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Abstract
The number of patients with COVID-19 caused by severe acute respiratory syn-
drome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis 
(TB), the presence of one disease affects the infectious status of the other. Mean-
while, coinfection may result in complications that make treatment more difficult. 
However, the molecular mechanisms underpinning the interaction between TB and 
COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the 
shared pathways and molecular biomarkers in TB and COVID-19, allowing us to 
determine the complex relationship between COVID-19 and TB. Two RNA-seq 
datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were 
used to find concerted differentially expressed genes (DEGs) between TB and 
COVID-19 to identify the common pathogenic mechanisms. A total of 124 com-
mon DEGs were detected and used to find shared pathways and drug targets. Sev-
eral enterprising bioinformatics tools were applied to perform pathway analysis, 
enrichment analysis and networks analysis. Protein–protein interaction analysis and 
machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) 
and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The 
mechanism of protein-drug interactions may have reference value in the treatment of 
coinfection of COVID-19 and TB.
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Introduction

Novel coronavirus pneumonia (COVID-19), caused by SARS-COV-2, is affect-
ing the world on a massive scale (Meo 2021). The spike protein (S) is the site 
where COVID-19 binds to human ACE2 and where mutations frequently occurs. 
The primary symptoms were fever, dry cough and fatigue. Some patients had the 
loss of smell and taste as the first manifestations, and a few had symptoms such 
as nasal congestion, sore throat, diarrhea myalgia, and conjunctivitis (Walls et al. 
2020).

TB is a pulmonary infectious disease caused by Mycobacterium tuberculo-
sis (M. tuberculosis) (Fogel 2015). Its transmission through the respiratory tract 
affects the lungs, producing symptoms of severe cough, hemoptysis, fever, chest 
pain or even dyspnea. Before COVID-19, the single infectious disease that caused 
the highest death rate was TB, surpassing AIDS.

There will be a catastrophe for patients if TB, a chronic infectious disease, 
and COVID-19, an acute infectious disease, coinfect (Tapela et  al. 2020). The 
2021 global TB report issued by the WHO also clearly states that the number of 
global TB deaths decreased until 2019, but it began to increase again in 2020. 
TB is being forgotten in regard to diagnosis or treatment due to the prevalence of 
COVID-19. Missing TB diagnosis or improper treatment may cause TB exacerba-
tion, which is an undesirable effect of COVID-19 treatment and its prognosis, and 
even some complications.

Studies have shown that both active TB and latent TB are at increased risk for 
COVID-19 and worsening infection (Motta et  al. 2020; Mousquer et  al. 2021; 
Stochino, et al. 2020). One reason is that damage to the lungs and effects on local 
immunity caused by tuberculosis make the body more susceptible to airborne 
pathogens (Mousquer et  al. 2021). Moreover, the relationship between TB and 
SARS-COV-1, which shares 80% of the genome with SARS-CoV-2, shows that 
TB delays viral clearance, exacerbates disease and raises the stakes of disease 
transmission. SARS-CoV-2, in turn, has the potential to cause susceptibility to M. 
tuberculosis or reactivate latent TB since infection with other agents can disrupt 
the maintenance of granulomas caused by good immune regulation (Motta et al. 
2020; Crisan-Dabija et al. 2020).

The delayed or weakened response to SARS-COV-2 caused by the coinfec-
tion of tuberculosis and COVID-19 leads to a systemic depletion of T cells, fur-
ther bringing about a proliferation of cytokines and a remarkable increase in the 
number of neutrophils (Crisan-Dabija et al. 2020; Muefong and Sutherland 2020; 
Diao et  al. 2020; Miotto et  al. 2001). IFN-γ increases the expression of ACE2 
receptors on cells; IL-4 and IL-13 are involved in immunopathological damage, 
and neutrophilia leads to increased inflammation and tissue damage (Heitmann 
et al. 2014; Vaz de Paula, et al. 2020).

Two datasets, GSE114192 and GSE163151, for TB and COVID-19, respec-
tively, from the GEO database were available further to explore the interaction 
between TB and COVID-19. First, we identified the DEGs from the two diseases 
and then obtained the common DEGs. In addition, we conducted pathway analysis 
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and enrichment analysis, constructed a PPI network, constructed DEGs-miRNAs, 
DEGs- transcription factors (TFs) and protein-drug interactions networks, per-
formed disease ontology analysis to determine the impact of COVID-19 on TB 
and searched for potential biomarkers and therapeutic targets to facilitate the 
development of treatment. Here, we have made a flowchart, as shown in Fig. 1.

