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Abstract The complex structure of lignocellulose

requires the involvement of a suite of lignocellulolytic

enzymes for bringing about an effective de-polymer-

ization. Cellulases and hemicellulases from both fungi

and bacteria have been studied extensively. This

review illustrates the mechanism of action of different

cellulolytic and hemi-cellulolytic enzymes and their

distinctive roles during hydrolysis. It also examines

how different approaches can be used to improve the

synergistic interaction between fungal and bacterial

glycosyl hydrolases with a focus on fungal cellulases

and bacterial hemicellulases. The approach entails the

role of cellulosomes and their improvement through

incorporation of novel enzymes and evaluates the

recent break-through in the construction of designer

cellulosomes and their extension towards improving

fungal and bacterial synergy. The proposed approach

also advocates the incorporation and cell surface

display of designer cellulosomes on non-cellulolytic

solventogenic strains along with the innovative appli-

cation of combined cross-linked enzyme aggregates

(combi-CLEAs) as an economically feasible and

versatile tool for improving the synergistic interaction

through one-pot cascade reactions.

Keywords Biocatalysis � Cellulases–

hemicellulases � Cellulosomes � Combi-CLEAs �
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Introduction

In view of depleting petroleum reserves and a potential

climate change, the need for alternative bioenergy is

expected to increase sharply in coming years. In this

vein, utilization of lignocellulosic biomass has emerged

as the most prominent technology for efficiently

producing bioethanol and other value added products.

Research efforts in the last few decades have

emphasized replacing first generation biofuels with

second generation biofuels as they are made from

cheap and abundant lignocellulosic feedstocks. Lig-

nocellulosic biomass obtained from agricultural resi-

dues (wheat, straw, sugarcane bagasse, corn stover),

herbaceous grasses (alfalfa, clover, switch grass,

miscanthus grass) and forest products (hardwoods

and softwoods) provide an abundant source of carbo-

hydrate and present substantial renewable substrates

for bioethanol production (Vikari et al. 2012).

Most plant cell walls are composed of approx.

15–40 % cellulose, 10–30 % hemicellulose and pect-

in, and 5–20 % lignin (Prassad et al. 2007). Recalci-

trance of lignocellulosic biomass is related to its

complex chemical composition (lignin, hemicellulose

and acetyl groups) and the physical features (cellulose
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crystallinity and degree of polymerization) of the plant

cell wall (Van Dyk and Pletschke 2012). The principal

framework of cellulose consists of anhydroglucopy-

ranose molecules connected by b-1,4-glycosidic link-

ages. The complexity of strong intra- and inter-

molecular hydrogen bonding found in cellulose results

in the formation of microfibrillar chains which play an

important role in recalcitrance of biomass and make its

hydrolysis a cost intensive process (Himmel et al.

2007). Hemicellulose is a heterogeneous group of

branched and linear polysaccharides, consisting main-

ly of D-xylose, and D-mannose, and a number of

substituted sugars (Sanchez 2009). Both cellulose and

hemicellulose can be hydrolyzed into simple sugars

which may be then fermented to ethanol.

Enzymes involved in the degradation

of lignocellulose

Many microorganisms, including fungi and bacteria,

produce extracellular enzymes which are capable of

degrading and utilizing cellulose and hemicellulose as

a carbon source. However, a large variety of enzymes

is required to degrade all the components of lignocel-

lulose. In nature, a consortium of lignocellulolytic

enzymes works synergistically to degrade lignocellu-

losic biomass.

Cellulases

The degradation of cellulose to glucose involves the

cooperative action of at least three enzymes; exo-1,4-

b-glucanases (EC 3.2.1.91) and cellobiohydrolase (EC

3.2.1.176), endo-1,4-b-glucanases (EC 3.2.1.4), b-

glucosidases (EC 3.2.1.21) (also termed cellobiases).

Structural characterization studies of a variety of

cellulases have provided detailed information regard-

ing the structure and function of these enzymes. In

general, the structures of cellulases are composed of a

catalytic domain (CD), which is responsible for the

hydrolysis reaction; a cellulose-binding domain

(CBD), that mediates the binding of enzyme to the

substrate; and the linker (hinge) region (rich in serine,

threonine and proline residues) by which the two

domains are linked (Carrard et al. 2000; Rabinovich

et al. 2002). New types of enzymes, originally

classified as carbohydrate-binding module (CBM) 33

(now termed copper-dependent lytic polysaccharide

monooxygenase AA10) and GH61 (now termed

polysaccharide monooxygenase AA9), that catalyze

the oxidative cleavage of polysaccharides have been

identified. For an excellent review on this topic please

refer to Horn et al. (2012).

Role of CBMs/CBDs

Based on the initial discovery of several modules,

cellulose specific CBMs were previously classified as

CBDs. Hydrolysis of cellulose occurs at catalytic

modules and CBMs assist in effectively recognizing

the surface of the crystalline cellulose materials.

