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Abstract Volatile organic chemicals (flavours,

aromas) are the sensory principles of many consumer

products and govern their acceptance and market

success. Flavours from microorganisms compete with

the traditional agricultural sources. Screening for

overproducers, elucidation of metabolic pathways

and precursors and application of conventional bioen-

gineering has resulted in a set of more than 100 com-

mercial aroma chemicals derived via biotechnology.

Various routes may lead to volatile metabolites:

De novo synthesis from elementary biochemical units,

degradation of larger substrates such as lipids, and

functionalization of immediate flavour precursor

molecules. More recently, the field was stimulated

by the increasing preference of alienated consumers

for products bearing the label ‘‘natural’’, and by the

vivid discussion on healthy and ‘‘functional’’ food

ingredients. The unmistakable call for sustainable

sources and environmentally friendly production is

forcing the industry to move towards a greener

chemistry. Progress is expected from the toolbox of

genetic engineering which is expected to help in

identifying metabolic bottlenecks and in creating

novel high-yielding strains. Bioengineering, in a

complementary way, provides promising technical

options, such as improved substrate dosage, gas-phase

or two-phase reactions and in situ product recovery.
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Introduction

Volatile flavours generated by microorganisms have

long been regarded as a laboratory curiosity. Two

major discoveries changed the situation, first that an

alkanophilic yeast converted castor oil to 4-hydroxy-

decanoic acid and further to 4-decanolide (Farbood

and Willis 1983), and second that certain lipases

catalyzed transesterification reactions in organic

media at temperatures of up to 100�C (Zaks and

Klibanov 1984) opening access to the reverse hydro-

lytic synthesis of carboxylic acid esters. Among the

around 10,000 volatiles found in nature, both groups,

the medium-sized 4- and 5-alkanolides and some

carboxylic acid esters, confer pleasant organoleptic

impact attributes, such as fruity, floral, spicy, creamy

or nutty to food, beverages, toothpaste, fragrances,

and perfumed articles. The introduction of the first

microbial 4-decanolide on the European market at a
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market price of around EUR 10,000 per kg sent out a

strong signal. Today, the driver of research is a

mixture of scientific and economic considerations:

– Some valuable flavours, such as raspberry ketone

occur in traces in their plant sources rendering

isolation by classical extraction or distillation

impossible,

– chemosynthesis offends the consumers supersti-

tion that ‘‘natural’’ compounds are safer; for

example, 90% of all beverage flavours in Europe

are ‘‘natural’’ (80% in the US),

– biocatalysis is highly selective (chemo-, regio-,

stereo-), and

– biocatalysts preferably accept natural, that is

renewable substrates, and convert them to prod-

ucts in environmentally favourable processes

(‘‘White Biotechnology’’).

In addition, flavour chemicals were shown to

possess not only sensory properties, but other desir-

able properties such as:

– antimicrobial (vanillin, essential oil constituents),

– antifungal and antiviral (some alkanolides),

– antioxidant (eugenol, vanillin),

– somatic fat reducing (nootkatone),

– blood pressure regulating (2-[E]-hexenal) or

– anti-inflammatory properties (1,8-cineole).

This puts some flavours close to pharmaceuticals,

a class of active agents with many well-established

bioprocesses.

From a scientific point of view, the origin

of a chemical cannot affect its bioactivity; however,

food laws world-wide reflect the ‘‘natural/artificial’’

discrimination made by consumers. As a result,

consumer companies wish to ‘‘capture the green

advantage’’ (Boston Consulting Group www.bcg.com/

impact_expertise/publications/files/ Capturing_Green_

Advantage_Consumer_Companies_Jan_2009.pdf, as

by 27.04.2009). A variety of analytical tools are at

hand to prove the origin of a flavour compound.

Enantiodifferentiation of chiral compounds is per-

formed by chiral capillary gas chromatography, for

example on cyclodextrin phases, and achiral com-

pounds are submitted to stable-isotope (D, 18O, 15N)

analysis using either SNIF-NMR or IR-GC-MS. As

the isotope distribution of the precursor compound

remains imprinted in the isotope pattern of the flavour,

the chemical source can be traced in most instances.