Materials and Methods

Summary of Datasets

Both the microarray and RNA sequencing datasets of SARS-CoV-2 and TB were 
obtained from the GEO database of the National Center for Biotechnology Informa-
tion (NCBI) (Barrett, et al. 2013). To ensure the consistency of the test samples and 
the adequacy of the sample size for the two diseases, we found that the sample source 
from whole blood was the best choice, and the COVID-19 dataset (GSE163151) 
and TB dataset (GSE114192) were the best combination. The COVID-19 dataset 
GSE163151 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 3151) 
was from the GPL24676 Illumina NovaSeq 6000 platform (Homo sapiens), with 
contributions from Chiu CY et al. We selected samples derived from whole blood 
and sorted 7 COVID-19 groups and 20 healthy controls. The TB dataset GSE114192 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi) was from the GPL18573 Illumina 
NextSeq 500 platform (Homo sapiens) provided by Eckold C et al. Its samples are 
also from whole blood, containing 44 TB groups and 38 healthy controls. Both data-
sets were obtained by high-throughput sequencing. COVID-19 dataset GSE171110 

Fig. 1  Schematic illustration of the flow-process diagram of this study

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163151
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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and TB datasets GSE54992 and GSE79362 were used as validation cohorts. Table 1 
shows the basic information for the databases.

DEGs and the Common DEGs of COVID‑19 and TB

Screening standards (P value < 0.05 and |log2(FC)|≥ 1) were used to ascertain 
important DEGs in both datasets. Visualization of sequencing data for DEGs was 
performed using the DESeq2 and EdgeR packages in NetworkAnalyst (https:// www. 
netwo rkana lyst. ca/), each for COVID-19 and TB. NetworkAnalyst is a platform for 
visualizing comprehensive gene expression profiling and meta-analysis (Zhou, et al. 
2019). The mutual DEGs of GSE114192 and GSE163151 were obtained by the 
ggplot2 package of the R programming language (v3.6.3), and the corresponding 
Venn diagrams were drawn.

Mutual Functional Enrichment Analysis

The “clusterProfiler” package of R programming language was applied to con-
duct gene ontology analysis in three categories of biological process (BP), cellu-
lar components (CC), molecular functions (MF) and pathway enrichment. The GO 
database and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for 
analysis. GO is a database that aims to define and describe the functions of genes 
and proteins for each species (Ashburner et al. 2000). The KEGG pathway is gener-
ally regarded as a process that modifies metabolism and has considerable utility in 
genome analysis and gene annotation (Kanehisa and Goto 2000). The standard met-
ric P value < 0.05 was used to quantify the top paths.

Analysis of Protein Interactions

The protein interaction network shows the participation and association of related 
genes in the protein interaction network. The STRING tool retrieved the DEGs to 
obtain information about the protein interaction network. STRING (https:// string- db. 

Table 1  Overview of datasets with their GEO features

GEO accession GEO platform Disease name Tissue type Analysis Sample

GSE163151 GPL24676 SARS-CoV-2 Whole blood Exploration 
cohort

7 COVID-19 and 20 
CON

GSE171110 GPL16791 SARS-CoV-2 Whole blood Validation cohort 44 COVID-19 and 
10 CON

GSE114192 GPL18573 TB Whole blood Exploration 
cohort

44 TB and 38 CON

GSE54992 GPL570 TB Whole blood Validation cohort 6 TB and 27 CON
GSE79362 GPL11154 TB Whole blood Validation cohort 110 TB and 244 

CON

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://string-db.org/
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org/) provides experimental and predicted interaction information to produce protein 
interaction networks (Szklarczyk et al. 2017).

Extraction and Verification of the Hub Gene

The Cytoscape plugin CytoHubba (Cytoscape App Store—cytoHubba) ranks nodes 
in network features (Chin et al. 2014). We used Cytohubba, applying degree topo-
logical algorithm to obtain the top 10 hub genes, which are the most concentrated 
nodes. Then, the COVID-19 dataset GSE171110 and TB datasets GSE54992 and 
GSE79362 were used to verify the hub genes. Then, two machine learning methods 
were used to further screen out the most critical differentially expressed genes. By 
using the SVM-REF classifier, which applied the "e1071" R package, we further 
screened the hub genes most related to COVID-19 from the initially screened hub 
genes. Random Forest (RF) with the application of the "randomForest" R package 
was used to screen the most critical genes in TB. Finally, the intersection through a 
Venn diagram of the two screening results was used to obtain the most critical genes 
that connect COVID-19 and TB.

