Molecular genetic techniques

Standard methods for bacterial transformation, DNA

manipulation and analysis were employed (Ausubel

et al. 1995). The yeast S. stipitis (strain NBRC1687,

Watanabe et al. 2011) genomic DNA library was

constructed in the pPGK plasmid (Table 1). Genomic

DNA was extracted using the MasterPure Yeast DNA

purification kit (Epicenter, USA), digested with

BamHI, and 3–5 kb fragments were isolated by gel

electrophoresis. These DNA fragments were cloned

into the BamHI site of plasmid pPGK. The genomic

library was transformed into the S. cerevisiae hxt-null

strain DLG-K1 (Table 1), which has high XR, XDH,

and XK activities (Gonçalves et al. 2014), using the

Yeastmaker yeast transformation kit (Clontech Labo-

ratories, USA). The hxt-null DLG-K1 strain is avail-

able to the scientific community for research non-

commercial purposes from the Collection of Microor-

ganisms, DNA and Cells of Universidade Federal de

Minas Gerais (member of the World Federation of

Culture Collections, see http://www.wfcc.info/ccinfo/

index.php/collection/by_id/1029/) under accession

number UFMG-CM-Y5856. Strains transformed with

the pPGK-derived plasmids were selected in SC

Table 1 Yeast strains,

plasmids, and primers used

in this study

Relevant genotype or description Source or

reference

Yeast strains

DLG-K1 MATa hxt1D::HIS3::Dhxt4 hxt2D::HIS3 hxt3D::LEU2::hxt6
hxt5::LEU2 hxt7::HIS3 gal2D ura3-52 his3-11,15 leu2-3,112

MAL2 SUC2 AUR1::pAUR-XKXDHXR

Gonçalves

et al. (2014)

BBY-6 DLG-K1, pPGK-6 This work

BBY-24 DLG-K1, pPGK-24 This work

BBY-37 DLG-K1, pPGK-37 This work

BBY-90 DLG-K1, pPGK-90 This work

Plasmids

pPGK URA3 PGK1p-PGK1t Kang et al.

(1990)

pPGK-6 URA3 PGK1p-HXT2.6-PGK1t This work

pPGK-24 URA3 PGK1p-XUT1-PGK1t This work

pPGK-37 URA3 PGK1p-QUP2-PGK1t This work

pPGK-90 URA3 PGK1p-QUP2-PGK1t This work

Primers

pPGK_seq_F CAGATCATCAAGGAAGTAATTATCT –

pPGK_seq_R TCTATCGATTTCAATTCAATTCAAT –
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medium lacking uracil and supplied with aureobasidin

A and 2 %maltose or xylose. Plasmids were extracted

from the recombinant yeast strains using the Zymo-

prep Yeast Plasmid Miniprep II kit (Zymo Research,

USA). Plasmids recovered from yeast transformants

were analyzed by restriction digestion and/or diag-

nostic PCR using primers pPGK_seq_F and

pPGK_seq_R (Table 1). These same primers were

used to sequence the 50 and 30 ends of the DNA frag-

ments present in the recombinant pPGK vectors

(ACTGene Analı́ses Moleculares Ltda, Brazil), and

the sequences were used to identify the cloned genes

by comparison with the known genome of S. stipitis

(Jeffries et al. 2007).

Phylogenetic analysis

Amino acid sequences of S. stipitis sugar transporters

were obtained from NCBI (www.ncbi.nlm.nih.gov/

protein/) with the following accession numbers: AUT1

(GI:4836720); HGT2 (GI:4851832); HXT2.4 (GI:

4850978); HXT2.6 (GI:4838414); QUP2 (GI:4840652);

RGT2 (GI:4840859); STL1 (GI:4838168); SUT1 (GI:

4851252); SUT2 (GI:4838413); SUT3 (GI:4839762);

SUT4 (GI:4850775); XUT1 (GI:4839826); XUT2 (GI:

4852047); XUT3 (GI:4851844); XUT4 (GI:4840896);

XUT5 (GI:4840252); XUT6 (GI:4841106); and XUT7

(GI:4851701). Sequences were first aligned (see

Supplementary Fig. 1) using Clustal Omega (Sievers

et al. 2011), and then the phylogenetic tree was cal-

culated and constructed using the neighbor joining

method with Mega 5 (Tamura et al. 2011).