State-of-the-art

Although still overlooked by most textbooks, flavours

from biotechnology have conquered the marketplace

in recent years. Many pure flavour compounds are

offered with the label ‘‘natural’’ (Table 1). The

European regulation on flavours (EEC No 1334/

2008) defines in article 3 (2) c): ‘‘Natural flavouring

substance shall mean a flavouring substance obtained

by appropriate physical, enzymatic or microbiolog-

ical processes from material of vegetable, animal or

microbiological origin either in the raw state or after

processing for human consumption by one or more of

the traditional food preparation processes’’. Under

the terms of the US Food regulation, flavours fall

under the category of food additives. The definition

of ‘‘natural’’ is similar, and an expert panel examines

new flavours which, upon positive evaluation, are

entered into the GRAS list (generally recognised as

safe). It is the producer’s decision to declare the

source that was actually used. Backed by published

work, one may speculate on those chemicals for

which, in the meantime, a microbial process has

replaced the traditional plant source.

Recent reviews have presented the advantages of

biocatalysis over classical chemosynthesis or extrac-

tion (Serra et al. 2005; Borges et al. 2009), and have

discussed the most suitable biosystem for the target

(Schrader 2007). It is obvious that isolated enzymes

are the preferred biocatalysts if a single step reaction,

such as (reverse) hydrolysis or transglycosidation is

aimed at. Prokaryotic organisms produce mainly

simple alcohols, carboxylic acids and other constit-

uents of fermentation flavours. Saccharomyces and

wild yeasts add a pronounced esterification capability

and also possess carbon–carbon coupling activity.

The most plant-like flavour metabolism is located in

higher fungi, particularly in the basidiomycetes.

Flavour enzymes

Volatile flavours, like most bioactive chiral agents,

depend on the correct stereochemistry to exert the

desired physiological action. Thus, kinetic resolution

of racemates using members of the lipase/esterase

family was applied to many esters and alkanolides.

A mathematical model simulated the kinetics of

this equilibrium reaction in a fixed bed reactor
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(Berendsen et al. 2006). An industrial research group

used a Pseudomonas strain to generate pure (R)-2-

methylbutyric acid, a flavour compound and an acyl

moiety for the preparation of the respective flavour

esters (Table 1) (Tachihara et al. 2006). The reverse

reaction was carried out using carboxylesterases

of lyophilised fungal mycelia in solvents such as

n-heptane. This may perform better than using purified

acyl transferases of living yeast. For example, the

acylation of ethanol with phenylacetic acid, a metab-

olite of L-phenylalanine, was achieved using various

Aspergillus and Rhizopus strains (Converti et al.

2005).

Another central motif of aroma biotechnology is

oxyfunctionalisation. Thousands of tons of terpene

hydrocarbons, such as (?)-limonene and pinenes, are

separated each year from plant essential oils and

discarded because of their low aroma value and

chemical instability, while many of their oxyfunc-

tionalised metabolites represent flavour impact con-

stituents (Marostica et al. 2007). Enzymes, cell

extracts and all kinds of intact cells were used to

perform regio- and stereoselective transformations of

terpene substrates (de Carvalho and da Fonseca 2006).

Typical transformation products of the (?)/(-)-

limonenes were carveols, carvone (Table 1), dihydro-

carveol and a-terpineol, while the pinenes yielded

pinene oxide, verbenols, verbenone and myrtenol

(Divyashree et al. 2006; Bicas et al. 2008). Linalool

was the substrate in extended screenings that identified

fungi producing linalool oxides, 8-hydroxylinalool

and lilac aldehyde plus alcohol (Mirata et al. 2008).

Resting cells were often used to overcome the

cytotoxicity of the hydrocarbon substrates. Mono-

alcohols, such as linalool, are less of a problem

because of their lower solubility in the membrane of

the cells. Some pathways were inducible, but a general

mechanistic understanding of these detoxification

reactions is missing.

Cytochrome P450 isoforms have frequently been

suspected to be the key catalysts. Their general

preference for lipophilic substrates, broad reaction

specificity, rapid inactivation and wide-spread occur-

rence (especially in plants) suggested an important

role (Bernhardt 2006). However, only a few terpene-

transforming P450 proteins were purified and

Table 1 Commercial natural aroma chemicals (LiAxx Biotech, www.axxence.de/, product catalogue 2007; Schrader 2007)

Acetaldehydea Citronellyl estersb 2-Heptanonea 2-Octanone

Acetoina n-Decanala n-Hexanal 4-Octanolidea

Acetophenone 4-Decanolidea 2-(E)-Hexenal/ol 1-Octen-3-ola

Anethol 5-Decanolidea 3-(Z)-Hexenol/acetateb 2-Pentanonea

Anisyl acetate 2-Decenolactonea 4-Hexanolidea i-Pentyl alcohola

Benzaldehydea Dimethyl pyrazines 4-Hydroxy-2,5-dimethyl-3(2H)-furanone i-Pentyl estersb

