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Abstract
Colon cancer is one of the malignant tumors with high morbidity, lethality, and 
prevalence across global human health. Molecular biomarkers play key roles in its 
prognosis. In particular, immune-related lncRNAs (IRL) have attracted enormous 
interest in diagnosis and treatment, but less is known about their potential functions. 
We aimed to investigate dysfunctional IRL and construct a risk model for improv-
ing the outcomes of patients. Nineteen immune cell types were collected for identi-
fying house-keeping lncRNAs (HKLncRNA). GSE39582 and TCGA-COAD were 
treated as the discovery and validation datasets, respectively. Four machine learning 
algorithms (LASSO, Random Forest, Boruta, and Xgboost) and a Gaussian mix-
ture model were utilized to mine the optimal combination of lncRNAs. Univariate 
and multivariate Cox regression was utilized to construct the risk score model. We 
distinguished the functional difference in an immune perspective between low- and 
high-risk cohorts calculated by this scoring system. Finally, we provided a nomo-
gram. By leveraging the microarray, sequencing, and clinical data for immune cells 
and colon cancer patients, we identified the 221 HKLncRNAs with a low cell type-
specificity index. Eighty-seven lncRNAs were up-regulated in the immune com-
pared to cancer cells. Twelve lncRNAs were beneficial in improving performance. 
A risk score model with three lncRNAs (CYB561D2, LINC00638, and DANCR) 
was proposed with robust ROC performance on an independent dataset. Accord-
ing to immune-related analysis, the risk score is strongly associated with the tumor 
immune microenvironment. Our results emphasized IRL has the potential to be a 
powerful and effective therapy for enhancing the prognostic of colon cancer.
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Abbreviations
AS	� Alternative splicing
BLCA	� Bladder urothelial carcinoma
ccRCC​	� Clear cell renal cell carcinoma
C-index	� Harrell’s consistency index
ceRNA	� Competitive endogenous RNA
COAD	� Colon adenocarcinoma
DCA	� Decision curve analysis
GEO	� Gene expression omnibus
GSEA	� Gene set enrichment analysis
HCC	� Hepatocellular carcinoma
HKLncRNA	� House-keeping LncRNAs
HR	� Hazard ratio
ICI	� Immunological checkpoint inhibitor
IRL	� Immune-related LncRNAs
LASSO	� Least absolute shrinkage and selection operator
LIHC	� Liver hepatocellular carcinoma
LncRNA	� Long-noncoding RNA
ncRNA	� Non-coding RNA
OS	� Overall survival
NSCLC	� Non-small cell lung cancer
RF	� Random forest
RMA	� Robust multiarray average
ROC	� Receiver operating characteristic curve
SAM	� Significance analysis of microarrays
SE	� Standard error
siRNA	� Short-interfering RNA
TCGA​	� The Cancer Genome Atlas
TMB	� Tumor mutation burden
tROC	� Time-dependent ROC curve
VIM	� Variable importance measure

Introduction

Strong heterogeneity and aggressiveness are the two main characteristics of colon 
cancer which has a high prevalence and fatality rate (Liu et al. 2022a). Colon tumor 
continues to be ranked the second-leading cause of death and the third-leading 
cause of incidence despite improvements made in recent decades (Sung et al. 2021). 
Female colorectal cancer accounts for 10% of all cancers in women. Colon cancer 
is the second leading cause of cancer death, accounting for 9.4% of all death (Sung 
et al. 2021). Thus, it is crucial to provide a model for identifying biomarkers that 
benefit cancer therapy in the early stage and distinguishing poor prognosis groups.

Tumor-infiltrating immune cells are important for the development and aggres-
siveness of cancer, according to the expanding body of research on the tumor micro-
environment (TME) (Jochems and Schlom 2011; Bense et  al. 2017; Barnes and 
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Amir 2018). There is evidence that distinct kinds of immune cells related to clinical 
outcomes are abundant in the microenvironment of colon cancer (Mola et al. 2020; 
Ooki et al. 2021; Liang et al. 2022; Vitorino et al. 2022). As a result, the quantita-
tive molecular signature of immune cells that infiltrate tumors is being recognized 
as a class of prognostic biomarkers that may help patients better manage and choose 
their own treatment. Numerous lncRNAs have been demonstrated to be crucial in 
controlling transcription, translation, and protein modification, among other cellular 
and biological processes in cancer (Peng et al. 2017). LncRNAs have recently been 
found in a variety of immune cells and have been identified as essential regulators 
of immune cell growth and differentiation (Turner et  al. 2014; Elling et  al. 2016; 
Chen et al. 2017). LncRNAs are also linked to the immunological control of cancer, 
including immune activation, immune escape, dendritic cell (DC), T cell, regulatory 
T cell, B cell, and macrophage penetration into cancer tissues (Denaro et al. 2019; 
Egranov et al. 2020). The tumor infiltration immune-related lncRNA signatures have 
been established in glioblastoma and non-small cell lung cancer (NSCLC) (Sun 
et al. 2020a, b; Zhang et al. 2022a, b).