CBMs contain from 30 to about 200 amino acids and

are present as single, double or triple domains in one

protein. These are either linked to the N- or C-terminus

of the CD (Shoseyov et al. 2006). The presence of

CBMs is shown to increase the binding of the substrate

and targets the enzyme towards specific substrates.

Mechanism of action

Initially, cellulose hydrolysis occurs on the surface of

the solid substrates and involves endoglucanases

which hydrolyze internal b-1,4-glucosidic linkages

randomly in the cellulose chain. Endoglucanases

appear to have cleft-shaped open active sites which

produce nicks in the cellulose polymer, exposing

reducing and non-reducing ends. Exoglucanases have

their active sites inside a ‘‘tunnel’’ and progress along

the reducing and non-reducing ends of cellulose,

liberating cellooligosaccharides and cellobiose units.

The products of cellobiohydrolases and endoglucanas-

es are inhibitory to the activities of their enzymes, so

finally b-glucosidase (BGL) is required, which acts on

cellobiose to liberate glucose (Binod et al. 2011).

There is a high degree of coordination between the

three enzymes, such as exo/endo, exo/exo and endo/

BGL synergy, which is required for the efficient

hydrolysis of cellulose crystals.

Fungal and bacterial cellulases

Fungi are key micro-organisms for the degradation of

cellulose and the active degraders in this group are

divided into two sub-groups:

The first group includes soft rot fungi (e.g. Tricho-

derma reesei), and white rot fungi (e.g. Phanerochaete

chrysosporium). Cellulase mixtures available
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commercially are mainly obtained from the enzyme

cocktail produced by T. reseei (Hypocrea jecorina)

and this fungus possesses a total of 200 GH genes

(Martinez et al. 2008; Kubicek et al. 2009) (Table 1).

Many fungi are known to produce multiple cellulases,

for example T. reesei produces 2 CBHs (Cel6A and

Cel7A), 8 EGs (Cel5A, Cel5B, Cel7B, Cel12A,

Cel45A, Cel61A, Cel61B and Cel74A) and 7BGLs

(Cel1A, Cel1B, Cel3A, Cel3B, Cel3C, Cel3D and

Cel3E) (Aro et al. 2005). In fungal cellulases, the

binding module seems to invariably belong to the

CBMI family and targets binding to cellulose surfaces

(Costaouec et al. 2013). The CD of exoglucanase

Cel7A (acts on reducing end) is composed of a b
sandwich structure with a long substrate tunnel lined

by b-sheets, while four loops cover the tunnel. Cel7A

of T. reesei degrades crystalline cellulose following

the phenomenon of processivity, which is the ability of

the CBHs to attach to the carbohydrate chain, and

decrystallize disaccharide units from the end of the

chain without dissociation (Beckham et al. 2010).The

lower processivity of Cel6A (acts on non-reducing

ends) is attributed to a more open and shorter active

site tunnel compared to Cel7A. Endoglucanase Cel7B

has an open groove type active site because it lacks

four loops of b-sheets that cover the tunnel (Beckham

et al. 2010).

The second group comprises of brown rot fungi

(e.g. Postia placenta) that lacks both CBMs and

processive cellulases, however it is found to utilize

crystalline cellulose as a sole carbon source, suggest-

ing the involvement of non-enzymatic low molecular

weight oxidants through the production of reactive

oxygen species (OH-, peroxide- or superoxide-

radicals), also known as the Fenton reaction (Dashtban

et al. 2009; Wilson 2011).

Many aerobic bacteria secrete various amounts of

free cellulases that act synergistically to degrade

cellulose. They contain CDs, linker peptides and

CBMs which follow a non-processive manner of

cellulose degradation. Various aerobic bacteria be-

longing Table 1 to the genera Cellulomonas, Pseu-

domonas, Geobacillus, Erwinia, Streptomyces,

Fibrobacter, as well as Bacillus and Paenibacillus

(Table 1), are known to produce different kinds of

cellulases (Table 1) (Maki et al. 2009; Sethi and

Scharf 2013).

Anaerobic bacteria have evolved a different type of

cellulolytic system that involves complex protein

structures supporting enzymes for the hydrolysis of

cellulose, known as cellulosomes (Doi and Kosugi

2004). In these bacteria, for example Clostridium

(Table 1), Acetivibrio, Bacteroides and Ruminococ-

cus, different types of cellulose-degrading enzymes

and hemicellulolytic enzymes are assembled on the

structural scaffoldin subunits through strong non-

covalent protein–protein interactions between the

docking modules (dockerin) and complementary

modules (cohesins) (Dashtban et al. 2009). Cellulo-

somes consist of a fibrillar protein scaffoldin. The

scaffolding proteins are also called ‘‘scaffoldins’’ and

consist of proteins CbpA, Cip A or Cip C (Doi et al.