Analysis of DEG‑TFs and DEG‑miRNAs Interactions

Transcription factors (TFs) distinguish the specific DNA sequences that control tran-
scription and are the basis of many different aspects of human physiology, disease, 
and variation (Lambert et al. 2018). We sought topologically credible TFs from the 
JASPAR database through the NetworkAnalyst platform. JASPAR is an open-access 
database for TFs across multiple species in six taxonomic groups (Fornes et  al. 
2020). Mature miRNAs bind to sites of their complementary mRNAs and regulate 
gene expression through base pairing. NetworkAnalyst was also used to construct 
the miRNA-gene interaction network to detect the miRNAs that play an essential 
regulatory role in target genes. MirTarBase and Tarbase were used for analysis. Mir-
TarBase is the primary experimental database for miRNA-gene interactions, com-
prising the largest number of validated MTIs in contrast to akin databases (Hsu, 
et al. 2011). Additionally, we used a degree filter to select the top miRNAs and TFs 
at a high level and test biological functions and characteristics.

Association Between Gene and Disease

The disease ontology (DO) (http:// disea se- ontol ogy. org) was used to search for the 
etiology of human disease (Schriml et al. 2019). The Genetic Association Database 
(GAD) is a database of genetic association data from inherited, acquired and human 
developmental diseases. R software was used to perform DO enrichment with the 
“DOSE” package. We also used DAVID Bioinformatics Resources 6.8 (https:// 
david. ncifc rf. gov/) to perform disease enrichment, which uses GAD as the second-
ary source (Huang et al. 2009a, b). We combined the data from the two approaches 
and sorted out the top 15 gene-enriched diseases.

https://string-db.org/
http://disease-ontology.org
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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Estimate the Correlative Drugs

We used DrugBank via NetworkAnalyst based on the DEGs of TB and COVID-
19 to recognize drug molecules by identifying protein-drug interactions. DrugBank 
(http:// www. drugb ank. ca), a drug database, possesses well-rounded molecular infor-
mation about drugs (Wishart, et al. 2018).

Results

Identification of the Shared DEGs Between COVID‑19 and TB

The GSE163151 dataset was used for the identification of COVID-19 differentially 
expressed genes. A total of 5894 differentially expressed genes were identified, of 
which 5212 were up-regulated and 682 were down-regulated. Similarly, 411  TB 
genes were differentially expressed in the GSE114192 dataset, including 295 upreg-
ulated genes and 116 downregulated genes. The 124 common DEGs are visualized 
by a Wayne diagram (Fig. 2).

Analysis of Gene set Enrichment

Through basic molecular or biological processes, pathway analysis illustrates the 
interactions with diverse diseases. The study illustrated the top 10 GO terms based 
on the log of the P value and z score for each of the subsections (BP, MF and CC) 
(Table 2) (Fig.  3), and the top 6 terms of pathway enrichment analysis were also 
based on the P value. The top three GO terms of BP included response to mole-
cule of bacterial origin, response to lipopolysaccharide, and regulation of inflam-
matory response. Blood microparticle, collagen-containing extracellular matrix and 
high-density lipoprotein particle were the top three of CC. Meanwhile, MF included 
serine-type peptidase activity, serine hydrolase activity, endopeptidase activity, etc. 
The top 6 KEGG human pathways included tryptophan metabolism, Staphylococcus 

Fig. 2  Common DEGs of 
COVID-19 and TB representa-
tion through a venn diagram. 
This integrated analysis revealed 
124 common DEGs shared 
between COVID-19 and TB

http://www.drugbank.ca
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aureus infection, African trypanosomiasis, cGMP-PKG signaling pathway, type II 
diabetes mellitus, complement, and coagulation cascades (Table 3) (Fig. 4).