Immunological checkpoint inhibitors (ICIs) are a cutting-edge type of tumor 
immunotherapy that works by focusing on immune checkpoint proteins (Mahoney 
et al. 2015). However, only a tiny percentage of patients have thus far seen a sig-
nificant improvement after receiving ICI treatment (Robert 2020). Hence, research-
ers need to develop a score for splitting all patients into poor and good immune 
response groups. Clinical doctors give personalized treatment strategies for colon 
cancer patients based on molecular characteristics. Long-noncoding RNAs (lncR-
NAs) are a class of non-coding RNAs (ncRNAs) with a length of more than 200 
nt, which don’t encode proteins but directly play a role in the formation of RNAs 
(Liu et al. 2022a). LncRNAs regulate the expression of protein-coding genes at the 
transcriptional and post-transcriptional levels and participate in the life processes 
(Park et  al. 2022). Notably, recent research has shown that lncRNAs have critical 
roles in immune response, immune cell formation, differentiation, function, the 
tumor immunological microenvironment, and cancer immunotherapy (Coker and 
Wood 1986; Najafi et al. 2022). In addition, the expression specificity of immune-
related lncRNA makes it can be a promising biomarker. Wu et  al. reported eight 
immune-related lncRNAs classifier was applied to predict recurrent bladder cancer 
(Wu et al. 2020b). Four lncRNAs have been identified by Li et al. as potential inde-
pendent prognostic variables for triple-negative breast cancer. They also confirmed 
that the high-risk group has strong immune responses (Li et al. 2021). A systematic 
and exhaustive strategy to find lncRNAs linked to immunological prognosis in colon 
cancer is currently lacking. Thus, we used the lncRNAs as risk factors for construct-
ing the risk model.

Recently, machine learning-based algorithms have been widely used to mine 
prognostic factors in cancer research. Machine learning-based technology can be 
used to identify genes, CT-scan features, or clinical characteristics that are asso-
ciated with patients’ survival. Then, the prognostic model built by these genes or 
clinical characteristics was utilized to infer the risk score, which is an index value 
that evaluates the effect of therapy. According to the prediction results, researchers 
give treatment suggestions. It is a constructive way that can apply to many kinds of 
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cancer. For example, Liu et al. defined risk genes in colorectal cancer based on the 
importance score of genes from the RF algorithm (Liu et al. 2023). Liu et al. selected 
alternative splicing (AS) events without co-linear correlation tested by the LASSO 
algorithm to feed into the Cox regression model to predict the survival time of the 
bladder urothelial carcinoma (BLCA) cohort (Liu et  al. 2022b). Similarly, Zheng 
et  al. reported a CT-based nomogram in clear cell renal cell carcinoma (ccRCC) 
by considering the 20 features filtered from 1316 radiomics features using LASSO 
logistic regression (Zheng et al. 2021). However, there is no integrated method pro-
posed considering the advantages of various machine-learning algorithms. Here, 
we selected important lncRNA features based on the occurrence twice among five 
machine learning algorithms.

The birth of high-throughput sequencing technology can be said to be a landmark 
event in the field of genomics research (Pareek et al. 2011; Slatko et al. 2018). This 
technology makes the single-base cost of nucleic acid sequencing drop sharply com-
pared with the first-generation sequencing technology. Before the advent of deep 
sequencing technology, the primary method for high-throughput measurement of 
different gene expression levels was the gene microarray (Hung and Weng 2017; 
Nurk et al. 2022). On this basis, the differences and patterns of gene expression in 
different tissues or different developmental stages could be analyzed. With the suc-
cessful completion of the human genome project in 2003, sequencing technology 
has dramatically improved (Collins et al. 2003). These advances provide research-
ers and medical diagnosticians an excellent platform for further understanding phe-
notypic changes and disease development caused by genomic variation. GEO and 
TCGA are two data resources for providing us with lots of data (Edgar et al. 2002; 
Barrett et al. 2013), including microarray, RNA-seq, clinical information, and so on. 
We constructed a risk model based on microarray and clinical traits data, and then 
we validated this model by RNA-seq data.