2003). A few anaerobic cellulolytic thermophilic

bacteria, such as Caldicellulosiruptor sp., use an

intermediate strategy, i.e. they secrete many free

cellulases that contain multiple CDs. The Cald. bescii

CelA comprises of a GH 9 and a GH 48 CD, along with

three type III cellulose-binding modules. This CelA

drives cellulose hydrolysis, not only through the well-

known surface ablation mechanism, but also through

excavation into the surface of the substrate, resulting

in the formation of extensive cavities (Brunecky et al.

2013).

A different type of cellulolytic degradation mechan-

ism has been found in two Gram negative cellulolytic

bacteria, Fibrobacter succinogenes, an anaerobic cel-

lulolytic rumen bacterium and Cytophaga hutchin-

sonii, an aerobic soil bacterium. The genome

sequences of these bacteria strongly suggest that they

do not use free cellulases or cellulosomes, as none of

their genes encode for CBMs, scaffoldins or dockerins.

Thus these organisms are believed to have evolved a

novel cellulolytic mechanism to degrade cellulose

fibrils by a complex present on the outer membrane and

transport of cellulose molecules through super chan-

nels to periplasmic spaces followed by the action of

endoglucanase present in the periplasm (Wilson 2011;

Sethi and Scharf 2013).

Hemicellulases

Hemicellulose, and xylan in particular, represents

20–35 % of lignocellulosic biomass. The conversion

of the hemicellulosic fraction (either in the monomeric

form or in the oligomeric form) is vital for increasing

the overall yield of bioethanol. Hemicellulose has a

more varied structure than cellulose and thus it requires

a large suite of enzymes for effective hydrolysis (Van

Biotechnol Lett (2015) 37:1117–1129 1119
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Table 1 Cellulolytic and hemicellulolytic enzymes found in industrially important fungal and bacterial strains

Microorganisms Enzymes Glycoside

hydrolase

family

References

Aerobic fungi Free enzymes

Trichoderma reesei Endoglucanase (Cel74A) GH 74 Adapted from Adav et al. (2012)

b-1,6-Glucanase GH 5

Exo-1,3-b-D-glucanase GH 55

Glucan 1,3-b-glucosidase GH 17

Glucan 1,4-b glucosidase GH 15

b-Glucosidase GH 31

Glucan endo-1,3-b-glucosidase GH 17

b-1,4-Glucosidase GH 3

Glucan endo-1,3-b-glucosidase (Agn1) GH 71

b-glucosidase (TrBg12) GH 1 Lee et al. (2012)

b-xylosidase GH 3 Rojas et al. (2005)

Aspergillus niger Endoglucanase (Egl C) GH 74 Hasper et al. (2002)

Endo b-1-4 xylanse (Xln A) GH 10 Do et al. (2013)

Endoglucanase (EglA) GH 12 Pham et al. (2011)

Xyloglucanase (AnXEGl2A) GH 12 Master et al. (2008)

a-L rhamnosidase GH 13 Liu et al. (2012)

Trichoderma

harzianum

b-mannosidase GH 2 Nascimento et al. (2014)

(1–3) a-glucanases GH 71 Grun et al. (2006)

Xylanases GH 11 Shrivastava et al. (2007)

Humicola insolens

(thermophilic)

Cellobiohydrolase (Cel6A) GH 6 Adapted from Li et al. (2011)

Endoglucanases (Cel6B) GH 6

Endoglucanase (EGI) GH 7

Cellobiohydrolase (Cel7B) GH 7

Endoglucanase (EGV) GH45

Anaerobic bacteria Cellulosomes

Clostridium

acetobutylicum

Endoglucanase (CelA) GH5 Adapted from Doi and Kosugi (2004)

Endoglucanase (CelE) GH9

Exoglucanase (CelF) GH48

Endoglucanase (CelG) GH9

Exoglucanase (CelH) GH9

Endoglucanase (CelL) GH9

Endoglucanase (EngA) GH44

Mannanase (ManA) GH5

Sialidase (CAC0919) GH74

Endoglucanase (CAC3469) GH5

Clostridium

thermocellum

Xyloglucanase (Xgh74A) GH 10 Zverlov et al. (2005)

Endoxylanase (Xyn 10D) GH 74

Cellulase (Cel 48S, Cel 48Y) GH 48 Olson et al. (2010)

Lichenase (LicB) GH16 Adapted from Doi and Kosugi (2004)

Mannanase (ManA) GH26

Xylanase/acetyl xylan esterase (XynA/XynU) GH11
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Table 1 continued

Microorganisms Enzymes Glycoside

hydrolase

family

References

Xylanase(XynB/XynV) GH11

Xylanase/feruloyl esterase (XynY) GH10

Anaerobic fungi Cellulosome

Orpinomyces PC 2 Cellulases (CelA, CelC, CelD, CelF,

CelH and CelI)

GH 6 Adapted from Ljungdahl (2008)

Cellulases (CelB, CelE, CelG, and

CelJ)