Benzyl butanoatea 4-Dodecanolidea Indole Phenylacetaldehydea

n-Butyl estersb 5-Dodecanolidea ß-Iononea 1-Phenylethyl acetatea

n-Butanola Ethyl acetatea Maltol n-Propanola

i-Butyl alcohola Ethyl benzoateb Methionala 2-Propenyl hexanoatec

i-Butyl estersb Ethyl butanoatea Methyl anthranilatea n-Propyl estersb

i-Butanala Ethyl 2,4-(E,Z)-decadienoateb 2-Methylbutanoic acid/estersa Raspberry ketone

d-Carvone Ethyl 2-methylbutanoatea 3-Methylbutanala Sclareolidea

ß-Caryophyllene Ethyl phenylacetatea Methyl salycilate 4-Undecalactonea

Cinnamic acida Farnesol n-Nonanal/ola 2-Undecanonea

Cinnamic alcohola Fenchol 2-Nonanonea Vanillina

Cinnamaldehydea Furfuryl thiola Nootkatonea

Cinnamyl estersb Geranyl acetateb n-Octanal

Citronellol n-Heptanal 3-Octanol

a Biotechnological origin probable
b One of the moieties probably from plant
c Not found in nature
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characterized, although more than 5,000 presumptive

cytochrome genes are known. Among the few

exceptions are P450cam from Pseudomonas putida

and P450BM-3 from Bacillus megaterium (Sowden

et al. 2005). These enzymes transformed the sesqui-

terpene (?)-valencene selectively (P450cam mutants)

or non-selectively (P450BM-3) to metabolites of the

nootkatone family (Table 1). There are, however,

many more enzymes capable of introducing oxygen

selectively, for example, non-haem iron mono-oxy-

genases, haloperoxidases and the Bayer-Villiger-type

mono-oxygenases (Leak et al. 2009). The potential of

these enzyme classes for flavour production has not

yet been systematically exploited. A first example of

a non-P450 catalysed oxyfunctionalisation may be

the transformation of (?)-valencene to the a- and

b-nootkatols and nootkatone by a purified enzyme of

Pleurotus sapidus (Fraatz et al. 2009). The isolated

enzyme did not show haem absorption nor was it

inhibited by carbon monoxide, but showed homolo-

gies of *50% to putative lipoxygenases from

Aspergillus fumigatus and Laccaria bicolor on the

protein level.

Carotenoids protect cells from oxidative damage

and serve as precursors of vitamins upon symmetric

cleavage. Asymmetric cleavage should result in the

formation of C8-, C10- and C13-norisoprenoids

(Fig. 1), volatiles which possess low olfactory per-

ception thresholds and which are abundantly found in

nature, for example in tea, grape, tobacco, and wine

flavour (Uenojo et al. 2007). While the fortification of

wine flavour by enzymatic hydrolysis of the respec-

tive glycosides of norisoprenoids has been proven

(Mendes-Pinto 2009), the concentration of these

volatiles in the natural sources is often too low to

render an industrial extractive isolation economically

attractive (Rodriguez-Bustamante and Sanchez 2007).

Previous research focussed on plant dioxygenases

and showed that carotenoid levels correlated with

type and amount of norisprenoids in the tissue; in

tomato, for example, decreased lycopene level led to

decreased concentrations of 6-methyl-5-hepten-2-one

and 6-methyl-5-hepten-2-ol, volatiles derived from

5,6 (50,60) bond cleavage (Gao et al. 2008). This

carotenoid-cleavaging dioxygenase also occurred in

maize, Arabidopsis (Vogel et al. 2008) and in rice (Ilg

et al. 2009) and showed low substrate specificity,

acting on cyclic and acyclic carotenoids. The enzymes

also mediated the formation of geranial and ionones

through a 7,8 (70,80) and a 9,10 (90,100) bond cleavage,

respectively. Similar enzymes from basidiomycetes, a

versatile peroxidase of Lepista irina and peroxidases

of Marasmius scorodonius, were patented recently

(Zorn et al. 2004). These stable extracellular enzymes

efficiently degraded ß-carotene to ß-ionone and a few

minor volatiles (Scheibner et al. 2008). Heterologous

expression to study the reactions in more detail will be

required.

