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Abstract Polyketides are a structurally and func-

tionally diverse family of bioactive natural products

that are used extensively as pharmaceuticals and

agrochemicals. In bacteria these molecules are bio-

synthesized by giant, multi-functional enzymatic

complexes, termed modular polyketide synthases

(PKSs), that function in assembly-line like fashion to

fuse and tailor simple carboxylic acid monomers into a

vast array of elaborate chemical scaffolds. Modifying

PKSs through targeted synthase re-engineering is a

promising approach for accessing functionally-opti-

mized polyketides. Due to their highly mosaic archi-

tectures the recently identified trans-AT family of

modular synthases appear inherently more amenable

to re-engineering than their well studied cis-AT

counterparts. Here, we review recent progress in the

re-engineering of trans-AT PKSs, summarize oppor-

tunities for harnessing the biosynthetic potential of

these systems, and highlight challenges that such re-

engineering approaches present.

Keywords Combinational biosynthesis �
Enzyme engineering � Natural products �
Polyketide synthase � Synthetic biology �
trans-Acting AT polyketide synthase

Introduction

Polyketides constitute an extraordinarily large and

diverse group of secondary metabolites that are

produced extensively by terrestrial and marine micro-

organisms and plants (Weissman 2009). Due to their

potent biological activities, these molecules have

found widespread application in human and veterinary

medicine and agriculture, and include the broad-

spectrum antibiotics, erythromycin and tetracycline,

the anticancer immunosuppressant, rapamycin, and

the cholesterol-lowering statins (Marinelli 2009). In

bacteria, complex polyketides are biosynthesized by

giant (up to *10 MDa) multi-component megaen-

zymes of the type 1 modular polyketide synthase

(PKS) class, in which the catalytic apparatus respon-

sible for product assembly is organized into discrete

multi-domain modules housed within large polypep-

tide chains (Fischbach and Walsh 2006). Biosynthesis

in these systems proceeds via the sequential addition

of coenzyme A (CoA)-derived extender units to an

initial starter template, with each module responsible

for the extension of the growing product chain by a

single acyl monomer (Keating and Walsh 1999).

Minimally, a PKS-extension module comprises an

acyltransferase (AT) domain for extender unit selec-

tion and loading, an acyl carrier protein (ACP) for

extender unit tethering via a covalent linkage, and a

ketosynthase (KS) domain, catalyzing the decarboxy-

lative Clasien condensation of the ACP tethered

extender unit with the acyl thioester of the product

M. Till � P. R. Race (&)

School of Biochemistry, Medical Sciences, University

of Bristol, Bristol BS8 1TD, UK

e-mail: paul.race@bristol.ac.uk

123

Biotechnol Lett (2014) 36:877–888

DOI 10.1007/s10529-013-1449-2



chain (Hertweck 2009). Frequently, the minimal AT–

ACP–KS module architecture is elaborated to include

additional functional domains that dictate the degree of

b-ketoacyl reduction, e.g. ketoreductases, dehydrata-

ses and enoyl reductases. Modular PKSs share many

functional similarities with mammalian fatty acid

synthases (FASs), though their ability to use a selection

of starter and extender units and to vary the oxidation

state of incorporated b-keto groups generates a signif-

icantly greater degree of chemical diversity.

Since their initial discovery in soil-dwelling acti-

nomycetes (Cortes et al. 1990), modular PKSs have

been the subject of considerable genetic and biochem-

ical investigation (Fischbach and Walsh 2006; Hert-

weck 2009; Weissman 2009). Of particular

significance has been the establishment of so-called

‘collinearity rules’, linking synthase nucleotide

sequence to polyketide structure (Minowa et al.

2007; Callahan et al. 2009), an advance that has

proved instrumental in the prediction, identification,

and manipulation of modular synthases. Recently,

however, detailed analysis of genome sequencing data

from more unusual bacterial taxa has resulted in the

identification of a novel family of modular PKSs whose

biosynthetic frameworks do not adhere to the estab-

lished collinearity rules of the paradigm actinomycete

modular synthases. These novel systems, termed trans-

AT PKSs, are comprised of biosynthetically disparate

enzymatic domains that function in concert within a

unified synthase scaffold (Piel 2010). The functional

disparities between canonical actinomycete cis-AT

type systems and trans-AT synthases appear to reside

in their differing evolutionary paths, with cis-AT PKS

evolution directed by module duplication and domain

diversification (Jenke-Kodama and Dittmann 2009)

and trans-AT PKS evolution guided by horizontal gene

transfer between bacteria (Nguyen et al. 2008). As

such, trans-AT synthases represent a new paradigm in

polyketide synthase enzymology.