Growth and fermentations conditions

Yeast strains were pre-grown in SC medium contain-

ing 2 % (w/v) maltose for 36 h at 28 �C. The cells

were collected by centrifugation at 60009g for 5 min

at 4 �C, washed twice with sterile water, and inocu-

lated (0.1 ± 0.02 g of dry yeast l-1) into SC medium

containing 2 % (w/v) maltose, xylose, glucose or

fructose. Cells were grown aerobically at 28 �C with

shaking (160 rpm) in Erlenmeyer flasks filled to 1/5 of

the volume with medium. Cellular growth was

followed from OD600 values and culture samples were

harvested regularly, centrifuged (50009g, 1 min), and

their supernatants used for the determination of

substrates and fermentation products as described

below. For batch fermentations, cells were pre-grown

as described above and inoculated at a high cell

density (5.5 ± 0.5 g of dry yeast l-1) into 25 ml

synthetic SC medium containing 2 % glucose or/and

xylose. Anaerobic batch fermentations were per-

formed at 30 �C in closed 50-ml bottles with a

magnetic stir bar to allow mild agitation (100 rpm).

Samples were collected regularly and processed as

described above.

Determination of substrates and fermentation

products

Glucose, xylose, ethanol, xylitol, and glycerol were

determined by HPLC equipped with a refractive index

detector using an Aminex HPX-87H column (Bio-

Rad). HPLC was run at 40 �C using 5 mM H2SO4 as

the mobile phase at a flow rate of 0.1 ml min-1 and

0.01 ml injection volume.

Results

The genomic library of S. stipitis DNA was trans-

formed into the S. cerevisiae hxt-null strain DLG-K1,

which is deleted for its hexose transporter genesHXT1

to HXT7 and GAL2, and although it overexpresses the

XYL1, XYL2 and XKS1 genes for efficient xylose

fermentation, this hxt-null strain is unable to take up

and grow on xylose, glucose or other monosaccharides

as the sole carbon source (Gonçalves et al. 2014).

Transformants were selected on a synthetic SC

medium lacking uracil, and containing 2 % (w/v)

xylose as carbon source and aureobasidin A. More

than 90 transformant colonies grew up within 5 days

at 28 �C, and after further inoculation into new SC-

2 % xylose plates, eight transformants were selected

by their capacity to grow in both xylose and glucose.

Indeed, all these eight transformants were able to grow

(to different extents) in the presence of several

monosaccharides, including glucose, fructose, man-

nose, galactose and xylose (data not shown), indicat-

ing that the genes present on the pPGK plasmids

encode for general monosaccharide transporters.

These eight transformants able to grow on xylose

were further analyzed by plasmid isolation and

retransformation into the hxt-null strain DLG-K1.

Four plasmids (pPGK-6, pPGK-24, pPGK-37 and

pPGK-90, Table 1) were able to restore growth on SC

medium containing xylose as a carbon source, and

1976 Biotechnol Lett (2015) 37:1973–1982
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restriction enzyme analysis and partial sequencing

showed that these four plasmids (Fig. 1a) contained

three genes present in the known genome of S. stipitis

(Jeffries et al. 2007).

Plasmid pPGK-6 has an insert of*3 kb containing

the HXT2.6 gene, present in chromosome 4 of S.

stipitis, encoding for a transporter with 534 amino acid

residues. Plasmid pPGK-24 contained a *2.3 kb

insert with the XUT1 gene, present in chromosome 6

of S. stipitis, encoding for a transporter with 561 amino

acid residues. Plasmids pPGK-37 and pPGK-90 had

two different inserts (they differ by the 50 BamHI

cleavage site that generated the DNA fragments),

containing the same QUP2 gene (present in chromo-

some 7 of S. stipitis) that encodes for a transporter with

521 amino acid residues. Since the yeast strain

transformed with these two plasmids containing the

QUP2 had similar behavior, the results shown for

them are the mean values of the two strains containing

the pPGK-37 or pPGK-90 plasmids. All the three

transporters mediate the uptake of glucose, fructose or

xylose, allowing growth and fermentation of these

sugars by strain DLG-K1 (Supplementary Table 1),

although the specific growth rate, ethanol yield, and

amount of sugar consumed by these strains with

xylose as carbon source were lower, when compared

to cell growth on glucose or fructose.

