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Abstract A novel hydroxyapatite/regenerated silk

fibroin scaffold was prepared and investigated for its

potential to enhance both osteoinductivity and osteo-

conductivity of bone marrow-derived mesenchymal

stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w)

hydroxyapatite was deposited onto the scaffold, and

cell viability and DNA content were significantly

increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively)

compared with the hydroxyapatite scaffold after

14 days. Furthermore, alkaline phosphatase activity

in the novel scaffold increased 41 ± 2.5 % after

14 days compared with the hydroxyapatite scaffold.

The data indicate that this novel hydroxyapatite/

regenerated silk fibroin scaffold has a positive effect

on osteoinductivity and osteoconductivity, and may be

useful for bone tissue engineering.
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Introduction

As a fibrous protein, silk fiber from Bombyx mori has

been used as biomedical material due to its unique

porous structure, biocompatibility, permeability, biode-

gradability, and minimal inflammatory reaction (Alt-

man et al. 2003; Jin et al. 2004). However, it still has

problematic characteristics for further clinical applica-

tions and use in industrial processes, such as its low

stiffness and high production cost (Freed et al. 1994;

Zhou et al. 2009). For this reason, several attempts have

been made to improve the properties of silk biomate-

rials, and this field has become a rapidly growing area of

tissue engineering research. Research has demonstrated

that the main inorganic component of human bone

tissues, hydroxyapatite (HA), enhances the compressive

strength of silk biomaterials and also induces new bone

formation (Na et al. 2007). Therefore, the HA/silk

scaffold is an attractive candidate for bone tissue

engineering and has thus been widely studied in the

last decade (Kim et al. 2008; Bhumiratana et al. 2011).

Recently, we developed a novel method to convert silk

fiber into regenerated silk fibroin (RSF) solutions that can

be subsequently reconstituted into macroporous archi-

tecture (Cao et al. 2007). Research has demonstrated that

RSF is stronger, tougher, and more extensible than

natural silk fiber (Chen et al. 2009; Zhou et al. 2011).

Here, we combined the advantages of both RSF and

HA to prepare a novel HA/RSF scaffold. After first

characterizing the scaffold it was then investigated for

its potential in osteoregenerative applications. Both
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HA/RSF scaffold osteoconductivity and osteoinduc-

tivity were assessed by culturing rat bone marrow-

derived mesenchymal stromal cells (BMSCs) on the

scaffold surface and observing cell morphology, cell

viability, DNA content, gene expression, alkaline

phosphatase (ALP) activity, etc.

Materials and methods

Preparation of the RSF scaffold

The RSF scaffold was prepared according to previous

methods (Cao et al. 2007). Briefly, B. mori silk was

degummed in 0.5 % (w/v) Na2CO3 at 95 �C for 1 h,

washed with copious distilled water, and then dried.

The degummed silk was dissolved in 9.5 mM LiBr.

After filtration, the fibroin solution was dialyzed

against deionized water for four days at room

temperature with a 12 kDa cut-off, semi-permeable

membrane for salt removal. The dialyzed silk fibroin

solution was centrifuged at *5,0009g for 10 min.

Next, 10 % (w/w) ethanol was added to the RSF

solution under gentle stirring at 25 �C over 2 min, and

then held at -80 �C for 24 h. The sample was

defrosted by freeze-drying. Dry particles of RSF were

obtained by lyophilization with a freezing dryer after

stable RSF microspheres were collected by centrifu-

gation at *10,0009g for 30 min.

HA/RSF scaffold preparation

HA was deposited onto the RSF scaffold using an

alternate soaking process (Wang et al. 2007). In brief,

the RSF scaffold was immersed in 200 mM CaCl2 in a

Petri dish and shaken at 150 rpm for 1 h at 37 �C. The

scaffold was then blotted onto filter paper to remove

excess water and then immersed in 120 mM Na2HPO4

for 1 h. After soaking alternately for three cycles, HA/

RSF scaffolds were washed in distilled water and air-

dried at room temperature for 24 h. The morphology

of the RSF and HA/RSF scaffolds was observed using

scanning electron microscopy (SEM).

Scaffold weight change after HA coating

The dry weights of the RSF and HA/RSF scaffolds

were measured and the weight percentage of HA

deposited onto the silk scaffolds was calculated as:

Percentage deposition of HA ðw/w;%Þ
¼ ðWt �WrÞ=Wt � 100 %;

where Wr is weight of RSF scaffold, Wt is weight of

HA/RSF scaffold.

Cell isolation, seeding, and culturing

onto scaffolds

BMSCs were isolated from five New Zealand white

rabbits (average weight, 2.5 kg) according to proce-

dures described previously (Shao et al. 2006), and

cultured in Dulbecco’s modified Eagle’s medium at

37 �C with 5 % CO2. Scaffolds were sterilized by

autoclaving and seeded with BMSCs at 1.5 9 105 cells

per scaffold.

MTT assay

The MTT assay was carried out as previously described

(Wang et al. 2007). Briefly, culture medium was

removed and 100 ll MTT was added to each well.

After incubation for 4 h, the medium was discarded

and the precipitated formazan was dissolved in

dimethyl sulfoxide. The A570 was then measured in a

microplate reader.