Screening and Validation of Hub Genes and Module Analysis

The PPI network made by the STRING online tool was applied to identify the inter-
action among proteins containing 107 nodes and 66 edges (Fig.  5). The top ten 
identified hub genes selected by the Cytohubba plugin in Cytoscape were ATF3, 
IL27, CLEC11A, PDCD1LG2, GAS6, HPR, MMP1, C2, OAS3 and CETP(Fig. 6).
After validation of datasets GSE171110, GSE54992 and GSE79362, 8 hub genes 
were identified: IL27, CLEC11A, PDCD1LG2, GAS6, HPR, C2, OAS3 and CETP 
(Fig. 7). Through machine learning, four of the most critical genes for COVID-19 
were obtained by the SVM-REF algorithm, and five of the most critical genes for 
TB were obtained by the RF algorithm. After the intersection of the two, three com-
mon hub genes (GAS6, OAS3 and PDCD1LG2) were obtained, which were taken as 
the final key genes in COVID-19 and TB (Fig. 8).

DEGs–miRNA and TF–DEGs Interactions

To identify transcription factors and regulatory molecules that work together in 
both diseases, we applied a network-based approach through the NetworkAnalyst 
online tool to demonstrate. The DEGs–miRNAs interactions network contains 154 
nodes and 365 edges. (Fig. 9) The TFs-DEGs network comprised 111 nodes and 604 
edges(Fig.  10). Degree represents the number of connections between two nodes. 
We use degree as the screening standard for network hubs. Therefore, we screened 
out the top ten TFs (FOXC1, GATA2, YY1, USF2, FOXL1, JUN, RELA, TFAP2A, 
E2F1 and HINFP) as hubs and screened out ten hub miRNAs. They are hsa-mir-
335-5p, hsa-mir-26b-5p, hsa-mir-124-3p, hsa-mir-665, hsa-mir-6840-3p, hsa-mir-
4695-5p, hsa-mir-98-5p hsa-mir-1273e, hsa-mir-17-5p, and hsa-mir-30a-5p. Node 
color reflects the degree of connection and node size reaction interaction intensity as 
reference standards.

Identification of Disease Association

DO analysis was used to predict the possible complications of TB and COVID-19 
coinfection and to design therapeutic strategies for diseases. Bacterial infectious 
disease, lymphoma, non-Hodgkin’s lymphoma, lymphadenitis, type 2 diabetes, and 
hepatitis C are shown with the highest correlation according to the P value. (Fig. 11).

Fig. 3  Gene ontology analysis of DEGs in both the GSE163151 and GSE114192 datasets. A GO enrich-
ment of DEGs in biological process. B GO enrichment of DEGs in molecular function. C GO enrich-
ment of DEGs in cellular components

▸
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Screening of Candidate Drugs

Figure 12 shows the interaction between drugs and the six most essential genes in 
the common DEGs of COVID-19 and TB, including MAOB, C1QC, IL10, EDNR8, 
CDO1 and CCL2. Candidate drugs representing common drugs for COVID-19 and 
TB were selected.

Discussion

Both TB and COVID-19 have similar symptoms, such as fever, cough and dysp-
nea. Under the current situation in which medical resources are focused on the 
treatment of COVID-19 when TB patients are coinfected with SARS-COV-2, the 
diagnosis of TB is easily overlooked. Meanwhile, the pathogenesis of coinfection is 
complex, posing a challenge to treatment. Transcriptome analysis of SARS-CoV-2 
and TB revealed that a total of 124 DEGs showed shared expression in both. These 

Table 3  Pathway enrichment analysis of common DEGs between SARS-CoV-2 and TB

Category Pathways P-Value Genes

KEGG Tryptophan metabolism 0.003305125 AOC1, AANAT, MAOB, IDO1
KEGG Staphylococcus aureus infection 0.007704278 IL10, CFB, C1QC, C2
KEGG African trypanosomiasis 0.025486177 IL10, HPR, IDO1
KEGG cGMP-PKG signaling pathway 0.030907637 EDNRB, KCNMA1, MYL9, 

CNGB1, SLC8A2
KEGG Type II diabetes mellitus 0.05069322 SOCS3, SOCS1, CACNA1E
KEGG Complement and coagulation cascades 0.095490277 CFB, C1QC, C2

Fig. 4  KEGG pathway enrichment analysis of DEGs in both GSE163151 and GSE114192
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124 common DEGs were used to find common pathways and molecular markers 
between TB and COVID-19 to identify the relationship between TB and COVID-
19 and seek drugs with significant therapeutic effects on the coinfection of TB and 
COVID-19 and its comorbidities. GO analysis, pathway analysis, PPIs, TF-gene 
interactions, miRNA-gene coregulatory networks, DO enrichment analysis and can-
didate drug detection were performed to complete this study.