Figure 2 shows the kinetics of glucose or/and

xylose consumption and fermentation by the recom-

binant yeast strains containing the cloned S. stipitis

sugar transporters using high cell density fermentation

conditions. The three genes expressed in the hxt-null

DLG-K1 strain allowed glucose consumption in less

than 3 h, showing high volumetric glucose consump-

tion and volumetric ethanol production rates, as well

as (with the exception of the QUP2 gene) high ethanol

yields (Table 2). During glucose fermentations the

major co-product found was glycerol, which accumu-

lated up to 2.5 g l-1 when the hxt-null yeast strain

contained the HXT2.6 gene, up to 1.5 g l-1 in the case

of the XUT1 permease, and 2.6 g l-1 with the QUP2

gene (data not shown). Regarding xylose fermenta-

tion, theHXT2.6 gene allowed the consumption of this

sugar, which during the first 10 h was fermented into

ethanol but from that point on the cells stopped

producing ethanol and the consumed xylose was

reduced into xylitol, which accumulated in the media

into the same levels as ethanol (Fig. 2). In contrast, the

transporter that allowed the best xylose fermentation

yields by the cells was XUT1 (Table 2), due to the

production of very low levels of xylitol (Fig. 2). The

permease encoded by the QUP2 gene, although

allowed the uptake of xylose with considerable rates

(Table 2), the volumetric ethanol production rates and

yields were low as these cells converted the sugar

mainly into xylitol, and not ethanol (Fig. 2).

During xylose and glucose co-fermentations the

rates of glucose consumption were practically not

affected (Table 3; Fig. 2) in the strains expressing the

HXT2.6, XUT1, or QUP2 genes. From the data shown

in Fig. 2 and Tables 2 and 3, it is evident that there is

roughly a 40–50 % decrease in the rates of xylose

consumption by these strains with equal amounts of

both sugars present in the medium, when compared

Fig. 1 a Structure and restriction maps of the DNA fragments

present in plasmids pPGK-6, pPGK-24, pPGK-37 and pPGK-

90. The grey boxes indicate pPGK vector sequences, the lines

indicate S. stipitis DNA sequences, and the black arrows

indicate the identified open reading frames. b Maximum

likelihood phylogeny with bootstrap values from alignment of

sugar transporter-related proteins present in the S. stipitis

genome, already characterized in S. cerevisiae (including the

cellobiose transporter HXT2.4), with the three genes cloned in

the present work in bold characters
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with the fermentations carried out with each sugar

individually. In the case of the cells expressing the

QUP2 permease, all the ethanol produced seems to

come from glucose fermentation (Table 2, 3), and

again high levels of xylitol (and glycerol) were

produced during xylose consumption (Fig. 2). With

the cells expressing the HXT2.6 and XUT1 permeases

xylose consumption seemed to contribute to the

ethanol yields (Fig. 2, Tables 2 and 3), but the amount

of ethanol produced by the strain expressing the XUT1

gene was higher due to a very low production of xylitol

and glycerol (Fig. 2). Finally, during glucose/xylose

co-fermentations by the strain expressing the HXT2.6

permease, high quantities of glycerol accumulated in

the media (Fig. 2).

