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Abstract Elementary modes (EMs) are steady-state

metabolic flux vectors with minimal set of active

reactions. Each EM corresponds to a metabolic path

way. Therefore, studying EMs is helpful for analyzing

the production of biotechnologically important metab-

olites. However, memory requirements for comput-

ing EMs may hamper their applicability as, in most

genome-scale metabolic models, no EM can be com

puted due to running out of memory. In this study, we

present a method for computing randomly sampled

EMs. In this approach, a network reduction algorithm

is used for EM computation, which is based on flux

balance-based methods. We show that this approach

can be used to recover the EMs in the medium- and

genome-scale metabolic network models, while the

EMs are sampled in an unbiased way. The applicabil-

ity of such results is shown by computing ‘‘estimated’’

control-effective flux values in Escherichia coli met-

abolic network.
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Introduction

Genome-scale metabolic models are now widely

used in biotechnology and bioengineering (Zomorrodi

et al. 2012). Constraint-based analysis of these models

provide a mathematical framework for understand-

ing biotransformations in metabolism and possibly

rational design of strains (Lewis et al. 2012; Price et al.

2003).

Elementary flux modes (EMs) are defined as the

minimal sets of reactions in a metabolic network that

can be active in steady-state conditions (Schuster et al.

2000). Therefore, each EM can be interpreted as a

metabolic ‘‘pathway’’. EMs are applicable to various

fields of metabolic network studies, e.g., analysis of

the capabilities of cellular metabolism (Çakir et al.

2007; Schilling and Palsson 2000; Schuster et al. 1999;

Stelling et al. 2002), determination of minimal

medium requirements (Schilling and Palsson 2000),

measuring the flexibility of metabolic networks (Çakir

et al. 2007; Papin et al. 2002), identification of

pathways with optimal yield (Hädicke and Klamt

2010; Trinh et al. 2008) and determination the

importance of a specific reaction (Wlaschin et al.

2006).
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Current approaches for calculating EMs generally

use an algorithm called the double description method

(Fukuda and Prodon 1996; Gagneur and Klamt 2004).

In the double description method, a set of linear

constraints are given as the input. In case of metabolic

networks, these constraints are the stoichiometric and

the reversibility constraints (Marashi 2011). The linear

constraints, in general, characterize a polytope in

space. The output of the algorithm is the set of extreme

rays of the polytope. For metabolic networks, the set of

computed extreme rays is equivalent to the set of

elementary modes.

Despite recent developments in EM calculation

(Terzer and Stelling 2008), these methods are unable

to calculate EMs in genome-scale metabolic networks

(due to running out of memory). This shortcoming is a

consequence of the combinatorial explosion during

the enumeration of the full set of EMs in a genome-

scale network. Many efforts have been made to

overcome this issue including enumerating EMs with

a specific objective or constraint (de Figueiredo et al.

2009), enumerating all achievable pathways through

chosen reactions that satisfy the steady-state flux of the

whole network (Kaleta et al. 2009), breaking the

network down in modules (Schuster et al. 2002;

Schwartz et al. 2007) and enumerating the extreme

rays of the projected flux cone onto a lower-dimen-

sional subspace (Marashi et al. 2012). A method for

randomly computing a subset of the EMs has been

reported (Machado et al. 2012).

In spite of the mentioned endeavors, enumeration of

the full set of the EMs in genome-scale networks remains

unsolved. In this study, we introduce a novel random

sampling approach to calculate EMs that is comparable

to the core reductive algorithm (Pál et al. 2006; Yizhak

et al. 2011). Briefly, in order to compute a random

elementary mode, including a certain objective reaction,

in each iteration we delete a subset of reactions and then,

using flux balance analysis (FBA), we check if the

objective reaction can carry a non-zero flux in steady-

state conditions. This step is repeated until no further

reaction can be deleted. The remaining set of reactions

represents a flux distribution with a minimal number of

non-zero elements and, therefore, it characterizes an

elementary mode. We also applied flux coupling analysis

(FCA) to remove reactions rationally. The ultimate goal

of this study is to present a random sampling of EMs in

genome-scale networks (where most of the current

methods are unable of computing EMs).

Methods

Metabolic network models and computing EMs

As a medium-scale metabolic network, we used a

simplified core metabolic network model of Esche-

richia coli, which includes 60 (unblocked) reactions

and 56 metabolites. The SBML file of this model is

presented in Supplementary Data 1. In order to test the

validity of our results for larger models, we used the

genome-scale metabolic network of E. coli which

includes 1,075 reactions and 761 metabolites (Reed

et al. 2003). Where applicable, ‘‘efmtool’’ software

was used to compute the full set of EMs in metabolic

networks (Terzer and Stelling 2008).