The unique modular architecture of bacterial PKSs

makes these systems ideally suited for re-engineering,

an approach that has the potential to deliver non-

natural polyketides with improved or novel function-

ality. Biomolecular re-engineering of PKSs, termed

combinatorial biosynthesis, has been a major focus of

research activity for over two decades. There have

been notable successes in this area, for example

modifying the selection and incorporation of variant

starter or extender units during the biosynthetic

process (Crosby et al. 2012; Koryakina et al. 2013);

the successful excision, insertion, or substitution of

intact extension modules within or between synthases

(Rowe et al. 2001); and the manipulation of tailoring

enzymes that catalyze post-PKS site-specific transfor-

mations (Tang and McDaniel 2001). However, the

ideal of an interchangeable toolkit of synthase com-

ponents that can be rationally assembled and

exchanged to provide a desired chemical or stereo-

chemical output in a final pathway product remains

some way from realization. The highly mosaic archi-

tectures of trans-AT PKSs makes these systems

inherently more amenable to re-engineering than their

cis-AT counterparts. Recent fundamental studies of

trans-AT PKSs have begun to shed light on the

biosynthetic peculiarities of these systems and initial

attempts to reprogram their function have been

performed. Here we summarize these advances and

identify further opportunities for exploiting and

directing trans-AT PKS enzymology.

Substrate selection and acyl transfer in trans-AT

PKSs

The defining feature of trans-AT PKSs is the absence

of integrated cis-acting AT domains within each PKS

extension module. This essential substrate-loading

activity is instead provided in-trans through the action

of free-standing trans-acting ATs encoded within the

synthase gene cluster (Cheng et al. 2009). Trans-

acting ATs act as either stand-alone enzymes, or as

embedded functional domains within acylhydrolase

(AH) and/or enoyl reductase fusion proteins (Table 1).

In contrast to ATs from cis-AT PKSs, and despite

recent advances (Musiol et al. 2011; Wong et al.

2011), detailed knowledge of the structures and

mechanisms of trans-acting ATs remains limited.

However, valuable insights into these unusual

enzymes are beginning to emerge. Trans-ATs incor-

porate a range of extender units sourced from their

respective CoA thioesters. These include most com-

monly malonyl units, or more unusually acetyl,

methylmalonyl, ethylmalonyl, methoxymalonyl, hy-

droxymalonyl, aminomalonyl, or succinyl units (Men-

che et al. 2008; Liu et al. 2009b; Cheng et al. 2009;

Chan and Thomas 2010; Irschik et al. 2010; Mattheus

et al. 2010b; Musiol et al. 2013). Amino acid motifs,

identified as being key in dictating substrate selectivity
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in cis-acting ATs can be readily identified in trans-

acting enzymes thereby allowing substrate selectivity

to be reliably predicated using bioinformatic tools.

There is a considerable body of published work

validating the importance of these motifs in cis-acting

ATs, including high-resolution structural information,

which has permitted the assignment of specific roles to

individual amino acids within these regions (Khosla

2009). These observations have proven instrumental

in re-engineering AT substrate selectivity. Structural

studies of trans-acting ATs have demonstrated that

these enzymes retain the distinctive 2 sub-domain a/b
hydrolase-ferridoxin-like fold of cis-acting homo-

logues and that there are determinants of substrate

specificity that are common to both families of

enzymes (Wong et al. 2011). As such, many of the

molecular tools developed for the characterization and

manipulation of cis-acting ATs would appear to be

broadly applicable to trans-acting enzymes. The

feasibility of altering substrate selectivity through

target mutagenesis of cis-acting ATs has been ele-

gantly demonstrated. Examples include altering

extender unit selection by the AT domain of module

4 (AT4) of the 6-deoxyerythronolide B synthase

(DEBS) from methylmalonyl-CoA to malonyl-CoA,

which resulted in the production of 6-desmethyl-6-

deoxyerythronolide B by the intact synthase (Reeves

et al. 2001). Saturation mutagenesis of AT6 of DEBS

resulted in the identification of three point mutants

with enhanced selectivity for malonyl-CoA over the

natural substrate methylmalonyl-CoA. This yielded a

modified PKS capable of producing 2-des-

methylerythromyin (Sundermann et al. 2013). Data

from this study ultimately allowed the design of a

variant AT capable of loading an entirely non-natural

building block (2-propargylmalonyl) that was readily

incorporated into the PKS product yielding 2-propar-

gylerythromycin A. These studies not only illustrate

the tractability of modifying AT selectivity through

targeted mutagenesis but also demonstrate the down-

stream tolerance of modular PKSs to accept modified

or non-natural extender units.

