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Over-expression of stress protein-encoding genes helps
Clostridium acetobutylicum to rapidly adapt to butanol stress
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Abstract The toxicity of n-butanol in microbial

fermentations limits its formation. The stress response

of Clostridium acetobutylicum involves various stress

proteins and therefore, over-expression of genes

encoding stress proteins constitutes an option to

improve solvent tolerance. Over-expression of

groESL, grpE and htpG, significantly improved buta-

nol tolerance of C. acetobutylicum. Whereas the wild

type and vector control strain did not survive 2 % (v/v)

butanol for 2 h, the recombinant strains showed 45 %

(groESL), 25 % (grpE) and 56 % (htpG), respectively,

of the initial c.f.u. after 2 h of butanol exposure. As

previously, over-expression of groESL led to higher

butanol production rates, but the novel strains over-

expressing grpE or htpG produced only 51 and 68 %,

respectively, of the wild type butanol concentrations

after 72 h clearly differentiating butanol tolerance and

production. Not only butanol tolerance but also the

adaptation to butanol in successive stress experiments

was significantly facilitated by increased levels of

GroESL, GrpE and HtpG. Re-transformation and

sequence analyses of the plasmids confirmed that not

the plasmids, but the host cells evolved to a more

robust phenotype.

Keywords Butanol stress � Solvent tolerance �
Heat shock protein � GroESL � GrpE � HtpG

Introduction

Clostridial acetone/butanol/ethanol (ABE) fermenta-

tion has regained much interest in the past years

because butanol represents a superior biofuel with

several advantages over ethanol: butanol has a higher

energy content, is less hydroscopic, less volatile and

less corrosive, which makes it perfectly compatible

with the current gasoline infrastructure (Lee et al.

2008; Green 2011). Since the maximum butanol

tolerance is 20 g l-1 or less for clostridial strains,

product removal by different techniques, such as gas

stripping or pervoration, have been considered to

economically improve ABE fermentation (Ezeji et al.

2005, 2007). The major cellular impact of high butanol
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concentrations is the destruction of the cytoplasmic

membrane and various macromolecules, accompanied

by the loss of vital functions (Bowles and Ellefson

1985; Taylor et al. 2008; Liu and Qureshi 2010). On

the molecular level, butanol causes a stress response

which is not yet fully understood; the most important

issues and experimental approaches have been

reviewed in detail recently (Ezeji et al. 2010; Nicolaou

et al. 2010).

Referring to the development of suitable genomic

tools, clostridial metabolite and solvent stresses have

been studied in a global approach using DNA micro-

arrays (Alsaker et al. 2004, 2010; Tomas et al. 2004;

Alsa; Heluane et al. 2011; Hönicke et al. 2012) and

proteome analyses (Terracciano et al. 1988; Mao et al.

2010, 2011). The results clearly showed that different

heat shock proteins (HSPs) are involved in Clostrid-

ium acetobutylicum’s stress response to butanol.

These molecular chaperones play important roles in

protein biosynthesis and degradation and are highly

upregulated under various stress conditions (Narber-

haus and Bahl 1992; Narberhaus et al. 1992; Bahl et al.

1995; Rüngeling et al. 1999). Transcriptome data

revealed that dnaK, dnaJ, grpE, groES, groEL, clpP,

clpC, htpG and hsp18 were significantly induced after

butanol stress (Tomas et al. 2004). Interestingly, the

same HSPs were generally upregulated in C. acetobu-

tylicum Rh8, a mutant strain with improved butanol

tolerance and production (Mao et al. 2010). An

increased abundance of HSPs was not only detected

after external butanol exposure, but also during the life

cycle-associated solventogenic metabolism (Alsaker

and Papoutsakis 2005; Jones et al. 2008). Taking high

ATP consumption rates into account, the protective

function of multiple HSPs against solvent stress is

primarily based on fast refolding and/or degradation of

denaturated proteins, although the regulatory circuits

are not well understood (Nicolaou et al. 2010). The

second known defense mechanism of C. acetobutyl-

icum is a higher content of saturated fatty acids in the

cell membrane to counteract the increasing fluidity

caused by butanol (Vollherbst-Schneck et al. 1984;

Baer et al. 1987, 1989; Taylor et al. 2008; Ezeji et al.

