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Abstract Most high-affinity phosphate transporter

genes (OsPTs) in rice were highly induced in roots

when phosphate was depleted. OsPT1, however, was

highly expressed in primary roots and leaves regardless

of external phosphate concentrations. This finding was

confirmed histochemically using transgenic rice plants

that express the GUS reporter gene under the control of

the OsPT1 promoter, which exhibited high GUS

activity even in the phosphate sufficient condition.

Furthermore, transgenic rice plants overexpressing the

OsPT1 gene accumulated almost twice as much

phosphate in the shoots as did wild-type plants. As a

result, transgenic plants had more tillers than did wild-

type plants, which is a typical physiological indicator

for phosphate status in rice.
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Introduction

Phosphate (Pi) is a constituent of key molecules such

as ATP, nucleic acids, and phospholipids, which play

crucial roles in energy transfer, metabolic regulation,

and protein activation. Plants have evolved a number

of different adaptive strategies to maximize Pi

acquisition under Pi-limiting conditions. Biochemical

and metabolic adaptations, including the secretion of

organic acids, RNases, and acid phosphatases from

roots, enhance the availability of Pi in the rhizosphere

(Poirier and Bucher 2002). Developmental responses,

such as increases in the root/shoot ratio, root hair

proliferation and increased length, and lateral root

number, increase the surface area for absorption,

thereby increasing uptake efficiency (Poirier and

Bucher 2002).

Many high-affinity Pi transporter genes have been

isolated from Arabidopsis, potato, Medicago, tomato,

maize and barley. Most of these genes are expressed

predominantly in roots and are induced by Pi

depletion, indicating that they are involved in the

acquisition of Pi through the roots when low external

Pi concentrations exist in the soil. However, the

recent completion of plant genome projects has

allowed for the detailed description of members of

Electronic supplementary material The online version of
this article (doi:10.1007/s10529-008-9757-7) contains
supplementary material, which is available to authorized users.

H.-M. Seo � Y. Jung � Y. Kim � T. Kwon �
S.-J. Jeung � Y.-B. Yi � J. Nam (&)

Department of Molecular Biotechnology,

Dong-A University, Busan 604-714, Korea

e-mail: jnam@dau.ac.kr

S. Song � G. Yi � M.-H. Nam

Yeongnam Agricultural Research Institute, NICS,

Milyang 627-803, Korea

D.-H. Kim

Department of Genetic Engineering, Dong-A University,

Busan 604-714, Korea

123

Biotechnol Lett (2008) 30:1833–1838

DOI 10.1007/s10529-008-9757-7

http://dx.doi.org/10.1007/s10529-008-9757-7


this family in Arabidopsis (Misson et al. 2004) and in

rice (Paszkowski et al. 2002). Fusions of the promot-

ers of AtPT family members to the GUS or GFP

reporter genes have shown that these transporters are

active in a variety of developmental stages and in

various organs, including shoot tissues (Misson et al.

2004). These results suggest that the high-affinity Pi

transporters of Arabidopsis have distinct roles in the

internal translocation of Pi throughout the plant, in

addition to the primary uptake of Pi from the soil.

In this study, we investigated the expression

patterns of nine high-affinity Pi transporters from

Oryza sativa in response to Pi depletion. Of this set of

genes, the OsPT1 gene clearly showed a different

response to Pi deficiency, including a different

expression pattern. Using transgenic rice plants that

overexpressed the OsPT1 gene, we demonstrated that

OsPT1 is a bona-fide Pi transporter that is essential

for the accumulation of high concentrations of Pi in

the shoot.

Materials and methods

Plant materials and growth conditions

Plant materials and hydroponics growth conditions

were prepared as described by Hur et al. (2007). A field

experiment was performed in the Field Experiment

Station of the Yeongnam Agricultural Research Insti-

tute (Milyang, South Korea) from June to October

2006. Twenty-day-old wild-type and transgenic seed-

lings (overexpressing OsPT1) were transplanted at

15- to 20-cm spacing into three plots. Two different

fertilization conditions were applied to the soil of

each plot before transplanting: normal fertilization

(N:P:K = 4.5:4.5:4.0 kg/10a) or fertilization without

Pi (N:K = 4.5:4.0 kg/10a). Three plants per plot were

randomly harvested to investigate the contents of

various nutrient elements at three growth stages (tiller-

ing, heading and harvesting).