To date there have been no published examples of

trans-acting ATs with rationally-altered substrate

specificities. Given the robust framework established

for the re-engineering of cis-acting ATs and the

structural and functional similarities between these

two families of enzymes, one can be confident that

examples of such work will soon emerge. Certainly for

detailed in vitro analysis, trans-ATs appear to be more

attractive targets than cis-acting equivalents. They are

well-folded, frequently free-standing monomeric

enzymes of *30 kDa in size, and would be consid-

ered optimally suited for recombinant expression,

purification and subsequent characterization.

The ability of trans-acting ATs to acylate multiple

ACPs within a single PKS presents intriguing oppor-

tunities for exploitation. It is conceivable that by

modifying substrate selectivity in a single trans-acting

AT one could direct extender unit usage within an

entire PKS. Further, if substrate promiscuous ATs

were employed, capable of selecting and loading a

range of acyl substrates, libraries of derivative poly-

ketides could be rapidly assembled in situ, and

subsequently isolated and characterized. There are

documented examples of substrate promiscuous cis-

acting ATs with ‘‘relaxed’’ acyl-CoA specificities

(Wilson and Moore 2012). PKSs which utilize these

transferases are able to biosynthesize multiple variant

polyketides in a manner dependent on substrate

availability (Mo et al. 2011). This inherent promiscu-

ity has already been exploited to bio-engineer non-

natural polyketides (Eustáquio and Moore 2008; Mo

et al. 2011) and may well be reproducible in trans-

acting enzymes through targeted mutagenesis.

There are still significant gaps in our fundamental

understanding of trans-AT function, most tellingly in

how these free-standing enzymes are recruited and

orientated at individual extension modules. Clarifying

these ambiguities will be key to fully exploiting the

potential of trans-acting ATs. For example, it is still

unknown if trans-ATs form stable complexes with

PKS extension modules, or if their associations are

transient. The specific determinants of AT binding at

these sites are currently unknown. Bioinformatic

analyses have revealed the presence of remnant

fragments of AT domains within trans-AT PKS

extension modules (Musiol and Weber 2012). These

regions of sequence have been termed AT docking

domains (ATDs), though there is currently no exper-

imental evidence supporting a role for ATDs in

binding and/or positioning ATs during biosynthesis.

Were the details of AT recruitment and binding

known, it may be possible to exploit acyltransferase/

extension module interactions by directing trans-

acting ATs with defined substrate selectivities to

specific synthase modules, though the ability of trans-

acting ATs to load acyl substrates onto non-cognate
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ACPs has yet to be investigated. If trans-acting ATs

are capable of loading non-cognate ACPs in heterol-

ogous PKSs this could be exploited to produce ‘plug-

and-play’ ATs, freely transferable between systems

and hosts. It should be noted that binding interactions

between ATs and foreign module components may be

impaired due to incompatible protein–protein interac-

tion interfaces. This would likely result in a significant

reduction in ACP loading efficiency. Structural and

function characterisation of the molecular determi-

nants of these interactions will be crucial for eluci-

dating the specific details of trans-AT/extension

module complex assembly.

b-Branching in trans-AT PKSs

As a consequence of the biosynthetic logic employed

by modular PKS, it is often convenient to consider

polyketide chains as being comprised of an alternating

pattern of carbon atoms occupying either a-or b-

positions (Calderone 2008). Alkyl branches at a-

carbons are frequently observed in polyketides, and

are produced through the action of methyltransferase

domains utilizing the substrate S-adenosylmethionine

(Keatinge-Clay 2012). Branches at b-carbon positions

are significantly less frequently observed, due largely

to the fact that the electrophilic nature of these atoms

requires the action of a nucleophilic alkyl source to

permit branch formation. Polyketides produced by

trans-AT synthases are unusually rich in b-branches,

and employ one of two distinct strategies to introduce

these substituents (Fig. 1).