In this study, we constructed a risk score model using tumor immune infiltra-
tion-related and prognostic lncRNAs. The risk score model has high specificity and 
sensitivity across training and testing datasets. We identified three lncRNAs, which 
can illustrate the mechanism of the tumor progression, improve the prognosis, and 
design new drug targets for colon cancer.

Materials and Methods

Immune Cell Types Data

We collected 19 different immune cell types (B cell activated, CD4 T cell activated, 
CD4 T cell resting, CD8 T cell activated, CD8 T cell resting, Dendritic cells acti-
vated, Dendritic cells resting, Eosinophils, Immature dendritic cells, Mast cells 
activated, Monocytes, Myeloid dendritic cells, NK activated, NK resting, NKT acti-
vated, Neutrophils, Plasmacytoid dendritic cells, T gamma delta, and T helper 17) 
for 115 samples from the GEO database with the accession numbers: GSE13906, 
GSE23371, GSE25320, GSE27291, GSE27838, GSE28490, GSE28698, GSE28726, 
GSE37750, GSE39889, GSE42058, GSE49910, GSE51540, GSE59237, GSE6863, 
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and GSE8059. Detailed information about the immune cell microarray data is shown 
in Supplementary Table 1. The platform of these data is HG-U133_Plus_2.

Data Collection and Pre‑processing of Colon Cancer

Raw “.cel” format microarray data for colon cancer was downloaded by the GEO-
query R package (version: 2.64.2) with the accession number GSE39582 and plat-
form number GPL570 (HG-U133_Plus_2) (Edgar et al. 2002). The Robust Multi-
array Average (RMA) algorithm was selected for background correction, quantile 
normalization, and log2 transformation using the “affy” R package (version: 1.74.0) 
(Gautier et al. 2004). We saved the clinical information for each patient. Gene anno-
tation was performed by matching the probe id to the gene symbol from NetAffx 
(https://​sec-​assets.​therm​ofish​er.​com/​TFS-​Assets/​LSG/​Suppo​rt-​Files/​HG-​U133_​
Plus_2-​na36-​annot-​csv.​zip).

RNA-seq data of colon adenocarcinoma (COAD) was collected from the TCGA 
project via TCGAbiolinks (version: 2.25.0) R package (Colaprico et al. 2016). We 
saved the corresponding clinical data for patients. The gene type information came 
from GENCODE (https://​www.​genco​degen​es.​org/, version: GRCh38/hg38). The 
lncRNA gene information was from the GENCODE database (https://​ftp.​ebi.​ac.​uk/​
pub/​datab​ases/​genco​de/​Genco​de_​human/​relea​se_​21/​genco​de.​v21.​long_​nonco​ding_​
RNAs.​gtf.​gz).

The detailed clinical characteristics of the training and testing datasets can be 
found in Table 1.

The Identification of HKLncRNAs

In this study, we aimed to explore immune-related and can be used for immuno-
therapy lncRNAs in colon cancer. In general, the expression levels of lncRNAs are 
lower than mRNAs, so it is difficult for researchers to detect them (Park et al. 2022). 
Thus, we performed the following two analyses: (A) identify highly expressed lncR-
NAs. (B) identify lncRNAs that are present in all immune cells.

Capture Highly Expressed lncRNAs

We determined the expression level of each lncRNA in each immune cell based on 
the average value of this lncRNA across all cells belonging to this immune cell. The 
top 30% expressed lncRNAs in each immune cell in descending order were merged 
into a gene list, and then we defined this gene list as highly expressed lncRNAs.