DNA content analysis

The RSF and HA/RSF scaffolds from various time

intervals were washed in phosphate-buffered saline

and lysed in 0.2 % (w/v) Triton X-100 and 5 mM

MgCl2. A Pico Green assay was used to measure the

total amount of DNA.

ALP activity assessment

The ALP activity of cells cultured on RSF and HA/RSF

scaffolds was detected at several time intervals using a

phosphatase substrate kit. ALP activity was expressed

as p-nitrophenol produced in nmol/min/mg protein.

Gene expression analysis by quantitative real-time

PCR (RT-PCR)

Gene expression of various proteins involved in

osteogenesis, including Runt-related transcription fac-

tor 2 (Runx2), collagen type I, osteopontin (OPN), and

osteonectin (ON) were analyzed in BMSCs seeded
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with RSF and HA/RSF scaffolds. Primer sequences of

the genes were obtained from published literature

Fiedler et al. (2002). Total RNA was extracted from

each cell sample using TRIzol and the cDNA was

synthesized from total RNA. Quantitative PCR

(QPCR) was carried out using SyberGreen I in a

Rotor-Gene 3000. To correct for differences in RNA

quality and quantity among samples, the data were

normalized to that of GAPDH.

Statistical analysis

Results are expressed as the mean ± SD. Multiple

comparisons involved single factor analysis of vari-

ance (ANOVA) using SPSS Statistics 17.0 statistical

software package. P values \0.05 were considered

statistically significant.

Results and discussion

HA/RSF scaffold morphology

SEM images revealed a porous, spongy morphology of

the HA/RSF scaffold, while HA nanoparticles were

deposited uniformly on the surface of the silk sponge

without any apparent effect on scaffold pore architecture

(Fig. 1a). As shown in Fig. 1b, high-magnification SEM

images confirmed the presence of dense flake-like HA

crystals emanating from the surface and throughout the

pore walls of the silk framework. Approx. 12.4 ± 0.06

% (w/w) of HA was deposited on the silk scaffold after

HA deposition by weight quantification analysis.

Energy dispersive X-ray (EDX) analysis (Fig. 1c)

revealed that the ratio of Ca and P was 1.52, similar to

the composite of mature bone.

SEM images of BMSC-seeded scaffolds after 1 day

in culture revealed that HA/RSF scaffolds support the

adhesion and proliferation of BMSCs (Fig. 1d). After

7 days, BMSCs adhered to the surface of the HA/RSF

scaffold and exhibited a spreading-out phenotype

(Fig. 1e). After 14 days, it was obvious that typical

osteoblast-like cells appeared in the scaffolds (Fig. 1f).

Cell viability and proliferation

As shown in Fig. 2, after 14 days the cell viability and

DNA content of BMSCs increased significantly

(18.5 ± 0.6 and 33.2 ± 1.2 %, respectively) on the

Fig. 1 (a) SEM image and (b) high-magnification SEM image

of a prepared HA/RSF scaffold. (d) Energy dispersive X-ray

(EDX) analysis of a prepared HA/RSF scaffold. SEM images of

BMSCs seeded onto a HA/RSF scaffold after (c) 1 day,

(e) 7 days, and (f) 14 days. The blank arrow in (f) indicates

typical osteoblast-like cells
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HA/RSF scaffold compared to the HA scaffold. Both

the MTT assay and DNA content analysis suggested

that BMSCs seeded on the HA/RSF scaffold increased

and remained viable over 2 weeks in culture, indicat-

ing that the scaffold supported the proliferation of

BMSCs.

ALP activity and gene expression analysis

by quantitative RT-PCR

ALP has been implicated as a marker of osteogenic

differentiation that is expressed early in the differentiation

process. As shown in Fig. 3, ALP activity increased by

41.3 ± 2.5 % after 14 days in HA/RSF scaffolds com-

pared with that in RSF scaffolds. Furthermore, as shown in

Fig. 4, after 2 weeks in culture, gene expression analysis

of bone-related genes, such as Runx2, collagen type I,

OPN, and ON, were upregulated in the BMSC-seeded HA/

RSF scaffolds compared with BMSC-seeded RSF scaf-

folds. These observations suggest that prepared HA/RSF

scaffolds may enhance the differentiation of BMSCs

toward osteoblast cells.

Fig. 2 (a) MTT assay and (b) DNA content analysis of BMSCs seeded onto a HA/RSF scaffold at different time intervals. Results are

shown as the mean ± SD (n = 5)

Fig. 3 Detection of ALP activity for RSF and HA/RSF

scaffolds at different time intervals. Results are shown as the

mean ± SD (n = 5)

Fig. 4 Gene expression analysis of BMSCs seeded onto both

RSF and HA/RSF scaffolds at different time intervals by

quantitative RT-PCR. Results are shown as the mean ± SD

(n = 5)
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Conclusions

We successfully fabricated HA/RSF hybrid scaffolds

that combine the advantages of both RSF and HA. The

feasibility of these HA/RSF hybrid scaffolds as

implants for bone damage was evaluated in vitro.

Our results suggest that the incorporation of HA not

only increases the surface roughness of scaffolds, but

also enhances the viability and proliferation of

BMSCs on the scaffold surface. Furthermore, these

scaffolds improve the differentiation of BMSCs

toward osteoblast cells in vitro. In conclusion, our

work demonstrates that HA/RSF scaffolds may be a

promising biomaterial for bone tissue engineering in

the future.
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