In biological processes, the response to molecules of bacterial origin and the 
response to lipopolysaccharide (LPS) are the two top GO pathways. Studies have 
shown that LPS can be used as a biomarker in TB (Larrouy-Maumus 2019). The S 
protein of SARS-COV-2 specifically binds with LPS to produce a synergistic effect, 
promoting the response of proinflammatory cells in vivo and in vitro and leading to 
excessive inflammation (Petruk et al. 2020; Tumpara, et al. 2021). Pulmonary infec-
tion with M. tuberculosis or SARS-COV-2 leads to the activation of alveolar mac-
rophages and pulmonary epithelial cells and further the release of proinflammatory 
cytokines, which increases the permeability of the pulmonary endothelium, allow-
ing the transmission of bacteria or viruses (Polidoro et  al. 2020). For the cellular 

Fig. 5  PPI network of common DEGs between COVID-19 and TB. In the figure, the circle nodes repre-
sent DEGs, and the line thickness indicates the strength of data support
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component, the top GO terms were blood microparticles and collagen-containing 
extracellular matrix. Blood microparticles are critical cellular components in the 
inflammatory response and are mainly released by platelets and megakaryocytes. 
Microparticles can send signals to surface receptors and affect the inflammatory 
response and function of receptor cells, which can also be used as biomarkers for the 
clinical diagnosis of inflammation (Sahler et al. 2014). Collagen plays an essential 
role in cell growth and development or healing and regeneration (Fu et  al. 2018). 
According to the molecular function, serine-type endopeptidase activity and oxi-
doreductase activity were among the top GO terms. Serine endopeptidase catalyzes 
the hydrolysis of α-peptide bonds in polypeptide chains and makes a difference in 
coagulation and complement systems. Among them, type II transmembrane serine 
endopeptidase can cleave the spike protein of coronavirus, making it a potential 
therapeutic target of coronavirus (Iwata-Yoshikawa, et al. 2019).

Pathway analysis is used to reflect the response of an organism through inter-
nal changes. The top 6 KEGG human pathways included tryptophan metabo-
lism, Staphylococcus aureus infection, African trypanosomiasis, cGMP-PKG 
signaling pathway, type II diabetes mellitus, complement, and coagulation cas-
cades. Here, tryptophan metabolism regulates different physiological processes; 
thus, changes in its content can help predict diseases. The changes in trypto-
phan and its metabolites are closely related to the critical pathophysiologi-
cal processes of both SARS-COV-2 and TB (Anderson et  al. 2021; Cho et  al. 
2020). The increased AHR ligands and the activation of rate-limiting enzymes 

Fig. 6  Determination of hub genes between COVID-19 and TB from the PPI network
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( Indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase) that convert 
tryptophan (the precursor of serotonin synthesis) to kynurenine are both caused 
by differential regulation of tryptophan metabolites. They are associated with 
cytokine storms induced by SARS-COV-2 infection and affect serotonin syn-
thesis levels (Anderson et al. 2021, 2020). Studies have shown that l-tryptophan 
(L-TRP) is decreased in patients with active TB and that its metabolites [includ-
ing l-Kynurenine(KYN)] are increased, thus affecting immune function (Cho 

Fig. 7  Hub gene verification results. A Validation of hub genes in the COVID-19 dataset GSE171110. 
B–C Validation of hub genes in the TB datasets GSE54992 and GSE79362
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et al. 2020; Feng et al. 2015; Isa et al. 2018; Vrieling et al. 2019; Weiner et al. 
2012). Determination of the L-TRP/KYN ratio or IDO activity is conducive to 
the diagnosis and prognosis of TB, and patients with low IDO activity have a bet-
ter prognosis (Crowther and Qualls 2020).