The first of these relies on the action of a five

protein - (four enzymes, one ACP) hydroxymethyl-

glutaryl-ACP synthase (HCS) cassette, which cata-

lyzes branch formation in a manor analogous to that

observed in mevalonate biosynthesis (Calderone

1.    Bacillaene (Calderone et al. 2006) PksC PksF AcpK PksG PksH PksI PksL di-ACP
2.    Bongkrekic acid (Moebius et al. 2012)   BonJ/K BonF    - BonG HonH BonI BonD tri-ACP 
3.    Bryostatin   (Buchholz et al. 2010)   BryP BryQ    - BryR -    -          - 
4.    Corallopyronin (Erol et al. 2010)   CorA CorD CorC CorE CorF CorG CorK di-ACP 
5.    Difficidin (Tang et al. 2007)  DifA - DifC DifN - DifO DifL di-ACP 
6.    Elansolids (Teta et al. 2010)   ElsA/B ElsE ElsD ElsK ElsL ElsM ElsJ di-ACP 
7.    Kalamanticin (Mattheus et al. 2010b)   BatJ/H BatB BatA BatC BatD BatE Bat2 tri-ACP 
8.    Leinamycin (Tang et al. 2004)   LnmG - LnmL LnmM LnmF    - LnmJ di-ACP 
9.    Myxovirescin (Simunovic and Müller 2007)   TaV TaK TaB/TaE TaC/TaF TaX TaY          - 
10.  Mupirocin (El-sayed et al. 2003)  Mmplll MupG Macp15 MupH MupJ MupK MmpI di-ACP 
11.  Oocydin A (Matilla et al. 2012)   OocV/W OocF OocG OocE OocD OocD OocL di-ACP 
12.  Pederin (Piel et al. 2004)   PedD PedM PedN PedP PedL PedI PedI di-ACP 
13.  Spliceostatin A (Zhang et al. 2011)   Fr9O Fr9N Fr9M Fr9K Fr9L    - Fr9H tri-ACP 
14.  Thailandamide (Nguyen et al. 2008)   BTHII1675 1671 1672 1670 1669 1668 1673 di-ACP 
15.  Thiomarinol (Fukuda et al. 2011)   TmpC TmlG TacpC TmlH TmlJ TmlE TmpA tri-ACP 
16.  Virginiamycin M (Pulsawat et al. 2007)   VirI VirB - VirC VirD VirE VirA di-ACP 

ACPAT KS HCS ECH1 ECH2ACP

(b)(a)

(c)

Fig. 1 Mechanisms of trans-AT PKS catalyzed b-branch

formation. (a) General mechanism of HCS cassette dependent

b-branching. (b) Mechanism of b-chain extension as typified by

the rhizoxin PKS. (c) Identities of HCS cassette enzymes and

associated ACPs from selected trans-AT PKSs. Dashes denote

pathway components whose identities are yet to be unambig-

uously established. Abbreviations: ACP acyl carrier protein, AT

acyltransferase, B branching domain, ECH enoyl hydratase/

crotonase, HCS hydroxymethylglutaryl ACP synthase, KS

ketosynthase
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2008; Miziorko 2011). HCS cassette enzymes func-

tion in trans-assembling branches at designated posi-

tions within the growing product chain. Branch

formation generally occurs upon distinctive ACP–

ACP di-domains, readily identifiable in PKS nucleo-

tide sequences. However, branch formation in some

systems has been observed to occur upon tri-domain

ACPs (Mattheus et al. 2010a; Fukuda et al. 2011;

Moebius et al. 2012).

Amino acid signatures present in ACPs upon which

branch formation occurs have been identified (Haines

et al. 2013). These appear to direct HCS-cassette

enzyme recruitment and binding, affording a level of

positional control over branch placement. One attrac-

tive hypothesis is that ACPs upon which branches are

assembled may be relocated to alternative modules

within their PKS of origin, or along with their partner

HCS-cassette proteins into heterologous systems, to

permit targeted branch formation at designated sites

within the polyketide chain. Given that alkyl branches

are further addressable by synthetic or biosynthetic

methods, these new chemical handles could act as

precursors for the introduction of a range of functional

groups. Such modifications have been observed pre-

viously in PKSs, resulting for example in the forma-

tion of cyclopropane or vinyl chloride substituents

(Edwards et al. 2004; Gu et al. 2009). When reposi-

tioning branching ACPs within or between systems the

down-stream processivity of any branched products

must be considered. Ketosynthase domains that cata-

lyze chain extension of branched products possess

distinctive active site architectures that permit

b-branches to be accommodated (Jenner et al. 2013).