Discussion

Scheffersomyces stipitis is of biotechnological interest

as it ferments several sugars present in lignocellulosic

hydrolysates and thus its sugar transporters have been

the subject of extensive research. As mentioned in the

Introduction, 15 monosaccharide transporter genes

Fig. 2 Time course of glucose (SC-D), xylose (SC-X) or

glucose plus xylose (SC-DX) fermentations by the hxt-null

strain DLG-K1 expressing the HXT2.6 gene (strain BBY-6),

XUT1 gene (strain BBY-24), or QUP2 gene (strains BBY-37

and BBY-90). The kinetics of glucose (black circles) or xylose

(white circles) consumption, ethanol production during glucose

(black triangles), xylose (white triangles) or glucose plus xylose

(white squares) fermentations, and the production of xylitol

(grey diamonds) or glycerol (inverted grey triangles) during

xylose or glucose plus xylose fermentation, respectively, were

determined as described in ‘‘Materials and Methods’’ sec-

tion. Data are averages from two independent experiments, or

the average of strains BBY-37 and BBY-90 for the QUP2 gene

1978 Biotechnol Lett (2015) 37:1973–1982
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from this yeast (see Fig. 1b) have been analyzed in

recombinant S. cerevisiae cells, and our cloning and

screening approach with a hxt-null strain with high

XR, XDH and XK activities allowed us to identify

three genes that allow growth on and fermentation of

xylose, of which two of them (HXT2.6 and QUP2)

have not been identified before as capable of trans-

porting xylose into yeast cells. [It should be noted that

we were not expecting to clone many gene members of

the S. stipitis sugar transporter family (e.g. SUT1,

SUT2, XUT5, XUT6 and STL1), because they contain

BamHI-cleaving sites in their ORFs that would impair

their functional cloning from a genomic library made

with DNA cleaved with this restriction enzyme.]

Based on amino acid sequence comparisons of

these S. stipitis sugar transporter proteins studied in S.

cerevisiae (Fig. 1b), many transporters (including

SUT1-SUT4, RGT2, HGT2, XUT4 and XUT7) cluster

together and are not closely related to the permeases

cloned in this work. The XUT1 permease is closely

related to XUT3, but distant to the HXT2.6 and QUP2

transporters that cluster with a distinct set of sugar

Table 2 Rates and yields for anaerobic high cell density batch fermentation of glucose or xylose by recombinant yeast strains

Sugara and

transporterb
Sugar consumption

(%)

VS (g l-1 h-1)c VE (g l-1 h-1)d YE/S (g g-1)e

Glucose

HXT2.6 100 6.7 ± 0.1 1.76 ± 0.01 0.40 ± 0.01

XUT1 100 7.36 ± 0.1 1.62 ± 0.02 0.41 ± 0.01

QUP2 100 7.51 ± 0.7 1.48 ± 0.05 0.27 ± 0.03

Xylose

HXT2.6 90 0.94 ± 0.1 0.60 ± 0.02 0.14 ± 0.01

XUT1 90 1.17 ± 0.2 0.55 ± 0.03 0.23 ± 0.02

QUP2 70 0.55 ± 0.04 0.15 ± 0.05 0.07 ± 0.02

a Fermentations were performed on complete synthetic SC medium containing 2 % of the indicated sugars during 30 h (Fig. 2)
b The data for HXT2.6 was obtained with strain BBY-6, for XUT1 with strain BBY-24, and for QUP2 with strains BBY-37 and BBY-

90
c Maximum volumetric sugar consumption rate
d Maximum volumetric ethanol production rate
e Yield based on g of ethanol produced per g of sugar consumed. Values are averages of two independent experiments, or the average

of strains BBY-37 and BBY-90 for the QUP2 gene

Table 3 Rates and yields for anaerobic high cell density batch fermentation of glucose plus xylose by recombinant yeast strains

Transportera Glucose

consumption (%)

VG (g l-1 h-1)b Xylose

consumption (%)

VX (g l-1 h-1)c VE (g l-1 h-1)d YE/S (g g-1)e

HXT2.6 100 6.46 ± 0.3 61 0.59 ± 0.01 1.8 ± 0.02 0.28 ± 0.02

XUT1 100 6.26 ± 0.1 80 0.62 ± 0.02 1.53 ± 0 0.3 ± 0.01

QUP2 100 6.19 ± 0.2 39 0.34 ± 0.03 1.25 ± 0.04 0.26 ± 0.03

a The data for HXT2.6 was obtained with strain BBY-6, for XUT1 with strain BBY-24, and for QUP2 with strains BBY-37 and BBY-