GH 5

b-glucosidase (BglA) GH 1

Xylanase (XynA) GH11

Lichenase GH16

b-glucanase GH16,

Mannanase (ManA) GH5

Acetyl xylan esterase (AxeA) CE 6

Feruloyl esterase (FaeA) CE 1

Aerobic bacteria Free enzymes

Bacillus halodurans a-amylase G-6 (BH0413) GH13 Lombard et al. (2014) (CAZy database,

http://www.cazy.org/)

a-galactosidase (MelA) GH4

b-1-3-glucanase/laminarinase

(BH0236)

GH81

b-glucanase (CelB) GH5

b-glucosidase (BglA) GH1

b-xylosidase (BHXyl39) GH39

b-xylosidase (XynB) GH43

Acetyl xylan esterase (Rgae) CE12

Endo- b-1-3(4)-glucanase (BH2115) GH16

Endo-b-N-acetylglucosaminidase GH85

Xylanase (BH0899) GH11

Xylanase A (Xyn A) GH10

Bacillus cellulolyticus endo b-1-4-glucanase A

(Cel A, Cel B, Cel C)

GH5 Lombard et al. (2014) (CAZy database,

http://www.cazy.org/)

Paenibacillus

mucilaginosus

b-glucosidase (BglPm) GH1 Lombard et al. (2014) (CAZy database,

http://www.cazy.org/)

b-glucosidase (Bglb) GH3

Xylanase A (Xyn A) GH52

b-glucosidase (BglC, BglA) GH1

Xylanase A (XynD, Xynb2) GH43

Bacillus licheniformis Cellulases (EglA, Cel A, CelB,

CelD)

GH9, GH48,

GH5, GH5

Lombard et al. (2014) (CAZy database,

http://www.cazy.org/)

Arabinofuranosidases AbfA GH51

b-glucosidase (BglC, BglS) GH1, GH16

Xylanase (Xynb2, XynC, XynD) GH43, GH30,

GH43
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Dyk and Pletschke 2012). Enzymes that degrade

hemicellulose can be divided into two groups; firstly,

a group of de-polymerizing enzymes which cleave the

backbone called core enzymes, and a second group

called as de-branching enzymes that remove sub-

stituents which may pose steric hindrances to de-

polymerizing enzymes and subsequently increase the

overall yield of reducing sugars during hydrolysis. This

second group of enzymes is also known as ancillary

and/or auxiliary enzymes. The core enzymes required

to degrade the hemicellulases include endo-b-1,4

xylanases (EC 3.2.1.8), xylan 1,4-b-xylosidases, (EC

3.2.1.37) endo-1,4-b mannanases (EC 3.2.1.78) and b-

1-4 mannosidases (EC 3.2.1.25). The ancillary en-

zymes include a-L-arabinofuranosidase (EC 3.2.1.55),

b-glucuronidase (EC 3.2.1.139), acetylxylan esterase

(EC 3.1.1.72), ferulic acid esterase (EC 3.1.1.73) and

p-coumaric acid esterase (EC 3.1.1-) (Lairson et al.

2008).

Role of CBMs

Hemicellulases are modular proteins and consists of

CBMs and dockerins, in addition to CDs. CBMs are

known to localize the soluble enzyme to its target

substrate. Most of the CBMs are composed of a b-jelly

roll structure of two b-sheets and one planar hy-

drophobic surface that helps in binding of crystalline

cellulose or a deep cleft that allows the binding of a

single polysaccharide molecule (Rabinovich et al.

2002).

Mechanism of enzyme action

Xylanases (EC 3.2.1.8) are the group of enzymes

responsible for the hydrolysis of b-1-4 bonds in the

backbone of xylan. The main enzymes involved in this

group are endo 1,4- b xylanases and b-xylosidases.

Most of the xylanases belong to GH family 10 and 11,

and are also distributed between families 5, 8 and 43

(Sapag et al. 2002). Xylanases belonging to the GH 10

family possess a cellulose binding domain and a CD

connected by a linker. Xylanases belonging to this

family have a (b/a)fold(TIM barrel), whereas GH

family 11 has low molecular weight enzymes which

have a b jelly roll structure (Paes et al. 2012). b-

xylosidases are grouped into five families—GH

families 3, 39, 43, 52 and 54, while most of the fungal

b-xylosidases belong to families 3 and 43 (Van den

Brink and De Vries 2011). b-mannanase hydrolyzes

the mannan based hemicellulose and liberates short b-

1-4 manno-oligomers which can be further hydrolyzed

to mannose by b-mannosidase. b-mannanase sequence

comparison studies permit assignment of these en-

zymes to either glycoside hydrolase family 5 or 26.

Most mannanases often display a modular organiza-

tion and usually consist of two-domain proteins. b-

mannanases in both families belong to the 3-D

structure group (b/a)eightfold catalytic module char-

acteristic of a clan A glycoside hydrolase (Stoll et al.

2000).