Reductive algorithm for computing EMs

We developed an algorithm for computing EMs based

on computing minimal sets of reactions, possibly

including an objective reaction, which can be active in

steady-state conditions. Our algorithm consists of

three main parts:

(1) Preprocessing, including removing blocked reac-

tions and merging fully coupled reactions;

(2) Randomly deleting k reactions; and

(3) Examining the effect of the previous deletion on

the network by FBA. If flux through the objective

reaction drops to zero, the deleted group of

reactions will be restored to the network;

otherwise the deletion is accepted.

Steps 2 and 3 are iterated until no further reaction

can be deleted. (It should be noted that if no fixed

objective reaction is given in the input, then one

reaction is chosen randomly as the objective reaction.)

In the constraint-based modeling of metabolic

networks (Marashi 2011), it is often assumed that the

network functions in steady-state conditions.

In the first step, i.e. the preprocessing step, we

applied linear programming (LP) to detect reactions

carrying no flux in steady-state, i.e. the blocked

reactions (Burgard et al. 2004). Additionally, meta-

bolic networks often include reactions which always

have a fixed flux ratio, these are called fully-coupled

reactions (Burgard et al. 2004; Larhlimi et al. 2012).

We also merge each set of fully-coupled reactions into

one ‘‘cumulative reaction’’. For this purpose, we apply

the function ‘‘removeTrivialFC’’ of the F2C2 tool
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(Larhlimi et al. 2012). The preprocessing step helps to

reduce the problem size, and consequently, lessens the

calculation time.

In the second step, we remove reactions by a k-

elimination scheme. Overall, the multiple deletion

strategy gives us the advantage to solve fewer LPs.

The number of reactions to be deleted in each iteration

can be estimated by finding the largest integer number

k, such that:

1� m=að Þk [ 0:5 ð1Þ

where k is the number of reactions to be deleted in each

iteration, m is the mean length of EMs and a is the total

number of reactions that are currently present in the

network.

Inequality (1) sets the deletion acceptance proba-

bility of a group of k reactions, greater than the

probability of their rejection in third step. Applying

inequality (1) after each deletion updates the value of

k during gradual decrease in total number of reactions.

In practice, we remove k ? n reactions in each

iteration, where n C 0 is kept fixed during the

algorithm. This scheme will be referred to as the

(k ? n)-elimination scheme. Therefore, k-elimination

scheme is a special case of (k ? n)-elimination

scheme, where n = 0. In order to choose the best

value, we ran the program several times and tested

different values of n.

The set of reactions to be deleted can be chosen

rationally. We utilize FCA for this purpose. F2C2 tool

(Larhlimi et al. 2012) is applied to determine flux

coupling relations between reactions. As an example,

suppose that Fig. 1 represents the flux coupling graph

of some metabolic network (Burgard et al. 2004). In

this graph, there is an arrow from reaction i to reaction

j if zero flux through i results in zero flux through j, i.e.,

reactions j and i are directionally coupled (Larhlimi

and Bockmayr 2006). Reactions at the top of this

graph have deletion priority over other reactions. Once

one reaction is removed, all its descendant reactions

become blocked. Therefore, in order to reduce the

running time of the algorithm, only other reactions

should be checked for removal. For example, in Fig. 1,

once we remove reaction 2, in the next step we may

remove one of the reactions 1, 3, 6 and 7.

For the third step of the algorithm, FBA in the

COBRA toolbox v 2.0.3 (Schellenberger et al. 2011)

was used to calculate the maximum flux through a

(random) objective reaction. If by deletion of k reac-

tions in the previous step our objective reaction

becomes inactive, then those k reactions are restored

to the network, in order to perform the deletion and

flux checking for each of the k reactions. Otherwise,

the deletion is accepted. All the computations are

performed on a 64-bit Windows system with Intel

Core i7 2.00 GHz processor.

Control effective flux (CEF) calculations

We used Stelling’s algorithm to calculate CEFs (Stelling

et al. 2002). ATP synthesis (by ATP synthase) and bio

mass production reaction were used as our objective

reactions.

Results

Randomly sampled EMs

In the first step, we applied our algorithm to the

simplified E. coli core model. In this network,

‘‘efmtool’’ (Terzer and Stelling 2008) finds 1,164
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Fig. 1 a Flux coupling graph of an imaginary metabolic

network. Each reaction is shown as a node of this graph. An

arrow from reaction i to reaction j means that zero flux through

i results in zero flux through j. b For rational deletion of

reactions from the network, flux coupling graph is used. For

example, suppose that reactions 2 is deleted in the first step;

c Then, in the flux coupling graph, all reactions below a deleted

reaction will be deleted automatically. In this example, since

reaction 2 is deleted in the previous step, reactions 4, 5, 8, 9, 10

and 11 will be blocked. Therefore, the next reaction to be deleted

should be chosen only from the remaining set of reactions, i.e.,

1, 3, 6 and 7
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EMs. We used our algorithm to compute EMs in this

network. The number of unique EMs as a function of

computation time is shown in Fig. 2.