Capture Widely Expressed lncRNAs

The cell type-specificity index was used to evaluate the expression pattern of lncR-
NAs in immune cells as follows (Smith 1992; Yanai et al. 2005):

https://sec-assets.thermofisher.com/TFS-Assets/LSG/Support-Files/HG-U133_Plus_2-na36-annot-csv.zip
https://sec-assets.thermofisher.com/TFS-Assets/LSG/Support-Files/HG-U133_Plus_2-na36-annot-csv.zip
https://www.gencodegenes.org/
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_21/gencode.v21.long_noncoding_RNAs.gtf.gz
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_21/gencode.v21.long_noncoding_RNAs.gtf.gz
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_21/gencode.v21.long_noncoding_RNAs.gtf.gz
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where N indicates the number of cell types, and the xlncRNA indicates the normalized 
expression levels of lncRNA by max expression level. Cell type-specificity index 
values were calculated and sorted in ascending order. The top 30% lncRNAs with 
lower cell type-specificity index values were defined as HKLncRNA. And the bot-
tom 30% lncRNAs with higher cell type-specificity index values were defined as cell 
type-specificity lncRNAs.

Capture lncRNAs That Are Up‑Regulated in the Immune Compared to Cancer Cells

Significance analysis of microarrays (SAM) algorithm was chosen for capturing 
lncRNAs that are upregulated in immune compared to cancer cells. The cutoff of the 
significant level was set to 0.05 based on FDR correction. In this study, samr (ver-
sion: 3.0) was utilized for performing DEG analysis (Tusher et al. 2001; Tibshirani 
2006; Li and Tibshirani 2013; Tzeng 2021).

Specificity IndexlncRNA =

∑N

i=1

�
1 − xlncRNA,i

�

N − 1

Table 1   The clinical traits of 
colon cancer patients in each 
dataset

Note that we only used colon cancer samples in our study
NA not applicable, TCGA​ The Cancer Genome Atlas

Characteristics Training dataset Testing dataset
GSE39582 TCGA​

Platform HG-U133_Plus_2 IlluminaHiSeq
Patients 566 461
Age
  < 60 150 126
 ≥ 60 416 333
 NA 0 2

Gender
 Female 256 216
 Male 310 243
 NA 0 2

Stage
 Stage 0 4 0
 Stage I 33 76
 Stage II 264 178
 Stage III 205 129
 Stage IV 60 65
 NA 0 13

Survival
 Dead 191 102
 Alive 371 357
 NA 4 2
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The Selection of Optimal lncRNAs

Before the construction of the risk score model, four machine learning-based 
methods (LASSO, Random Forest, Boruta, and Xgboost), univariate Cox regres-
sion, and a Gaussian mixture model (GMM) were utilized to mine the optimal 
combination of lncRNAs.

LASSO

LASSO was performed because it has powerful advantages in handling high-
dimensional data and solving multicollinearity problems (Liu et al. 2023).

Here, Q(�) represents the error vector, and we expected it to be as small as pos-
sible (so that we lose as little sample information as possible). � represents the 
features (lncRNAs). � is generally obtained by cross-validation (CV).

Random Forest

Random Forest (RF) has the ability to analyze complex interaction classification 
features, has good robustness to noise data and data with missing values, and has 
a fast-learning speed (Toth et al. 2019; Zhang et al. 2022b).

Here, GI (Gini) value was used to calculate the contribution of each feature 
(lncRNA). i represents the decision tree, and q represents the node in the decision 
tree. C reflects the classified category. pqc indicates the percentage of node q in C.

The variable importance measure (VIM) stands for the importance of each fea-
ture (lncRNA). The VIM of the feature in node q and tree i can be calculated by 
the following formula:

where GI(i)
l

 and GI(i)
r

 represent the GI values of the two nodes before and after 
the branch, respectively.

We assume Q is the collection of all nodes that feature Xj present in the deci-
sion tree i , then the VIM of the feature  Xj in decision tree i  can be calculated by 
the following formula:

Q(�) = ‖y − X�‖2 + �‖�‖1

⇔ argmin‖y − X�‖2s.t.
�

�2
j
≤ s

GI(i)
q
=

|C|∑

c=1

∑

c�≠c

p(i)
qc
p
(i)
qc� = 1 −

|C|∑

c=1

(p(i)
qc
)
2

VIM
(Gini)(i)

jq
= GI(i)

q
− GI

(i)

l
− GI(i)

r
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We assume I is the collection of all trees in RF, then the VIM of the feature can be 
calculated by the following formula:

Finally, we normalized the VIM of the feature:

In this study, the randomForestSRC R package (version: 3.2.1) was used for fea-
ture selection based on the RF algorithm.

Boruta

In general, the goal of feature selection in machine learning is to filter out the fea-
tures that minimize the cost function of the current model. However, Boruta’s fea-
ture selection aims to filter out all features correlated with the dependent variable 
(Wallentin et al. 2021). The significance of the Boruta algorithm is that it can help 
us understand the influencing factors of the dependent variable more comprehen-
sively so as to perform feature selection better and more efficiently.