Several accessory enzymes are also required, such

as a-D-glucuronidase, which cleaves the a-1-2-gly-

cosidic bond of the 4-O-methyl-D-glucuronic acid side

chain of xylan. a-L-Arabinofuranosidases and arabi-

nases hydrolyze the arabinofuranosyl containing

hemicellulose and are distributed within GH families

3,43,51,54 and 62. Acetylxylan esterases hydrolyze

the O-acetyl groups from positions 2 and 3 on the b-

D xylopyranosyl residues of acetylxylan. Feruloyl

esterases hydrolyze the hydroxyl cinnamoyl ester

bonds at O2 or O5 of the arabinoside chain and

glucuronyl esterases hydrolyze the methyl esters

bonds at the O6 position of methylated glucuronic

acid (Van Dyk and Pletschke 2012).

Fungal and bacterial hemicellulases

Fungi produce a suite of hemi-cellulolytic enzymes

that can degrade hemicellulose into mono- or disac-

charides. The most studied fungal hemicellulases are

from A. niger, which include two endo-xylanases, one

b-xylosidase, one endomannanase, one b-mannosi-

dase, two a-galactosidases, one b-galactosidases, one

a-glucuronidases, one acetyl xylan esterases and two

feruloyl esterases(Van den Brink and De Vries 2011).

Similarly, aerobic fungi T. reesei are also known to

secrete various hemicellulases (Table 1) (Shallom and

Shoham 2003). Most of the fungal endo-xylanases

belonging to families 10 (formerly known as F) and 11

(formerly known as G) have been reported in

literature. Multiple b-xylosidases have been reported

in the filamentous fungi Asp. niger and Penicillium

wortmanii (Juturu and Wu, 2012). b-xylosidases from

Asp. niger and Asp. awamori are included in glycosyl

hydrolase families 3 and 54 and these enzymes follow

a double displacement mechanism with retention of

the anomeric center configuration. Similarly, b-

1122 Biotechnol Lett (2015) 37:1117–1129
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xylosidase of the filamentous fungi Cochliobacillus

carbonum follows the mechanism of inversion of the

anomeric center. The most mannanolytic group among

fungi belongs to genera Aspergillus, Agaricus, Tri-

choderma and Sclerotium (Dhawan and Kaur 2007).

With the exception of a few anaerobic fungi, most of

the fungal mannanases belong to the family 5 glycosyl

hydrolases. Among the fungal mannanases, the T.

reesei man1 gene was the first fungal mannanase gene

to be characterized (Stalbrand et al. 1995). Tang et al.

(2001) demonstrated that the CD of CEL4 from

Agaricus bisporus displayed the highest amino acid

sequence similarity with Ascomycete mannanase from

Asp. aculeatus and T. reesei (43 and 42 %, respec-

tively), which belong to glycosyl hydrolase family 5.

Bacterial hemicellulases have been reported from

both Gram positive and Gram negative strains. Most of

the bacterial xylanases are categorized under GH family

10 and GH family 11. Two endo-xylanases and one b-

xylosidase from T. maritima have been functionally

characterized (Zhengqiang et al. 2001). Multifunctional

xylanases with a feruloyl esterase module and an acetyl

xylan esterase module have been characterized from

Clostridium thermocellum (Prates et al. 2001) and C.

cellulovorans (Kosugi et al. 2002), respectively. A

multi-enzyme complex with xylanase, mannanase,

arabinofuranosidase and xylosidase activity was iden-

tified and characterized by Van Dyk et al. (2010). The

hemicellulolytic arsenal of Thermobacillus xylanilyti-

cus exhibiting xylanase, arabinofuranosidase, xylosi-

dase, feruloyl esterase and acetyl esterase activity was

revealed by Rakotoarivonina et al. (2012). Bacterial

mannanases have been annotated to both glycosyl

hydrolases families 5 and 26. Multifunctional enzymes

that contain CDs belonging to different GH families,

like Paenibacillus polymyxa cel44C-man26A, have

been detected. The GH44 domain possesses cellulase,

xylanase and lichenase activities, and the enzyme

domain GH 26 exhibits mannanase activity (Han et al.

2006). Multiple b-mannanases in Cellvibrio japonicus

have been classified in both families 5 and 26 (Hogg

et al. 2003). Besides this, b-mannanases from different

Bacillus spp are also found in both families (Hatada et al.

2005). Mannanases can be produced from various

bacterial sources such as Bacillus spp., Streptomyces

spp., Caldibacillus cellulovorans, Caldicellulosiruptor

Rt8b, and Caldocellum saccharolyticum (Zhang et al.

2006).