Three hub proteins (PDCD1LG2, GAS6, and OAS3) were identified to be 
involved in these diseases and can be considered potential biomarkers or novel 
drug targets. The remaining five genes that were not selected for the final hub 
gene also played an important role. Activated platelets in COVID-19 and TB 
stimulate the release of large amounts of IL-27, while polymorphisms of IL27 
play a protective role in susceptibility to TB (Diao et  al. 2020; Taus et  al. 
2020). CLEC11A is a growth factor of primitive hematopoietic progenitor cells. 
PDCD1LG2 is a biomarker of tuberculosis and engages in the negative regula-
tion of activated T-cell proliferation, interferon-γ production and interleukin-10 
production (Huang et  al. 2020). GAS6 is involved in stimulating cell prolifera-
tion and is often overexpressed in many cancers. It is also a key regulator of 
inflammation and vascular injury responses, participates in coagulation-related 
pathology, and acts importantly on SARS-COV-2 infection and progressive 

Fig. 8    Machine learning screening for hub genes. A SVM-RFE algorithm to screen candidate genes 
based on the COVID-19 dataset GSE163151. The point highlighted indicates the optimal accuracy, and 
the corresponding genes at this point are the best signature selected by SVM-RFE. B–C The random 
forest algorithm to screen candidate genes based on the TB dataset GSE114192. The random forest algo-
rithm shows the error in TB, ranking of the relative importance of genes. D Venn diagram showing the 
hub genes shared by SVM-RFE algorithms and random forest algorithm
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complications. Its elevated expression level is also associated with various dis-
eases, such as venous thromboembolic disease and systemic lupus erythemato-
sus (Tutusaus, et  al. 2020). HPR can efficiently bind to hemoglobin and play a 
specific role in innate immune defense (Yang et al. 2018). The C2 component is 
a serum glycoprotein, a part of the classical pathway of the complement system 
(Urban et  al. 2021). The OAS3 enzyme is induced by interferon and functions 
to inhibit cellular protein synthesis and resistance to viral infection (Xiao et  al. 
2019). CETPP participates in reverse cholesterol transport from high-density 
lipoprotein to others. It is associated with type 2 diabetes, chronic kidney disease 
and cardiovascular disease (Schmidt et al. 2021; Srirojnopkun et al. 2018). Poten-
tial biomarkers in physiopathological processes were sought from the regulatory 
biomolecules. Here, the transcriptional and posttranscriptional regulators of the 
mutual DEGs were detected by TF-gene and miRNA-gene interaction analyses. 
We found that some miRNAs engage in the regulation of inflammation (miR-
124-3p, miR-26b-5p) (Zhang et al. 2020; Zhu et al. 2021), cancer (miR-335-5p, 
miR-665, miR-4695-5p, miR-98-5p, miR-17-5p) (Fan 2018; Shi et al. 2020; Zhao 
et al. 2019), cardiovascular disease (miR-124-3p, miR-26b-5p, miR-335-5p, miR-
665) (Fan 2018; Lv et  al. 2021; Sun et  al. 2021), and neurotrophic protection 
(miR-26b-5p, miR-124-3p) (Berg et al. 2020; Geng et al. 2017). Mechanistically, 
miR-665 promotes macrophage apoptosis and autophagy, worsening TB (Jiang 
et  al. 2021). MiR-335-5p inhibits SLC2A4 expression, which aggravates type 2 
diabetes (Li and Zhang 2021). From the network, CDCP1 interacts with other 

Fig. 9  The interconnected regulatory network of DEGs-miRNAs. The square nodes and the circle nodes 
are miRNAs and gene symbols, respectively
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Fig. 10  The cohesive regulatory interaction of DEG-TFs. The circle nodes and the square nodes are gene 
symbols and TFs, respectively

Fig. 11  Bar graph of the top 10 diseases sorted by p value ranking
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genes and miRNAs at a high rate. The top five miRNAs with high degree values 
were miR-335-5p, miR-26b-5p, miR-124-3p, miR-665, and miR-6840-3p. Most 
miRNAs are involved in cancer and cardiovascular disease.

From the TF-gene network, FOXC1, GATA2, YY1, USF2, FOXL1, JUN, RELA, 
TFAP2A, E2F1 and HINFP were most associated with the common DEGs. FOXC1 
and YY1 mediate immunosuppression. E2F1 together with FOXC1 and YY1 facili-
tates tumor progression (Hays and Bonavida 2019; Shen et al. 2020). GATA2 func-
tions notably in the regulation of gene transcription during the development and 
proliferation of hematopoietic and endocrine cell lines. Its deficiency is the basis 
of mononucleosis and Mycobacterium infection (Spinner et al. 2014). FOXL1 regu-
lates the function of lung fibroblasts, which is related to pulmonary fibrosis and has 
a tumor-suppressive effect (Miyashita et  al. 2020). HINFP is highly expressed in 
both type 2 diabetes mellitus and neurological diseases (Rahman, et al. 2020).