2010).

Regarding microbial solvent tolerance, very few

bacteria exhibit a similar or better performance than

species of Clostridium, e.g., Pseudomonas putida or

lactic acid bacteria (Fischer et al. 2008; Knoshaug and

Zhang 2009; Rühl et al. 2009; Li et al. 2010; Winkler

et al. 2010). Therefore, it seems more reasonable to

engineer solventogenic clostridia with naturally high

butanol production capacities, although a major met-

abolic breakthrough for recombinant butanol produc-

tion was described recently (Bond-Watts et al. 2011;

Shen et al. 2011).

Apart from traditional random mutagenesis, only

two examples of targeted genetic engineering to

increase butanol tolerance of C. acetobutylicum and

other solventogenic clostridia have been published

thus far. Based on early DNA microarray results which

indicated the importance of stress proteins, the bicis-

tronic groESL operon, coding for the class I (Hsp60)

chaperonin GroEL and its co-chaperonin GroES,

was homologously overexpressed. The recombinant

C. acetobutylicum strain exhibited a significantly

improved tolerance and also higher butanol produc-

tion rates as compared to the wild type (Tomas et al.

2003). More recently, the gshAB genes from Esche-

richia coli were expressed in C. acetobutylicum to

establish a heterologous glutathione biosynthetic

pathway. The resulting strain exhibited an improved

butanol tolerance and a slightly increased butanol titer

as compared to the vector control (Zhu et al. 2011). In

this study, two novel over-expression strains of

C. acetobutylicum with enhanced butanol tolerance

properties were generated. Interestingly, we observed

that the HSP gene overexpressing strains revealed an

enhanced adaptation to high butanol concentrations.

Materials and methods

Bacterial strains and cultivation conditions

Strains, plasmids and oligonucleotides for PCR used

in this study are listed in Supplementary Table 1.

General recombinant DNA techniques were per-

formed according to standard. Chromosomal DNA

of C. acetobutylicum ATCC 824 (Fischer et al. 2006)

was used as template and the oligonucleotides listed in

Table 1 as PCR primers to amplify groESL (CAC-

2703-2704), grpE (CAC1281) and htpG (CAC3315).

The DNA fragments were cloned via BamHI or BclI,

respectively, and KasI restriction sites into the

pTHydA plasmid as described by Girbal et al. (2005)

and Hillmann et al. (2009). To generate the vector

control pT, the hydA gene was excised from pTHydA

by BamHI/KasI restriction and re-ligated after
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treatment with the Klenow fragment of DNA poly-

merase I (Fermentas GmbH, Germany). The resulting

plasmids pT, pT::groESL, pT::grpE and pT::htpG,

respectively, were transformed into E. coli DH5a and

validated by DNA sequencing (LGC Genomics

GmbH, Berlin, Germany). After in vivo methylation

in E.coli ER2275 pAN2 (Mermelstein and Papoutsakis

1993), the plasmids were transformed into C. acetobu-

tylicum ATCC 824 and selected on reinforced clos-

tridial agar containing 40 lg erythromycin ml-1.

Clostridial strains were cultivated in clostridial

growth medium (CGM) or mineral salts medium (MS-

MES) with 40 lg erythromycin ml-1 for recombinant

C. acetobutylicum under anaerobic conditions at

37 �C; media, conditions and fermentation product

analyses were performed as described previously

(Lehmann and Lütke-Eversloh 2011; Lehmann et al.

2012).

Butanol stress experiments

For butanol stress and adaptation experiments, 200 ml

CGM in serum bottles were inoculated with 10 % (v/

v) CGM precultures. When the cultures were grown to

OD600 of 1, they were divided into 10 ml aliquots in

Hungate tubes and subjected to 1 or 2 % (v/v) n-

butanol. Respective controls were treated similarly but

without butanol addition. To determine the c.f.u.

values, samples were drawn regularly and serial

dilutions were plated on RCA and incubated anaero-

bically for 48 h at 37 �C prior to colony counting.