Synergy between fungal and bacterial

lignocellulolytic enzymes

Most of the current commercial lignocellulolytic

mixtures are based on fungal cellulases and hemi-

cellulases (Hu et al. 2011). The question arises as to

what more can be done to improve the fungal

enzymes or if there could there be a way to design

novel cocktails based on fungal and bacterial

glycosyl hydrolases. Studies have conducted a

parallel comparison of fungal and bacterial enzymes

but these could not provide any conclusive results

(Johnson et al. 1982; Irwin et al. 1993). It is well

known that fungi produce copious amounts of

cellulases (Sweeney and Xu 2012); cellobiohydro-

lases account for nearly 70 % (w/w) of secreted

proteins and enzymes in cellulolytic fungi, followed

by endoglucanases (*20 % w/w), while hemicellu-

lases account for only less than \1 % of total

weight of the secreted proteins (Sweeney and Xu

2012). Many studies have documented the presence

of bacterial strains (Mohanram et al. 2013) that

produce cellulases with high specific activities but

these have low titre values (Lynd et al. 2002). The

hemicellulolytic machinery of bacterial hemicellu-

lases has been well studied and reviewed (Maki

et al. 2009). The ability of bacterial strains to

inhabit extreme environmental conditions and in-

dustrial niches provides us with a unique gene pool

of cellulases and hemicellulases which (in combi-

nation with modern molecular tools for engineering

which impart improved properties) can be added to

existing commercial cellulase and hemicellulase

mixtures dominated by fungal enzymes. Only a

few studies have reported on exo/exo and exo/endo

synergy between fungal and bacterial enzymes

(Baker et al. 1998, 1995). Gao et al. (2010) reported

the use of a hybrid mixture of fungal cellulases and

bacterial hemicellulases, which effectively maxi-

mized the saccharification of AFEX-treated corn

stover, resulting in 95 % glucan and 65 % xylan

conversion at pH 4.5 and 50 �C. The synergistic

action of a diverse set of accessory hemicellulases

from different bacterial sources and core fungal

cellulases resulted in high glucose (80 %) and

xylose (70 %) yields with moderate enzyme load-

ings (*20 mg protein/g glucan) compared to com-

mercial enzymes (Gao et al. 2011).
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Models for improving synergy between fungal

and bacterial glycosyl hydrolases

The quest for optimizing new enzyme cocktails for

enhanced saccharification and fermentation of ligno-

cellulosic biomass has to continuously evolve and, due

to the structural complexity of raw substrates, different

types of pre-treatment strategies and the economic

constraints associated with commercialization, novel

strategies have to be implemented to supplement and

improve the existing commercial cellulase-hemicel-

lulase cocktails. In this review we briefly focus on

some models that could be used to exploit and

implement synergistic interactions between fungal

and bacterial enzymes (Fig. 1).

Designer cellulosomes

Cellulosomes are high molecular weight extracellular

complexes secreted by anaerobic microorganisms

consisting of scaffoldins and cellulosomal enzymes

that are capable of degrading plant cell walls (Doi and

Kosugi 2004). We have discussed cellulosomes in our

previous section and will therefore focus on designer

cellulosomes. The concept of designer cellulosomes

involves the preparation of chimeric scaffoldins with

specific dockerin-binding capacities by using cohesins

from various scaffoldins (Doi and Kosugi 2004). The

construction of divergent cohesins and matching

dockerin bearing enzymes enable specific recognition

and binding of cohesins and dockerins, allowing for

greater control over the spatial distribution and

rearrangement of the desired enzymes in designer

cellulosomes (Bayer et al. 2007). Fierobe et al. (2002,

2005) developed a comprehensive set of bi-functional

and tri-functional chimera cellulosomes using diver-

gent cohesin and dockerin tagged cellulases from C.

cellulolyticum and C. thermocellum. Arfia et al. (2014)

demonstrated the promotion of cellulose degradation

through the integration of bacterial lytic polysaccha-

ride monooxygenases into designer cellulosomes

bearing Thermomonospora fusca cellulases. The co-

hesion and dockerin moieties were derived from A.

cellulolyticus, C. thermocellum and B. cellulovens.

In the first study of its kind, Mingardon et al. (2007)

demonstrated the successful engineering of a non-
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Fig. 1 A synergistic model involving fugal and bacterial glycosyl hydrolases for enhanced saccharification and fermentation of

lignocellulosic biomass
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cellulosomal Neocallimastix patriciarum (fungi) cellu-

lase (Cel6A) using a bacterial dockerin and its subse-

quent incorporation into a mini-cellulosome with

bacterial family 9 endoglucanases from C. cellu-

lolyticum exhibiting enhanced activity on crystalline

cellulose. Based on this study, elaborate designer

cellulosomes containing family 6 and family 7 cel-

lobiohydrolases from T. reseei, family 9 endoglucanase

(CelF) from C. thermocellum, xylanase/acetyl xylan

esterase (Xyn A) from T. fusca and Man A from C.

thermocellum/C. cellulolyticum can be engineered us-

ing chimeric scaffoldin bearing specific cohesion-

dockerin modules. Cellulolytic enzymes from the

thermophilic fungi, Thermoascus aurantiacus and

Penicillium citrinum, cellulases and hemicellulases

from bacterial and archeal species across different

genera, such as Bacillus, Thermobacillus, Clostridium,

Fervidobacterium, Rhodothermus, Thermoplasma,

Thermotoga, Pyrococcus, Sulfolobus, Thermococcus

and Desulfurococcus, provide a vast pool of ex-

tremophilic cellulases and hemicellulases that can be

engineered into designer cellulosomes.