Disease ontology enrichment analysis was available for predicting possible com-
plications of TB and COVID-19 coinfection. The common DEGs-related diseases 
of COVID-19 and TB mainly included infectious diseases, autoimmune diseases, 
metabolic syndrome, and cardiovascular diseases. These results will help us predict 
the complications of coinfection with COVID-19 and TB.

Statistics indicate that the majority of hospitalized COVID-19 patients acquire 
secondary bacterial infections. This is mainly due to the decline in immunity and 
immune system disorders caused by viral infection (Mirzaei et al. 2020). Similarly, 
research showing slight impairment of innate and cellular immunity in TB patients 

Fig. 12  Protein-drug interaction analysis using the common DEGs between COVID-19 and TB. A 
Interaction between drugs and MAOB. B Interaction between drugs, ITGA2B and C1QC. C Interaction 
between drugs and IL10. D Interaction between drugs and EDNRB. E Interaction between drugs and 
CDO1. F Interaction between drugs and CCL2
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and statistical data imply that TB patients possess a higher probability of hav-
ing other bacterial infections (Antas et  al. 2006; Attia et  al. 2019). Lymphadeni-
tis is a common symptom of both TB and SARS-COV-2 infection (Franco-Paredes 
2018; Wang et al. 2021). CD147 is operative in hepatitis and is upregulated in both 
COVID-19 and TB, facilitating the entry of viruses into cells and regulating ACE2 
expression levels (Fenizia, et al. 2021; Feruglio et al. 2015). Both COVID-19 and 
TB can disrupt the gut microbiome by releasing cytokines and toxins, leading to a 
loss of immune regulation of the intestinal mucosa and further inflammation (Chai 
et  al. 2018; Vodnar et  al. 2020). Autoimmune diseases are often accompanied by 
COVID-19 and TB. Both TB and COVID-19 can cause macrophage activation syn-
drome (MAS), which is also connected with autoimmune diseases such as connec-
tive tissue disease (McGonagle et al. 2021). For example, the increased production 
of cytokines such as IFN-γ and TNF-α in TB induces the expansion of autoreactive 
T cells. The activation of TLR-mediated signaling pathways induced by TB is asso-
ciated with autoimmune disease. The cytokine storm caused by MAS can also lead 
to other diseases, such as acute respiratory distress, cardiac dysfunction, and Alzhei-
mer’s disease (AD). Mechanisms of injury include increased capillary permeability, 
which leads to plasma deposition in tissues and further perfusion depletion.

Alzheimer’s disease is commonly seen as a central nervous system complication 
of COVID-19. Systemic inflammation affects cognitive function and promotes the 
progression of neurodegenerative diseases. The MAS triggers various inflamma-
tory pathways that eventually weaken the blood‒brain barrier, allowing infections to 
spread to the brain. Both diseases increase the likelihood of severe cytokine storms 
due to the involvement of microglia and neurons. The cytokine storms can lead to 
cognitive impairment and neurodegeneration; for example, increased IL-1β leads 
to impairment of long-term potentiation and cognitive performance (Mandal et al. 
2020; Xia et al. 2021). M. tuberculosis manipulates foamy macrophages in athero-
sclerotic plaques and alters M1/M2 polarization of macrophages, together with cel-
lular immune-mediated immune responses, promoting atherosclerosis (Mandal et al. 
2020; Xia et al. 2021). High expression of ACE2, toxins and infected necrotic cells 
in cardiomyocytes and vascular endothelium can also lead to circulatory disease 
(Chang et  al. 2021). Studies have shown a higher prevalence of diabetes mellitus 
among TB patients and COVID-19 patients (Chai et al. 2018; Vodnar et al. 2020). 
Metabolic reprogramming usually occurs when either innate or adaptive immune 
cells are activated, promoting metabolic syndromes such as type 2 diabetes (Chai 
et al. 2018; Vodnar et al. 2020).

By learning more about some candidate drugs from the gene-drug networks, we 
found that the drug mechanisms of etanercept, rituximab, bevacizumab, AV411, 
bosentan, sitaxentan, ambrisentan, macitentana, acetyl-l-cysteine and NADH may 
have important reference value in the treatment of COVID-19 combined with TB.