The concept of degrading complex precursor sub-

strates which contain a small flavour target preformed

in their structure may not sound chemically convinc-

ing. It is, however, the route along which nature itself

proceeds in ripening fruits or other senescing tissues.

Hydrolysis of acyl glycerols yields fatty acids, alde-

hydes, alcohols and esters, hydrolysis of proteins

yields the precursors of biogenic amines and fusel oil

constituents (Table 1). The degradation of carotenoids

requires redox enzymes and is more challenging. To

maintain a co-factor dependent enzymatic redox

reaction is even more difficult, as a continuous supply

of co-factor is prohibited by cost reasons. An option

that has become popular is coupling of the enzyme

catalysing the desired reaction with a complemen-

tary second one. An elegant example was coupling

O O

O

O

OH
O

O

321

64 5

Fig. 1 Volatile

norisoprenoids with

important sensory

properties deducible from

the degradation of

carotenoids: b-ionone 1,

b-damascenone 2,

vitispirane 3, TDN

(1,1,6-trimethyl-1,2-

dihydronaphthalene) 4,

actinidol 5, riesling acetal 6
(Mendes-Pinto 2009)

1654 Biotechnol Lett (2009) 31:1651–1659

123



P450cam with an alcohol dehydrogenase from yeast to

regenerate NADH in a two-phase system (Ryan and

Clark 2008). Both the oxidized and the reduced

product of the reaction may be useful. The conversion

of easily available cinnamaldehyde to both cinnamyl

alcohol (hyacinth odour) and to cinnamic acid (as the

acid moiety of tropical fruit esters) using two enzymes

sharing a common electron shuttle is among the

alluring examples.

Cell based processes

It is the traditional food biotechnologies which are the

roots of modern flavour biotechnology. Intact cells

provide enzyme and co-factor regeneration and active

transporters; moreover, the typical food strains com-

mand the ‘‘generally recognized as safe’’ (GRAS)

status.

Volatile sulfur compounds with their often low

odour detection thresholds determine the flavour of

certain cheese varieties, but are also of interest for

meat, potato, and fruit flavours. A carbon–sulphur

lyase of a Lactococcus lactis was identified on the

genetic level, cloned in E. coli and over-expressed

for substrate testing (Martinez-Cuesta et al. 2006).

The enzyme showed a, c-elimination activity for

L-methionine and was thought to play a significant

role in the development of a number of cheese impact

flavours. A similar study on Oenococcus oeni isolated

from wine confirmed the central role of methionine as

a common precursor of sulfur volatiles in food:

Methanethiol, dimethyl disulfide, 3-(methylthio)-

1-propanol, 3-(methylthio)-1-propanal (methional)

(Table 1), and 3-(methylthio)propionic acid were

detected (Vallet et al. 2008). Another precursor,

2-oxo-4-(methylthio)butanoic acid, seemed to play

a role.

The excess of reduction equivalents in fermenting

yeast directed methionine degradation to a series

of alcohols (Etschmann et al. 2008). The forma-

tion of the most abundant volatiles, methionol and

3-(methylthio)-propylacetate, can be explained by the

Ehrlich pathway. To aid the yeast cell in coping with

the inhibitory methionol, an alcohol acetyl transferase

gene was incorporated. This increased the concentra-

tion of the acetate at the expense of the alcohol. The

Ehrlich pathway is crucial for the production of

volatiles by Saccharomyces cerevisiae. Amino acids,

liberated during mashing, are transaminated, decar-

boxylated and the resulting aldehydes reduced to

alcohols which in turn are esterification substrates for

alcohol acetyl transferases (Hazelwood et al. 2008).

Volatile thiols, such as 4-mercapto-4-methylpentan-

2-one, 3-mercapto-hexanol and 3-mercapto-hexyl

acetate affect the ‘‘tropical-fruit’’ character of sauvi-

gnon blanc wines (Swiegers et al. 2009). At this

metabolic crossroad, a sulfur compound, a fatty acid

degradation product (2-(E)-hexenal; Table 1) and the

transacylation reaction merge (Fig. 2) These meta-

bolic traits occur in a highly strain-dependent way.

Classical screening and selection was thus suggested

to create fermentation flavours according to consumer

expectation.