Plasmid maintenance was controlled by colony

PCR using plasmid- and gene-specific oligonucleo-

tides (Supplementary Table 1). In addition, plasmids

from three successive stress experiments were isolated

and re-transformed into C. acetobutylicum ATCC 824

(Harris et al. 2000); furthermore, DNA sequence anal-

yses of each plasmid was conducted (LGC Genomics

GmbH, Berlin, Germany).

Results and discussion

Butanol tolerance

Homologous over-expression of the groESL operon in

C. acetobutylicum leads to a significantly improved

phenotype regarding butanol resistance and produc-

tion (Tomas et al. 2003). In this study, two additional

HSP encoding genes, i. e. grpE and htpG, were over-

expressed in C. acetobutylicum and as a positive

control, groESL over-expression was included. As

shown in Fig. 1, all three over-expression strains

exhibited enhanced butanol tolerance in comparison to

the wild type and the vector control strain in the

presence of 1 and 2 % (v/v) butanol. Tomas et al.

(2003) reported that the growth inhibition by butanol

of the groESL overexpressing strain was up to 85 %

less than the vector control. This value is not directly

comparable to the results presented here, because

higher butanol concentrations and not the growth rates

of challenged cultures, but survival rates according to

c.f.u. (c.f.u.) counts after the butanol exposure were

preferentially chosen as parameters. However, the

highly improved butanol tolerance of C. acetobutyl-

icum pT::groESL is in good agreement. Regarding the

novel strains C. acetobutylicum pT::grpE and C. acet-

obutylicum pT::htpG, significantly increased butanol

resistance can also be mediated by values of the stress

proteins GrpE and HtpG. Whereas the wild type and

Table 1 Growth rates and fermentation products of C. acetobutylicum-strains

Strain Wildtype pT pT::groESL pT::grpE pT::htpG

Growth rate (h-1) 0.26 ± 0.06 0.26 ± 0.04 0.16 ± 0.03 0.04 ± 0.02 0.13 ± 0.04

Acetate (mM) 22 ± 3.7 21 ± 3.4 21 ± 3.9 33 ± 1.2 21 ± 1.1

Butyrate (mM) 7 ± 2.3 9 ± 1.8 11 ± 0.3 14 ± 0.9 12 ± 1

Acetone (mM) 53 ± 2.9 52 ± 3.7 38 ± 3.6 35 ± 1.5 42 ± 2.2

Ethanol (mM)a 17 ± 1.5 35 ± 4 28 ± 1.5 23 ± 2.2 26 ± 1.8

Butanol (mM) 90 ± 4.7 85 ± 4.9 117 ± 10.8 46 ± 3.9 61 ± 2.5

Cultivations were conducted in 200 ml MS-MES medium and monitored by the OD600 values. Fermentation products were

determined by GC; representative values after 72 h of cultivation are shown. Three independent replicates per strain were used
a Except for the wild type, erythromycin was added to the medium for plasmid maintenance, which led to an initial ethanol

concentration of 18–20 mM
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the vector control had c.f.u. \ 0.1 % after 6 h expo-

sure to 1 % (v/v) butanol, referring to the initial c.f.u.,

the over-expressing strains still showed 12 %

(groESL), 16 % (grpE) and 15 % (htpG), respectively,

of the initial c.f.u.. In addition, the control strains did

not survive 2 % (v/v) butanol for more than 2 h, but

the three recombinant strains revealed 45 % (groESL),

25 % (grpE) and 56 % (htpG), respectively, of the

initial c.f.u. after 2 h at 2 % (v/v) butanol (Fig. 1).

Butanol production

Since genetic tools for clostridia became available

only recently, traditional production strain-breeding

was common (and quite successful) for a long time,

using random mutagenesis and selection by survival of

high butanol concentrations (Jones and Woods 1986;

Papoutsakis 2008; Lütke-Eversloh and Bahl 2011).

The phenotype of such production strains implements

usually both enhanced butanol tolerance and produc-

tion, justifying the relation between both features. This

connection was confirmed by the groESL overexpress-

ing C. acetobutylicum, which was reported to produce

40 % more butanol than the wild type (Tomas et al.