Real features:

Shuffled features:

In this study, the Boruta R package (version: 8.0.0) was used for performing fea-
ture selection based on the Boruta algorithm.

Xgboost

Xgboost is an extreme gradient boosting algorithm based on GBDT (Chai et  al. 
2021; Jiang et al. 2021; Hu et al. 2022). It has the characteristics of high efficiency, 
flexibility, and portability, which makes it has been widely used in data mining, rec-
ommendation system, and other fields.

VIM
(Gini)(i)

j
=
∑

q∈Q

VIM
(Gini)(i)

jq

VIM
(Gini)

j
=

I∑

i=1

VIM
(Gini)(i)

j

normalized VIM
(Gini)

j
=

VIM
(Gini)

j

∑J

j�
VIM

(Gini)

j�

Zscore =
average feature important

SE(feature important)

MZSA = max{Zscore}

{
feature is important if Zscore ≥ MZSA

feature is not important if Zscore < MZSA
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The contribution degree of the feature is defined by the following formula:

Here, k represents the feature, T  indicates the total number of trees, N(t) repre-
sents the number of non-leaf nodes,  �(t, i) represents the divide signature of the i 
non-leaf node in t tree. H�(t,i) represents the sum of second derivatives for the i non-
leaf node in t tree from all samples. I(�(t, i) = k) is an indicator function.

In this study, the Xgboost R package (version: 1.7.5.1) was used for performing 
feature selection based on the Xgboost algorithm.

Gaussian Mixture Model

Gaussian mixture model (GMM) refers to the linear combination of multiple Gauss-
ian distribution functions (Zhang et  al. 2022a). The IRL presented at least twice 
among four machine learning-based models were fed into GMM.

The distribution of GMM is defined as:

Here, the distribution consists of K mixture components. � is an n dimensional 
mean vector, Σ is a n × n covariance matrix, and � is the corresponding mixture 
coefficient.

GMM was used for clustering analysis. We assumed that the sample data obeys 
the mixed Gaussian distribution, the parameters of the mixed Gaussian distribution 
are deduced from the sample dataset, and which Gaussian distribution each sample 
is most likely to belong to. In our study, there are 4095 ( 212 − 1 ) models consisting 
of 12 prognostic-related HKLncRNA signatures associated with immune regulation, 
up regulated in immune compared to cancer cells, and benefit for the prediction of 
outcomes of colon cancer patients.

The criteria for selecting the optimal IRL is based on the best prediction perfor-
mance with minimum consumption.

The Construction of Risk Scoring System

The combination of IRL with the highest AUC and least number was used to con-
struct the final risk score model. To predict the outcome of colon cancer patients, a 
predictive model based on the expression levels of IRL and clinical information as 
follows:

V(k) =

∑T

t=1

∑N(t)

i=1
I(�(t, i) = k)H�(t,i)

∑T

t=1

∑N(t)

i=1
I(�(t, i) = k)

PM(x) =

K∑

k=1

�k ∙ N
(
x|�k,Σk

)

K∑

k=1

𝜋k = 1,𝜋k > 0
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where N represents the number of IRL, and i� represents correlation coefficient val-
ues for its corresponding lncRNA in the multivariate Cox regression model.

This multivariable Cox regression model was built by coxph() and step() func-
tions in the survival R package (version: 3.5.1).

Performance of Risk Score Model

The receiver operating characteristic curve (ROC) is an analysis tool for assess-
ing the sensitivity and specificity of our model. The range of area under the curve 
(AUC) is the indicator of ROC. The closer it is to 1, the better the model performs.

After constructing the risk score model, the risk score model was validated on 
an independent dataset in terms of C-index value, tROC, and ROC. TCGA-COAD 
was treated as an independent dataset for validating the robustness of our risk score 
model. Survival analysis was performed using the survival R package (version: 
3.3.1). Time-dependent ROC analysis was performed by the timeROC R package 
(version: 0.4).

Univariate and Multivariate Cox Regression

The univariate Cox regression model was utilized for the selection of prognos-
tic IRL. Obtained IRL served as individual factors associated with colon cancer 
patients’ outcomes by combining clinical characteristics. Then, multivariate Cox 
regression was utilized to identify independent prognostic factors among clinical 
traits and IRLs.