Cloning of the OsPT1 gene from rice, vector

construction, and generation of transgenic

rice plants

Using an oligonucleotide primer set (For: TGTCTAG

ACATGGCGGGAGGGCAGCTC, Rev: GCTCTAG

AATTACTTCGGGTAGGCCGCC), the coding region

of the OsPT1 gene was amplified from rice genomic

DNA by PCR. The PCR product was sequenced and

cloned into pCAMBIA1300-35S for expression under

the control of the CaMV 35S promoter. The OsPT1

promoter region (including 1.2 kb upstream from the

OsPT1 start codon) was amplified from rice genomic

DNA by PCR, using an oligonucleotide primer set that

added EcoRI and NcoI sites (For: TGGGGATCCGGC

CACCATTAGCAAGTG, Rev: CCCGCCATGGCTT

CCCAACTCTTTGAG). After digestion of the PCR

product with EcoRI and NcoI, the promoter region was

fused with the initiating ATG of the b-glucuronidase

(GUS) reporter gene in the binary vector pCAM-

BIA1381Z. The expression constructs were introduced

into A. tumefaciens (EHA105) by tri-parental mating.

Rice plants were transformed with A. tumefaciens as

described by Hiei et al. (1994). Homozygote transgenic

lines overexpressing OsPT1 gene were selected by

hygromycin resistance (50 mg/l) and used for field tests.

RNA extraction and northern blot analyses

Total RNA was isolated from rice plants using TRIzol

reagent (Invitrogen). Total RNA (10 lg) was separated

by electrophoresis on a 1.2% (w/v) denaturing form-

aldehyde agarose gel, blotted onto nylon transfer

membranes (Amersham), and crosslinked with UV

light. The membranes were hybridized at 65�C for 12 h

with a [32P]-dATP-labeled probe (Amersham) in a

solution containing 7% (w/v) SDS, 1.59 SSPE, 100 g

PEG (8,000 MW)/l, 250 mg/l heparin, and 10 ml

herring sperm DNA/l (10 mg/ml). After hybridization,

the membrane was washed twice with 29 SSC and

0.1% SDS for 30 min each at 65�C, and then twice with

0.19 SSC and 0.1% SDS for 10 min each at room

temperature.

Histochemical analysis of GUS expression

Histochemical analysis of GUS activity was per-

formed essentially as described by Jefferson et al.

(1987). Whole rice transgenic plants were grown

hydroponically in nutrient solutions supplemented

with 1 mM Pi (Pi+) or 35 lM Pi (Pi-) for 2 days,

then incubated at 37�C for 12 h in an X-gluc staining

solution. The resulting GUS expression patterns were

assessed using a dissecting microscope.
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Measurement of Pi concentrations and other

nutrient elements

Shoots of wild-type and transgenic plants grown

under two different fertilization conditions were

sampled at three different growth stages, dried at

70�C for 2 days, and ground with a Willey mill

(Tomas Scientific, USA); biomass was determined as

dry weight. For determination of total nitrogen

contents, the plant samples (0.5 g) were digested

with 5 ml of concentrated HClO4–H2SO4 and pro-

cessed by the Kjeldahl protocol (Auto Kjeldahl,

FOSS 2300, USA). Pi concentrations were measured

with the phosphomolybdenum blue reaction of the

Lancaster protocol. Potassium contents were mea-

sured by inductively-coupled plasma spectroscopy

(ICP, Perkin Elmer Optimer 3300).

Results and discussion

Expression patterns of the OsPT genes in rice

plants

To examine the tissue-specific expression of the

OsPT genes in Pi-starved rice plants, we performed

northern blot analyses with total RNA isolated from

the roots and shoots of rice plants grown in hydro-

ponics with 1 mM (P+) or 35 lM (P-) Pi. The

expression of OsPT2, OsPT4, OsPT6, OsPT7,

OsPT8, and OsPT12 was upregulated predominantly

in roots exposed for two days to Pi-deficient condi-

tions (Fig. 1). These results were consistent with the

expression patterns of other plant high-affinity phos-

phate transporter genes, and strongly suggested that

these OsPT genes function as major high-affinity Pi

transporters involved in the uptake of Pi from the

rhizosphere under Pi-limited conditions.