It is recommended that if relocation of branching

ACPs is attempted ACP-KS domain fusions be used in

preference to isolated ACPs.

A second recently identified strategy for b-branch-

ing in trans-AT PKSs relies on the action of a unique

branching (B) domain containing extension module,

which catalyzes branch formation via a Michael-type

acetyl addition (Bretschneider et al. 2013). This

distinctive b-chain extension chemistry further diver-

sifies the palette of trans-AT PKS enzymology and

presents intriguing opportunities for synthase re-

engineering. Unlike HCS-cassette-dependent branch-

ing the functional components required for branch

formation and polyketide chain extension are housed

within a single synthase module. It is conceivable

therefore that this intact unit could be relocated within

or between PKSs to facilitate branch incorporation. In

instances where the introduction of a single b-branch

in a polyketide product is required this may be a more

attractive strategy than using a HCS cassette based

approach. In contrast, where the insertion of multiple

branches at different positions within a product is

needed, exploiting HCS cassette branching offers

considerable benefits, as branch formation at multiple

sites can be directed from a single pool of trans-acting

enzymes. The success of either approach will be

highly dependent on the correct placement of relo-

cated domains or modules at selected sites within the

target synthase. The authors suggest that where

possible high resolution structural information be

used to guide the placement process. This will ensure

that inter-domain linkers and protein–protein interac-

tion interfaces can be clearly defined and if necessary

optimized.

Hybrid trans-AT synthases

Polyketide synthases are not the only example of

modular assembly-line like megaenzymes. The

sequential chain extension chemistry employed in

PKSs is also seen in non-ribosomal peptide syntheta-

ses (NRPSs) that synthesize polymeric peptidic nat-

ural products. There are numerous enzymological

features common to both PKSs and NRPSs. In

addition to sharing a modular architecture, both use

carrier proteins as sites of attachment for extender unit

substrates and the growing product chain, with pep-

tidyl carrier proteins (PCPs) performing this role in

NRPSs. Both rely on the action of phosphopantethei-

nyl transferases to post-translationally modify carrier

proteins permitting extender unit and product chain

attachment. NRPS modules house an adenylation

domain (A), akin to a PKS AT, which selects and

loads proteinogenic or non-proteinogenic amino acids

onto neighboring PCPs. Chain extension is catalyzed

by condensation domains (C) that fuse aligned pep-

tidyl and amino acyl thioesters, reminiscent of KS

domains in PKS modules. Given these striking sim-

ilarities, it is unsurprising that hybrid synthases

composed of PKS and NRPS components have been

identified. Trans-AT PKSs, with their highly mosaic

architectures, are frequently found to house NRPS

modules and many of the trans-AT synthases charac-

terized to date contain these components. By marrying
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polyketide and peptide chemistries, hybrid systems

posses the capacity to assemble products of diverse

chemical structure and biological function (Fig. 2).

For this reason they represent highly attractive targets

for re-engineering.

A powerful approach for re-engineering NRPS

modules in hybrid systems is through the manipulation

of A domain specificity, such that non-native amino

acids may be incorporated into product scaffolds. This

may be achieved by domain substitution or targeted

mutagenesis (Evans et al. 2011; Thirlway et al. 2012).

The former approach has been used successfully,

though is often associated with decreased product

yield, a likely consequence of domain interface

incompatibility (Fischbach et al. 2007; Williams

2013). The latter has been made tractable by the

establishment of an A domain ‘code’ permitting the

prediction of substrate specificity and is based on

inspection of A domain, amino acid sequence (Mar-

ahiel et al. 1999; Challis et al. 2000). Through the

substitution of key active site residues A domain

substrate selectivity can be rationally altered to

facilitate the incorporation of a range of amino acids

(Fischbach et al. 2007). In addition, NRPS A domains

with promiscuous substrate selectivities have been

identified. Harnessing the potential of these domains

could result in the production of libraries of derivative

compounds from a single synthase, expanding yet

further the biosynthetic potential of hybrid systems.