90. Fermentations were performed on complete synthetic SC medium containing equal amounts (2 %) of glucose and xylose during

30 h (Fig. 2)
b Maximum volumetric glucose consumption rate
c Maximum volumetric xylose consumption rate
d Maximum volumetric ethanol production rate
e Yield based on g of ethanol produced per g of sugar consumed. Values are averages of two independent experiments, or the average

of strains BBY-37 and BBY-90 for the QUP2 gene

Biotechnol Lett (2015) 37:1973–1982 1979
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transporters including XUT2, XUT5, and XUT6, a

permease homolog to the STL1 glycerol-H? symporter

of S. cerevisiae, a putative arabinose-H? symporter

(AUT1), and the cellobiose transporter encoded by the

HXT2.4 gene.

The XUT1 and XUT3 transporters have been

characterized as permeases with moderate transport

efficiency but higher xylose preference (Young et al.

2011, 2012). Both contain a conserved motive (G-G/F-

x-x-x-G) at the end of the first transmembrane span

that confers better xylose transport properties (Young

et al. 2014). While this motif is absent in the HXT2.6

permease, the new QUP2 transporter identified in this

work has a partial overlapping sequence (A-G-F-V-G-

G) in this region of the protein. The three sugar

transporters cloned in the present work also have the

conserved PESPR motif right after the sixth trans-

membrane span, a common motif of sugar transporters

that is required for efficient transport activity (Sun

et al. 2012).

It is surprising that the transporter encoded by the

HXT2.6 gene allows monosaccharide transport and

fermentation by the hxt-null DLG-K1 strain, as this

transporter has been included into another family of S.

stipitis closely related sugar transporters (HXT2.1-

HXT2.6) postulated to encode cellobiose permeases

(Jeffries and van Vleet 2009; Ha et al. 2013). These

genes are closely located with genes encoding endo-

glucanases, a-glucosidases, or even other sugar perme-

ases. While the recently characterized cellobiose trans-

porterHXT2.4 (Ha et al. 2013) is found in a gene cluster

with an endo-glucanase (EGC2) and a a-glucosidase
(BGL5) in chromosome 1 of S. stipitis, the HXT2.6

permease is in close proximity with a a-glucosidase
(BGL1) and the monosaccharide transporter SUT2 in

chromosome 4. This HXT2.6 gene has been reported to

be induced (together with BGL1) only after aerobic

growth with cellobiose as the unique carbon source

(Jeffries and van Vleet 2009). Thus, our results indicate

that although this permease in S. stipitis is induced by

cellobiose, its function is to transport the released

monosaccharides after cellobiose (and maybe other

oligosaccharides) cleavage by the a-glucosidase
encoded by BGL1.

While we have not yet characterize the kinetic

properties or sugar transport mechanism (facilitated

diffusion or H?-symport) of the new cloned trans-

porters, our results show that all three permeases allow

not only growth on several monosaccharides, but also

efficient xylose consumption and fermentation by the

hxt-null DLG-K1 strain. It would also be nice to

analyze the performance of these new transporters in a

S. cerevisiae wild-type strain with all its native hexose

transporters. Nevertheless, the hxt-null DLG-K1 strain

with high XR, XDH and XK activities (Gonçalves

et al. 2014) used in our genomic library screen to clone

new S. stipitis xylose transporters is a promising strain

platform to identify and characterize other new xylose

permease genes from, for example, xylose-fermenting

yeast species recently described (Cadete et al. 2009,

2013; Wohlbach et al. 2011; Lobo et al. 2014). The

characterization of new xylose transporters can

expand our understanding of permease function as

well as suggest potentially useful classes of transport

proteins or molecular engineering approaches for

improving xylose utilization in recombinant S. cere-

visiae for biofuel applications.
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