Immunosuppressants commonly used in COVID-19 treatment, such as TNF-α 
blockers, mostly increase susceptibility to M. tuberculosis and damage the struc-
tural integrity of granuloma. Etanercept, one of the candidate drugs, has the low-
est M. tuberculosis infection rate among all TNF-α blockers (Wong et  al. 2008). 
Rituximab, also a cytokine blocker that acts on B cells through a different mecha-
nism, is a T-cell costimulatory modulator and has little effect on susceptibility to 
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M. tuberculosis (Prieto-Peña and Dasgupta 2021; Morrison 2014). Bevacizumab is 
presently being studied for the treatment of COVID-19 complications (Samudrala 
et al. 2020). It is a monoclonal antibody against vascular endothelial growth factor 
(VEGF), which is indicated for COVID-19-induced elevated VEGF levels associated 
with pulmonary edema, dyspnea, acute respiratory distress and acute lung injury. It 
inhibits the immune response and helps anti-TB antibiotics infiltrate granulation tis-
sue by normalizing the vascular system of TB granulomas, shortening the treatment 
cycle of TB (Zheng et al. 2016). AV411 has anti-inflammatory and neuroprotective 
effects through, for example, inhibition of nitric oxide synthesis and reduction of 
reactive oxygen species (Yagi, et al. 2010). Bosentan is a treatment for pulmonary 
hypertension and is known to relieve symptoms and improve respiratory function in 
acute respiratory distress syndrome, the most severe complication of COVID-19. It 
is considered a promising drug in COVID-19 treatment (Puk et al. 2022). Sitaxen-
tan, ambrisentan and macitentana are all used for hypertension, pulmonary hyper-
tension, congestive heart failure, and connective tissue disease. Among these, sitax-
entan blocks the binding of endothelin (a vasoconstrictor that is highly expressed 
in lung infections and pulmonary hypertension) to its receptors, thereby eliminat-
ing the harmful effects of endothelin (Barst et al. 2002; Sidharta et al. 2015; Venitz 
et al. 2012). Reduced levels of acetyl-l-cysteine (NAC) (a precursor of reduced glu-
tathione (GSH)) result from lung infection, affecting a variety of disease states and 
immune dysfunction, increasing susceptibility to viral infections, and exacerbating 
oxidative damage to the lungs. NAC, widely used to restore or prevent glutathione 
depletion, has antioxidant and anti-inflammatory mechanisms. Meanwhile, stud-
ies showed that the binding affinity of ACE2 and SARS-COV-2 was significantly 
reduced when disulfide bonds of the S proteins were reduced to sulfhydryl groups. 
Additionally, NAC can protect against the harmful effects of angiotensin II (Flora 
et  al. 2020). NADH exhibits the best multitarget activity in some effective inter-
actions with SARS-CoV-2 structural components and critical residues of host pro-
teins (Artese et al. 2020). It has been considered a promising drug for COVID-19 
and is also for treating cardiovascular disease, Alzheimer’s disease, chronic fatigue 
syndrome and Parkinson’s disease (Belenky et  al. 2007). Drugs interacting with 
ITGA2B mostly have antiplatelet and anticoagulation effects, applying to the com-
mon symptoms of COVID-19 and TB (the increase in platelet and blood coagula-
tion) (Tcheng et al. 2003).

Conclusions

Our study revolved around the relationship between TB and COVID-19 in the con-
text of transcriptomic analysis. We performed DEGs and common gene identifica-
tion in two databases to figure out the influence of COVID-19 on TB. A total of 124 
common DEGs were identified. We used them to perform the bioinformatics analy-
sis and pathways analysis. A PPI network was constructed to identify the top 15 
hub genes and further identify potential biomarkers or novel drug targets. We also 
constructed DEGs–miRNAs and TFs–genes interactions networks to identify tran-
scriptional and post transcriptional regulators in both diseases. Gene–disease (GD) 
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analysis shows the common related diseases of the two diseases as a reference to 
predict the complications caused by their coinfection. The results of candidate drugs 
are suitable for the treatment of both TB and COVID-19, which to some extent can 
address the adverse effects of current COVID-19 drugs on TB and are of vital signif-
icance in the treatment of the coinfection and complications of TB and COVID-19.
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