Improving the saccharolytic machinery

of cellulosomal bacteria

The cellulosomes of cellulolytic bacteria can be re-

designed to improve their efficiency for consolidated

bioprocessing (CBP). C. thermocellum with its

anaerobic nature and tolerance to high temperature

has been proposed as a suitable candidate for CBP.

The synergistic degradation achieved by the cellulo-

some of C. thermocellum (due to the presence of the

different enzymes) results in the formation of large

concentrations of the major soluble disaccharide end

product cellobiose.

Like other bacterial and fungal cellulase systems,

the multienzyme cellulosome system of Clostridium

thermocellum is strongly inhibited by the major end

product cellobiose. The inhibition of C. thermocellum

cellulosomal cellulases in the presence of cellobiose,

and the inhibition of cell growth and metabolism by

toxic end products such as lactic acid and acetic acid

could be solved by heterogeneous expression or re-

design of the cellulosome with b-glucosidases from

Aspergillus niger and gene knockouts of lactic and

acetic acid encoding genes, respectively (Maki et al.

2009). In a recent study, a chimeric cohesin-fused b-

glucosidase (BglA-CohII) was successfully merged to

an unoccupied dockerin on the scaffoldin subunit of

the Clostridium thermocellum cellulosome (Gefen

et al. 2012). The fusion of a cellulosome and BglA-

CohII resulted in an increased hydrolysis of micro-

crystalline cellulose and pre-treated switch grass

compared to the native cellulosome alone or in

combination with wild-type BglA in solution.

Similarly, chimeric cohesins fused with fungal

cellobiohydrolases like GH7 CBH-I and GH6 CBH-II

can be merged to an unoccupied dockerin on the

scaffoldin subunit. The opposing specificities render

GH7 and 6 with a high degree of synergistic action on

crystalline cellulose that could enhance the hydrolytic

efficiency of the C. thermocellum cellulosome. The

degradation of lignin is imperative for the commercial

success of biomass conversion, because it not only

reduces the cellulase/hemicellulase adsorption on

lignin, but also increases the accessibility of cellu-

lolytic enzymes for cellulose. White rot and brown rot

fungi secrete significant levels of oxidoreductase

enzymes, whose co-presence with hydrolytic enzymes

could move the bioconversion of lignocellulose

biomass to a new level. The incorporation of per-

oxidases and laccases on the unoccupied dockerin

modules could result in a highly versatile C. thermo-

cellum with the ability to produce ethanol from

different lignocellulosic substrates (Fig. 1).

Expression of cellulolytic ability in fermentative

microbes

The current cost of biomass conversion technologies

can be significantly reduced by the use of organisms

that hydrolyze the cellulose and hemicellulose in

biomass and produce a valuable product such as

ethanol at a high rate and titer. The engineering of non-

cellulolytic organisms with high product yields so that

they express a heterologous cellulase system able to

utilize cellulose is identified as a recombinant cellu-

lolytic strategy. A number of bacterial (E. coli,

Zymomonas abilis, Klebsiella oxytoca) and yeast

(Sacch. cerevisiae, Pichia pastoris, P. stipis) strains

have been employed for this purpose and have been

well reviewed (Elkins et al. 2010; La Grange et al.

2010). Our focus is on fungal and bacterial synergy

models. The cel5 E endoglucanase gene and bgl3A b-

glucosidase gene from C. thermocellum and Saccha-

romycopsis fibuligera, respectively, were expressed in

a Sacch. cerevisiae strain, resulting in higher
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endoglucanase activity with improved conversion of

PASC to ethanol (Jeon et al. 2009). Wen et al. (2010)

used the Sacch. cerevisiae a-agglutinin anchor to

tether the chimeric scaffoldin containing three C.

thermocellum cohesins, as well as the C. thermocellum

CBD to the yeast cell surface. C. thermocellum

dockerins were added to T. reesei Cel5A (EGII) and

Cel6A (CBHII) and a b-glucosidase from Asp. aculea-

tus. Proximity as well as enzyme–enzyme synergy was

observed between the fungal and bacterial enzymes.

The genomic sequence of P. stipitis shows numerous

lignocellulolytic genes, including xylanase, endo-1,4-

b-glucanase, exo-1, 3-b-glucosidase, b-mannosidase,

and a-glucosidase. The ability of P. stipitis was

enhanced by the addition of C. thermocellum endoglu-

canase-encoding gene celD (Piotek et al. 1998) and co-

expression of fungal xylanase and xylosidase-encod-

ing genes (Den Haan and Van Zyl 2003).

There are a number of strains such as E. coli, K.

oxytoca C. acetobutylicum, K. marxianus, H. poly-

morpha and many others with fermentative ability. C.

acetobutylicum has generated special interest as strains

belonging to C. acetobutylicum have been used for the

large scale production of acetone and butanol; it

expresses multi-complex structures on its surface but

lacks hydrolytic activity towards crystalline cellulose.