2003; Alsaker et al. 2010). Using mineral salts medium

instead of CGM, C. acetobutylicum pT::groESL pro-

duced 130 % of the wild type butanol titer, validating

the fact that higher GroES and GroEL protein levels

improves solvent production.

Surprisingly, grpE and htpG over-expression did

not enhanced butanol production, only 51 % (grpE)

and 67 % (htpG) of the wild type butanol concentrations

were detected in the culture supernatants (Table 1).

Fermenation experiments in MS-MES medium further

revealed clearly hampered growth of C. acetobutylicum

pT::grpE, whereas the growth rates of C. acetobutyli-

cum pT::groESL and C. acetobutylicum pT::htpG were
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Fig. 1 Increased butanol tolerance of C. acetobutylicum
pT::groESL (c), pT::grpE (d) and pT::htpG (e) in comparison

to the wild type (a) and vector control (b). The respective strains

were subjected to 1 % (v/v) (diamonds) and 2 % (v/v) (circles)

n-butanol for 8 h. Samples were drawn every 2 h and serial

dilutions were plated onto RCA to determine the c.f.u. with

respect to the controls without butanol (squares). The relative

c.f.u. values are shown in percent of the initial sample (a–e).

Panel (f) depicts the total c.f.u. counts of the 6 h samples of 1 %

(v/v) (grey) and 2 % (v/v) (black) butanol: 1 C. acetobutylicum
wild type, 2 vector control, 3 pT::groESL, 4 pT::grpE, 5
pT::htpG
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only moderately reduced as compared to the wild type

and the vector control (Table 1).

Butanol adaptation

As depicted in Fig. 1, we observed an unexpected

phenomenon in the repeatedly conducted butanol stress

experiments: in contrast to the control strains, i. e. wild

type and vector control, the stress protein overexpress-

ing C. acetobutylicum strains harboring plasmids

pT::groESL, pT::grpE, or pT::htpG, respectively,

always revealed several colonies on the c.f.u. counting

plates after exposure to high butanol concentrations

(Fig. 1). This led to the hypothesis that the HSP

overexpressing strains must have a mechanism to adapt

to butanol stress more efficiently, and the question was

whether the plasmids mutated or the whole cells

evolved, enabled by improved tolerance mechanisms

as well as a simple selection pressure. Therefore,

consecutive butanol stress experiments were con-

ducted and are summarized in Figs. 2 and 3. Plas-

mids were isolated after each stress experiment and

1 Stress. 
CGM

2. Stress
CGM

3. Stress
CGM

4. Stress

C.ac. pT::groESL C.ac. pT::grpE C.ac. pT::htpG

Fig. 2 Butanol stress adaptation of C. acetobutylicum pT::gro-
ESL, pT::grpE and pT::htpG. The experimental scheme is

shown on the left: after each butanol stress experiment, two

colonies of cultures exposed to 2 % (v/v) butanol for 6 h were

used to inoculate fresh CGM, grown overnight and subjected

again to 1 % (v/v) (diamonds) and 2 % (v/v) (circles) n-butanol

for 8 h in comparison to the control without butanol (squares).

The c.f.u. (c.f.u.) were determined as described in Fig. 1, the

average data of two similar replicates each are shown

Biotechnol Lett (2012) 34:1643–1649 1647

123



sequence analyses did not show any amino acid

exchange of the respective stress proteins. Moreover,

re-transformation of the isolated plasmids into

C. acetobutylicum ATCC 824 did not alter the original

phenotype (data not shown). Following the successive

challenges at 2 % (v/v) butanol for 6 h, improved

butanol resistance was noticed for all over-expression

strains subsequently monitored for their resistance to

both 1 and 2 % (v/v) butanol concentrations (Fig. 2).

The absolute c.f.u. counts for the over-expression

strains are shown in Fig. 3, exhibiting a better perfor-

mance for all three overexpession strains, but partic-

ularly for C. acetobutylicum pT::grpE. The difference

between butanol-stressed cells and the control cultures

clearly demonstrated the positive influence of increased

HSP abundance for enhanced butanol tolerance and

adaptation.
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