The shikimate pathway generates, via phenylala-

nine and cinnamic acid, precursors of phenylpropa-

noid volatiles. Compounds such as eugenol, iso-

eugenol or vanillin (Table 1) still bear the ring

substitution pattern of coniferyl alcohol. Anethol,

estragol, and anisaldehyde (Table 1) are related

4-methoxy compounds. As well, water-soluble sub-

strates, such as ferulic acid, are easily available and

many papers have appeared which deal with micro-

bial conversion reactions (Xu et al. 2007).

A prime target of flavour biotechnology is vanillin,

the world’s most popular single flavour. While the

synthetic material is traded well below €10 per kg,

O

OH

OH

SH

O

SH O

fatty acid pool
linolenic acid

LOX/HPL

Reductase

amino acid pool
(homo)cystein

HSH

carbohydrate pool
glycolysis

acetyl-CoA
AAT

C-S-Lyase

PDC

7

Fig. 2 3-(R)-Thiohexyl acetate 7 has attractive exotic-fruit

notes and is deducible from precursors of different metabolic

pools. LOX lipoxygenase, HPL hydroperoxyde lyase, AAT
alcohol-O-acyltransferase, PDC pyruvate decarboxylase)
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the pure natural vanillin ex Vanilla pod may reach

€15,000 per kg; the biotech ‘‘natural’’ vanillins are

sold at intermediate prices. In view of the commercial

significance, efforts were made to elucidate the

pathway of formation. A labelling study using

deuterated ferulic acid and Pycnoporus cinnabarinus

showed that, by analogy to fatty acid degradation, the

mechanism comprised the hydration of the double

bond of feruloyl-CoA and then the cleavage of the

resultant b-hydroxy thioester by a retro-aldol reaction

(Krings et al. 2001). Recently, the crystal structure of

a substrate bound hydroxycinnamoyl-CoA hydratase-

lyase was reported (Bennett et al. 2008). Only a few

flavour formation pathways have received this high

degree of attention.

Engineering the catalyst

While the persistent public concern about food appli-

cations of genetic engineering continues to discourage

agronomy and industry, research on flavour coding

genes prepares the grounds for the next generation of

bioprocesses. Most attention is again paid to the

‘‘impact’’ flavours, such as the above volatile sulfur

compounds. Genome databases are now available for

species, such as Lactobacillus casei which enables the

search for putative homologues of known flavour

associated genes. Two L-cystathione-b-lyase genes

were found, the enzymes cloned and substrate spec-

ificity and other parameters were determined (Irmler

et al. 2008). Conversely, disruption of a gene coding

for L-methionine-c-lyase in Brevibacterium linens

resulted in an almost complete loss of sulfur volatiles

(Yvon et al. 2006). A similar bridge from genetic

structure to metabolic trait was built for fruity odour

notes of wine. Common S. cerevisiae leave the

respective precursors in must (cysteine, cystathionine

and methionine) almost untouched. But when a lyase

gene, obtained from E. Coli, was incorporated under

the control of a promoter of a housekeeping activity

(yeast phosphoglycerate kinase), the recombinant

yeast produced an additional tropical fruit note

(Swiegers et al. 2007).

‘‘Biotech vanillin’’ is currently produced using

vanillin tolerant relatives of Pseudomonas and ferulic

acid as a substrate. A recently developed triple

mutant (Rhodococcus opacus) converted eugenol to

ferulic acid suggesting broader substrate options for

the process (Plaggenborg et al. 2006). Response

surface methodology was described for a recombi-

nant E. coli supplemented with ferulic acid degrading

genes from Pseudomonas fluorescens (Barghini et al.

2007). Resting cells harbouring a low-copy number

vector gave a final product concentration of 2.5 g

vanillin l-1. The industrial strain was claimed to yield

more than 10 g l-1 peak concentration.

Terpene synthases convert the acyclic precursors

delivered along the mevalonate or the DXP/MEP (1-

deoxy-D-xylulose/2-C-methyl-D-erythritol-4-phosphate)

pathway to a vast diversity of mono- and sesquiterp-

enoid structures, as they occur in essential oils and

many flavours and fragrances. Conserved sequences of

this large gene family allow the design of degenerate

primers for direct amplification of plant cDNA;