Glycoside hydrolases (GHs, Cel8A, Cel9B, Cel48S

and Cel9K) and a range of synthetic genes encod-

ing C. thermocellum cellulosomal scaffoldin proteins

(CipA variants), as well as synthetic cellulosomal

operons that direct the synthesis of Cel8A, Cel9B and a

truncated form of CipA, were integrated into the C.

acetobutylicum genome using recently developed Al-

lele-Coupled Exchange (ACE technology) (Kovacs

et al. 2013). The successful expression, secretion and

self-assembly of the heterologous cellulosome by C.

acetobutylicum provides a fantastic opportunity to

introduce CBH-I, CBH-II and b-glucosidase from T.

reesei and A. niger, thereby enhancing the cellulolytic

efficiency of this strain (Fig. 1).

Cross-linked enzyme aggregates

Cellulosomes have a distinct advantage over free

enzymes due to their close proximity, high proces-

sivity and enhanced synergy resulting from efficient

substrate channeling. However, they suffer from

certain limitations that arise because of the technical

challenges that accompany the successful engineering

of chimeric scaffoldins and/or fusion of new enzymes

into existing cellulosomes. The large size of cellulo-

somes may limit their movement on un-treated raw

substrates as they may not be able to access the

cellulose microfibrils due to the presence of lignin and

non-specific adsorption on lignin. Such inactivation

may have a greater impact on cellulosomes compared

to free enzymes, as their high molecular weight

implies that for equal loadings on mass basis, cellu-

losomes would be present in much lower molar

concentrations, resulting in substantial loss of activity.

Considering the fact that economic feasibility of the

process is imperative for commercialization of

biological conversion of biomass, a model approach

that includes the advantages of cellulosomes but

reduces their inadvertent disadvantages can be

achieved using free enzymes through the application

of cross-linked enzyme aggregates (CLEAs) (Fig. 1).

The preparation of combi-CLEAs involves the

physical aggregation of different combinations of

enzymes using precipitants followed by chemical

cross-linking (cross-linking agents) (Dalal et al. 2007;

Bhattacharya et al. 2013). Considering a model combi-

CLEAs preparation containing a thermo-stable and

processive GH 6 and 48 cellobiohydrolase from fungi

and bacteria, respectively—a thermostable endoglu-

canase and b-glucosidase from fungi along with highly

stable hemicellulase (xylanase–xylosidase, man-

nanase–mannosidase and de-branching enzymes)

cocktail from thermophilic bacterial strains, could

include all the desirable traits and allow the prepara-

tion of defined substrate based cocktails with high

economic viability. The process control and the

operation stability can be improved even further by

the use of magnetic-CLEAs (Talekar et al. 2013;

Bhattacharya and Pletschke 2014). Combi-CLEAs

therefore provide an excellent option of harnessing the

synergistic advantages of multi-enzyme complexes

and circumventing the technical and steric hindrances

associated with cellulosomes.

Future prospects

The effective de-polymerization of lignocellulosic

biomass holds the key towards a greener future. In

order to overcome the recalcitrance of the biomass,

novel approaches have to be pursued. Due to the

complexity of the substrates and the prevalence of

1126 Biotechnol Lett (2015) 37:1117–1129

123



different pre-treatment strategies, commercialization of

lignocellulolytic enzymes is possible if effective sugar

release is achieved under low protein loadings and with

very high fermentative yields. Therefore, equal impor-

tance has to be given towards the strategic improvement

of both saccharification and fermentation. Enzyme

cocktails prepared based on the synergistic interaction

of fungal and bacterial glycosyl hydrolases could

benefit from the huge gene pool of cellulases and

hemicellulases—not only on the basis of the enormous

diversity that this would offer but also in bringing

together the cutting edge research and development

strategies in each of these separate fields. Advances in

molecular techniques like directed evolution, site-

directed mutagenesis, rational designing, gene fusion,

DNA shuffling and other techniques have to be

extended for improving the properties of the free

enzymes. The application of multiple enzyme com-

plexes and designer cellulosomes in conjunction with

free enzymes has to be encouraged to create novel

substrate-based defined enzyme cocktails. Improving

the fermentative efficiency of cellulosomal strains and/

or expression, assembly and secretion of cellulosomes

in non-cellulolytic solventogenic strains will hold the

key towards the validation of a successful CBP

approach (Fig. 1). However, Nature may still hold the

key for delivering novel enzymes. Exploring new

habitats, genome analysis, data mining and proteomic

analysis of secretomes (fungal and bacterial) could

open the gates for novel enzymes and unravel the

mysteries of enzyme interaction and synergism. It is

important for us to understand that the best hydrolysis

of lignocellulose occurs under natural conditions and

that our aim should be to replicate those conditions

which will maximize our goal towards the economical-

ly feasible production of biofuels.
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