In contrast, the OsPT1 gene was expressed con-

stitutively in the shoot regardless of Pi concentration,

although OsPT1 expression in roots was slightly

elevated by Pi deficiency (Fig. 1). The distinct

expression pattern of OsPT1 was confirmed with

callus suspension cells derived from rice seeds that

were incubated in the presence of different concen-

trations of Pi (lM). After two days of incubation, the

callus suspension cells were harvested, total RNA

was extracted, and the transcriptional levels of OsPT1

and OsPT6 genes were investigated. A strong inverse

relationship between the Pi concentration and the

expression of the OsPT6 gene was observed. How-

ever, OsPT1 was not significantly regulated by Pi

concentration (Supplementary Fig. 1). Similarly,

LePT1 (Liu et al. 1998) and StPT1 (Leggewie et al.

1997), which are tomato and potato high-affinity

Pi transporters, respectively, are constitutively

expressed not only in roots but also in other plant

organs, including leaves, stems, tubers, and flowers.

The distinct spatial and temporal expression patterns

of these Pi transporter genes imply that they may

function beyond the acquisition of Pi from the soil.

Histochemical analysis of the OsPT1 promoter

in rice

To determine the expression pattern and organ

specificity of OsPT1, an OsPT1 genomic fragment

containing a 1.5 kb promoter with a start codon was

fused in frame with the b-glucuronidase (GUS)

reporter gene; the resulting construct was used to

make transgenic rice plants. A histochemical analysis

of GUS expression in T2 transgenic plants indicated

Fig. 1 The expression patterns of OsPT genes in rice plants in

response to Pi starvation. Total RNA isolated from roots (R)

and shoots (S) of rice plants grown hydroponically in nutrient

solutions supplemented with 1 mM Pi (P+) or 35 lM Pi (P-)

were hybridized with probes specific for the OsPT genes. Equal

loading of RNA was demonstrated by ethidium bromide

staining of the ribosomal RNAs
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that OsPT1 was ubiquitously expressed in leaves,

stems, and roots of plants grown hydroponically even

in the phosphate sufficient condition. In contrast, a

control plant containing OsPT4 promoter-GUS fusion

showed a weak GUS activity in the leaf (Fig. 2).

These results were consistent with the northern blot

analysis. Specifically, stronger GUS expression was

observed in primary roots as compared to lateral roots

and root hairs of the transgenic plants containing

OsPT1 promoter-GUS fusion (Fig. 2c), where Pi

uptake takes place in response to Pi deficiency. This

observation suggests a possible role for OsPT1 in the

acquisition and mobilization of Pi at the basal level,

irrespective of the Pi concentration in the rhizosphere.

Overexpression of the OsPT1 gene in rice

enhances Pi acquisition

To test the possibility that OsPT1 can contribute to Pi

acquisition in the shoots independent of Pi concentra-

tions, we generated transgenic rice plants that

overexpressed the OsPT1 gene under the control of

the CaMV 35S promoter (OsPT1-OX). Expression

levels of the OsPT1 gene in the transgenic lines were

confirmed by northern blot analysis, and independent

OsPT1-OX lines (#1 and #2) were selected for further

study (Fig. 3a). Interestingly, as shown in Fig. 3b, c,

the OsPT1-OX plants had better root growth and more

tillers than wild-type plants; these phenotypes were

strongly correlated with Pi content and considered to

be indicators of Pi status in plants (Yi et al. 2005)

Therefore, it is likely that OsPT1-OX plants accumu-

lated more Pi than wild-type plants.