genome data are no longer required because of the

progress of knowledge on the gene sequences. For

example, synthases cloned from lavender catalyzed

the formation of (R)-(-)-linalool, the main component

of lavender essential oil, and of (R)-(?)-limonene,

terpinolene (1R,5S)-(?)-camphene (1R,5R)-(?)-a-

pinene, b-myrcene and traces of a-phellandrene

(Landmann et al. 2007). Santalols and santalenes are

sesquiterpenes which impart the unique odour of

sandalwood. Genomic fragments were identified and

translated into protein sequences, and a high homology

to known terpene synthases of Vitis vinifera was found

(Jones et al. 2008). Although the heterologously

expressed proteins did not yield the expected sandal-

wood impact constituents, this kind of work will

obviously pave the way to a biotechnological exploi-

tation of similar catalytic properties in heterologous

hosts. Advanced strain engineering has been reported

for E. coli expressing a quintuple mutant CYP450

activity. a-Pinene was transformed to a-pinene oxide,

verbenol, and myrtenol in an NADPH-dependent reac-

tion. Integrating a recombinant intracellular NADPH

regeneration system through co-expression of a glu-

cose facilitator from Zymomonas mobilis and a

NADP?-dependent glucose dehydrogenase from

Bacillus megaterium provided a functioning cofactor

regeneration system and demonstrated the feasibility

of such coupled reactions in an engineered host

(Schewe et al. 2008). Intermediate radical species,

shown to occur, for example, during the biotransfor-

mation of a-farnesene (Krings et al. 2008a, b) and fatty

acid hydroperoxides (Santiago-Gomez et al. 2007)

(‘‘green’’ 2-(E)-hexenal; Table 1), are supposed to
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account for the frequently observed multitude of

reaction products.

Engineering the process

Biotechnology of flavours shows some peculiarities.

Substrates as well as products are often chemically

unstable, poorly water soluble, and bound to get lost

through the waste air stream of the reactor. Both

hydrophobic precursor substrates and flavour products

may affect the viability of the biocatalyst. Sometimes

simple measures like the change of temperature,

pressure, or pH have significantly improved produc-

tivity. Response surface methods help in cutting down

the number of experiments required in multi-factorial

systems (Barghini et al. 2007). Among the more

concerted measures to overcome some of the problems

are:

– in situ recovery of product, for example by gas

stripping (Krings and Berger 2008),

– two-phase systems to separate non-polar conver-

sion chemistry from biology (Morrish et al.

2008),

– fed-batch of substrate to avoid cytotoxic concen-

trations of substrate and product (Etschmann and

Schrader 2006),

– specific reactor construction, such as membrane

(Boontawan and Stuckey 2006), solid state (Lon-

go and Sanroman 2006) or closed loop reactors,

the latter to prevent volatile substrate from loss

through the exhaust stream (Pescheck et al.

2009), or

– use of non-conventional media, such as organic

solvents, ionic liquids or supercritical fluids

(Cantone et al. 2007).

It appears a particularly attractive idea to perform

the production of volatiles using functional (hydrated)

enzymes in the gas phase (Mikolajek et al. 2007). The

concept was applied to reverse hydrolyses, but also to

carboligation. Little systematic work has been devoted

to this intriguing technique so far.

Conclusion

Flavour biotechnology could be defiend as the over-

expression of microbial genes in food grade and other

microorganisms, or the transfer of plant flavour

pathways into suitable microbial hosts. Much knowl-

edge has been accumulated about diverging genes

and converging evolution (Pichersky et al. 2006),

flavour genes and enzymes (Dherbecourt et al. 2008).

The toolbox of molecular biology and the volume of

sequence databases is ever-increasing (Matsuta et al.

2009). Progress could be faster, however, it the

investigation of metabolic traits was given priority,

followed by investigation of the genetic and enzy-

matic background. A few recent metabolic studies

have used labelled precursors and have devel-

oped well-founded biosynthetic schemes (Hampel

et al. 2006; Matich and Rowan 2007; Krings et al.

2008a, b). Likewise, sound studies on the regulation of

flavour genes are scarce. As long as we cannot explain

the activation of a flavour pathway by UV-light in a

non-phototrophic microorganism (Taupp et al. 2008),

we are far away from a thorough metabolic under-

standing which, in turn, would appear to be the first

prerequisite for a more rational application of biolog-

ical producer systems (Schwab et al. 2008).

The world market of flavours and fragrances has a

current volume of $20 billion. Still \10% of the

supply is derived from bioprocesses. Examples, such

as the Bartlett pear impact compound, ethyl 2,4-

(E,Z)-decadienoate (Table 1), which is cheaper to

produce using enzyme catalysis than chemosynthesis,

should encourage further research. Looking at the

rapid progress in so many areas of the life sciences

and considering the decreasing reliability of tradi-

tional sources, it is easy to predict that the share of

biotechnology will grow in the future.
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