More than half of the EMs are found in the first

2.5 h of running the program, while 750 EMs (i.e.,

about two-third of all EMs) can be computed in *9 h

30 min. In this figure, as we go further in time, the EM

finding rate slows down. Since our algorithm ran-

domly finds an EM in each iteration, it is expected that

at the beginning only unique EMs are detected, while

the probability of computing a previously-found EM

increases in the next iterations.

To examine whether the set of sampled EMs is an

unbiased representative of the full set of EMs, we

compared the lengths of the 750 calculated EMs with

the length distribution of the full set. Figure 3 demon-

strates that the two distributions are qualitatively

similar, showing the same bimodal distributions.

‘‘Estimated’’ CEF values

One of the important applications of EMs is in the

calculation of CEFs. The CEF value of a reaction is a

measure of its efficiency in the metabolic network

(Stelling et al. 2002). The CEF concept has been

previously applied in biotechnology and bioengineering

studies (Çakir et al. 2004, 2007; Zhang et al. 2010).

Therefore, we decided to compare ‘‘actual’’ and ‘‘esti-

mated’’ CEFs to examine the relevance of our results.

Figure 4 shows the difference between actual and

estimated CEF values. One can observe that the

difference values are generally very close to zero, which

is reflected in the sharp peak in the center of the

histogram (slightly greater than zero). The average was

not found to be significantly different from zero

(p value = 0.74; one-sample t test). The CEF values of

57 out of 60 reactions lie between -0.088 and ?0.112.

Hence, we suggest that estimated CEF can be considered

as a good approximation of actual CEF.

Computing EMs in genome-scale metabolic

network of E. coli

We applied our algorithm to sample EMs of the E. coli

genome-scale metabolic network (iJR904) consisting of

1,075 reactions. At the beginning we removed blocked

reactions, and additionally, the fully coupled reactions

were merged. The resulting network included 582

reactions.

Instead of solving 582 LPs to compute each EM, we

used the k-elimination scheme, resulting in an average

of 265 LPs for computing each EM (which takes

*9.8 s on average). We also tested the (k ? n)-

elimination scheme, for fixed n values ranging from 0

to 4. The results are presented in Fig. 5. The optimal

value of n was empirically found to be 3, which results

in *207 LPs to be solved for finding each EM, which

takes *8 s on average.

We used FCA to show the effect of rational reaction

elimination on calculation time of our algorithm. As

illustrated in Fig. 5, utilizing FCA significantly reduces
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Fig. 2 Number of unique EMs found by our algorithm during

time

Fig. 3 Distribution of EM lengths. The full set of EMs (dark

gray) and a set of 726 sampled EMs computed by our algorithm

(light gray) are shown
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the number of LPs to be solved. In the (k ? n)-

elimination scheme, the minimum number of LPs

required for computing each EM occurs in n = 3,

where only 168 LPs should be solved on average to find

an EM. With these conditions, each EM can be

computed in *6.7 s. This is equivalent to 31 %

decrease in computation time of each EM (compared

to the case of k-elimination scheme without applying

rational elimination).

Discussion

Each EM is a minimal set of reactions which can work

together in steady-state conditions. In the present paper,

in order to compute EMs we utilized a method inspired

by the natural reductive evolution of metabolic net-

works. This approach is different from the previously

reported method for random EM computation (Mach-

ado et al. 2012), which is based on double-description

method. Moreover, we used flux coupling relations for

rational selection of reactions to be deleted, which

resulted in the speed up of EM computation procedure.

The most important benefit of our algorithm over

current EM finding algorithms is the ability to calculate

(at least a subset of) EMs in genome-scale metabolic

networks. This can be considered as a great advantage,

because current EM-finding algorithms cannot compute

any EM in genome-scale metabolic models due to

running out of memory (Marashi et al. 2012). Moreover,

our algorithm can be run easily in parallel, due to its

random sampling basis. Therefore, computers can inde-

pendently compute EMs, which can be checked for

redundancies afterwards.

Comparing the lengths of calculated EMs with the

length distribution of full set of EMs indicates that

sampling EMs is performed in an unbiased way, which

can be seen as an improvement to the previous approaches

for random sampling of EMs (Machado et al. 2012),

which is noticeably biased towards computing short EMs.

The unbiased sampling in our algorithm is the prerequisite

for applicability of sampled EMs. We show that for certain

applications, e.g. for computing CEFs, only a subset of

(well-sampled) EMs may produce acceptable results.

One drawback of our current approach is that our

implementation is slower than other software based on

double-description method. Therefore, we believe that

this strategy is still open for further optimizations.
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