Convergent pathways marrying trans-AT PKSs and

NRPSs have also been observed, typified by the

thiomarinol synthase. In this system, pseudomonic

acids similar to the trans-AT PKS polyketide mup-

irocin, itself a trans-AT PKS/fatty acid hybrid, are

fused to a holomycin like pyrrothine moiety (Fukuda

et al. 2011). The enzyme, TmlU, encoded within the

thiomarinol gene cluster has been proposed to join the

two components in a manner reminiscent of that

observed for SimL and NovL in the simocylinone and

novobiocin pathways respectively (Steffensky et al.

2000; Luft et al. 2005). Such amide ligase activity

appears highly exploitable, and could be used to fuse

1

2

3 4

5

6

8

7

Fig. 2 Examples of natural products biosynthesized by hybrid

trans-AT PKSs. (1) bacillaene, trans-AT PKS/NRPS; (2)

kirromycin, cis/trans-AT PKS/NRPS; (3) enacyloxin IIa, cis/

trans-AT PKS/NRPS; (4) lankacidin C, trans-AT PKS/NRPS;

(5) mupirocin, trans-AT PKS/FAS; (6) virginiamycin M, trans-

AT PKS/NRPS; (7) myxovirescin A, trans-AT PKS/NRPS; (8)

thiomarinol A, trans-AT PKS/FAS/NRPS
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polyketide and peptide fragments without the need to

relocate or mutagenize NRPS domains within syn-

thases. This would minimize associated deleterious

effects. The tolerance of these enzymes to acyl and

peptide substrates is yet to be comprehensively

assessed, though if limited could be expanded by

rational active site redesign.

Despite their different evolutionary origins, both

cis-AT and trans-AT PKSs employ the same biosyn-

thetic logic to assemble polyketide products. There

appears, therefore, no obvious impediment to cis-AT

and trans-AT extension modules coexisting within a

single synthase. It is perhaps surprising, therefore, that

it is only recently that such hybrid cis-AT/trans-AT

PKSs have been identified. To date five such systems

have been reported of which two, the kirromycin and

enacyloxin PKSs, have been subjected to detailed

characterization (Weber et al. 2008; Mahenthiralin-

gam et al. 2011; Behnken and Hertweck 2012).

Both the kirromycin and enacyloxin gene clusters

contain ORFs encoding cis-AT and trans-AT PKS

modules and though based on gene cluster analysis, the

two module types are not co-located within a single

polypeptide chain but are housed separately as embed-

ded components within different proteins. Both sys-

tems contain cis- and trans-ATs with predicted

specificity for malonyl-CoA highlighting degeneracy

in substrate usage and suggesting that these systems are

likely to of arisen through the convergence of cis-AT

and trans-AT PKSs. These natural systems illustrate

the capacity of cis- and trans-AT components to be

accommodated together, further expanding the poten-

tial for diversifying product chemistry through the re-

engineering of trans-AT systems, specifically through

the incorporation of cis-AT elements. Many of the

tools developed for re-engineering cis-AT PKSs would

consequently be directly applicable to the manipula-

tion of cis/trans-AT hybrids. As more sequence data

emerges from genome mining studies we predict that

cis/trans-AT systems will become an increasingly

common sight, and as a consequence new biosynthetic

capability and routes to pathway re-engineering will

emerge.

Conclusion

The speed and reliability of modern genome sequenc-

ing along with the increasing volume of detailed

structural and functional data that is now available is

providing biomolecular engineers with a strong plat-

form for manipulating modular PKS function. Trans-

AT PKS re-engineering shows considerable promise,

with these systems exhibiting a novelty and diversity

of function far in excess of cis-AT equivalents.

Significant further fundamental insight into trans-AT

synthases will be required before these systems can be

rationally and reproducibly reengineered, although

examples of this work are beginning to emerge and

there is evidence to suggest that at least a subset of the

molecular, genetic and analytical tools developed for

manipulating cis-AT PKSs will be broadly applicable

to trans-AT systems. As an increasing number of

trans-AT PKSs and hybrids thereof are identified and

characterised, so to increases the scope and potential

for synthase re-engineering. Undoubtedly the result-

ing marriage of pathway discovery and combinatorial

biosynthesis, expedited by modern synthetic biology

methods, will provide access to an unprecedented

diversity of new natural products of clinical and

agrochemical significance.
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