Using the wild-type and OsPT1-OX line #2

homozygote plants grown under different fertilization

conditions in the field, we measured the Pi content in

the shoots of plants randomly taken during three

growth stages (tillering, heading, and harvesting). At

each growth stage, the OsPT1-OX plants accumu-

lated almost twice as much Pi as did wild-type plants,

independent of fertilization conditions (Fig. 4). Fer-

tilization with Pi (P; N:P:K = 4.5:4.5:4.0 kg/10a)

slightly increased Pi content in wild-type plants, but

had no detectable effect on the OsPT1-OX plants,

indicating that the existing Pi content in the soil

(135 mg Pi/kg soil) was high enough for the OsPT1-

OX plants to take up sufficient Pi (Fig. 4b). These

results suggested that OsPT1 is a ubiquitous trans-

porter that functions in Pi translocation within the

whole plant rather than in direct Pi uptake from the

soil, consistent with an increased number of tillers in

the transgenic lines. Furthermore, the transgenic

plants had generated 20% more panicles than wild-

type plants at the harvest stage (Table 1).

However, the height of the transgenic plants during

harvesting time was 30% shorter than that of wild-

type plants, independent of fertilization conditions

(Table 1). It is likely that the increased acquisition of

Fig. 2 Tissue specificity of the OsPT1 promoter as determined

by GUS staining in transgenic rice plants. Transgenic rice

plants transformed with the OsPT1 or OsPT4 promoter-GUS

fusion were grown hydroponically in nutrient solutions

supplemented with 1 mM Pi (P+) for 3 weeks and stained

for GUS activity. The OsPT4 promoter-GUS fusion transgenic

line exhibited GUS activity marginally in the junction of leaf

and stem (a). In contrast, strong GUS activity was detected

ubiquitously in the leaf (a), stem (b), and roots (c) of rice

transgenic plants containing the OsPT1 promoter-GUS fusion
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Pi by overexpression of OsPT1, without a concomitant

increase in other nutrients such as nitrogen (N) and

potassium (K; Supplementary Table 1) could induce a

deficiency of the other nutrients by a dilution effect.

Because the critical deficiency contents of N and K

increase as the P content increases, the OsPT1-OX

plants may be under a condition of N and P deficiency,

leading to shorter height as compared to wild-type.

Optimal ratios between nutrients in plants are often as

important as absolute contents (Marschner 1995).

Previous studies have indicated that increased

expression of high-affinity Pi transporter genes (Pht1)

enhances Pi acquisition from Pi-limited environ-

ments, as shown by increased Pi uptake rates in BY2

suspension cells and in rice suspension cells over-

expressing ARAth;Pht1;1 (AtPT1) (Mitsukawa et al.

1997) or HORvu;Pht1;1 (HvPT1) (Rae et al. 2003),

respectively. However, the successful use of high-

affinity Pi transporter genes to enhance Pi acquisition

in plants has not previously been reported (Rae et al.

2004). In this study, we provided molecular evidence

demonstrating that the distinct class of the OsPT1

gene was able to enhance the efficiency of Pi

acquisition by the plant. We expect this finding to

contribute to the development of transgenic plants

able to adapt to Pi-deficient conditions by manipu-

lating OsPT1, in combination with other nutrient

transporter genes. New transgenic plants might lead

to improved crop yields and productivity, with a

lower input of P fertilizer, thereby protecting the

environment.

Fig. 3 Effect of the overexpression of OsPT1 on plant growth.

(a) Northern blot analysis of OsPT1 for wild-type and

independent transgenic lines transformed with OsPT1 under

the control of the CaMV 35S promoter. Ethidium bromide

staining of ribosomal RNA was shown at the bottom and used

as a control for equal loading. Growth phenotypes of wild-type

and transgenic rice plants grown in pots containing acid clay

soil (135 mg Pi/kg soil) with normal fertilization (N:P:K =

4.5:4.5:4.0 kg/10a) for 5 weeks (b) or 12 weeks (c)

Fig. 4 Effect of the overexpression of OsPT1 on Pi content in

shoots. Three plants per plot were randomly taken for

determination of Pi content at three growth stages (tillering,

heading and harvesting). (a) Pi content of plants fertilized

without Pi (N:K = 4.5:4.0 kg/10a), (b) Pi content of plants

fertilized with Pi (N:P:K = 4.5:4.5:4.0 kg/10a)
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