Two R packages, survival (version: 3.1.1) and forestplot (version: 3.1.1), were 
used to select independent prognostic factors and visualize.

Other Statistical and Bioinformatics Analysis

All statistical analysis was performed in R language (version: 4.2.2). The gsva() func-
tion in the GSVA R package (version: 1.44.5) was applied to immune infiltration analy-
sis, which calculates the enrichment score of each immune cell for each patient using 
the ssGSEA algorithm. Immune cell types and gene sets in each immune cell type were 
collected from Pan-Cancer research, which includes 28 immune cell types B cell, CD4 
T cell, CD8 T cell, dendritic cell, CD56 bright natural killer cell, CD56 dim natural 
killer cell, Central memory CD4 T cell, Central memory CD8 T cell, Effector memory 
CD4 T cell, Effector memory CD8 T cell, Eosinophil, Gamma delta T cell, Immature B 
cell, Immature dendritic cell, MDSC, Macrophage, Mast cell, Memory B cell, Mono-
cyte, Natural killer T cell, Natural killer cell, Neutrophil, Plasmacytoid dendritic cell, 
Regulatory T cell, T follicular helper cell, Type 1 T helper cell, Type 17 T helper cell, 
Type 2 T helper cell 23 (Charoentong et al. 2017). To investigate the tumor immune 
microenvironment, we compare the expression levels of lncRNA in the risk model 

Risk Score =
∑N

i=1
Exp(LncRNA) × i�
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across five immune subtypes, including C1 (wound healing), C2 (IFN-gamma domi-
nant), C3 (inflammatory), C4 (lymphocyte depleted), and C6 (TGF-beta dominant) 
(Thorsson et al. 2019).

Wilcoxon and ANOVA test was utilized for statistically significant analysis.

Results

The Expressed lncRNAs in Human Immune Cells

The overall schematic workflow is shown in Fig. 1. After the lncRNA annotation pro-
cess (match probe id to lncRNA gene symbol), 1422 lncRNAs were kept. In order to 
determine the expression pattern of lncRNAs in human immune cells, we ranked lncR-
NAs according to their expression levels, from high to low, for each immune cell type. 
The top 30% of highly expressed lncRNAs for each immune cell type were merged and 
removed duplicates. Then 737 lncRNAs were treated as immune-related lncRNAs and 
kept for the following analysis.

The top 30% of highly expressed lncRNAs were obtained as the candidate IRL for 
each immune cell type. The specificity of expression of a candidate IRL with respect 
to different immune cell types was calculated using the specificity index. Those HKL-
ncRNA, which are significantly up-regulated in immune samples compared to colon 
cancer samples, were selected as IRL. We analyzed GEO dataset GSE39582 and 
TCGA-COAD with four machine learning algorithms and a Gaussian mixture model 
to screen out the optimal combination of lncRNAs: LINC00638, CYB561D2, and 
DANCR. A prognostic signature was constructed using the linear combination of the 
expression values of the prognostic IRL, weighted by their estimated regression coef-
ficients in the multivariate Cox regression analysis. The model has a satisfactory per-
formance and was validated by an independent dataset, C-index, ROC, and tROC. 
Finally, we explored the difference in immune cell types between low- and high-risk 
score groups.

HKLncRNAs in Human Immune Cells

We calculated these 737 lncRNAs’ expression levels across 19 immune cell types. By 
introducing a tissue specificity index value and setting cutoff values, we identified 221 
HKLncRNAs (Supplementary Table 2) and 221 cell type-specific lncRNAs in immune 
cells (Supplementary Table  3). Supplementary Fig.  1 shows the heatmap of house-
keeping and cell type-specific genes’ expression profile across all immune cell types.

HKLncRNAs in immune cells is a type of constitutive gene which have an essential 
role in the maintenance of cellular immune function.

LncRNAs That Up‑Regulated in the Immune Compared to Colon Cancer Cells

By combining microarray data in immune and cancer cells, we conducted DEG 
analysis using SAM() function in samr R package. There are 87 HKLncRNAs 
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significantly up-regulated in the immune compared to colon cancer cells that were 
kept for the following feature selection analysis (Supplementary Table 4).

The Prognostic and Optimal lncRNAs

14, 43, 6, and 91 prognostic lncRNAs were mined by four machine learning-based 
models, LASSO, RF, Boruta, and Xgboost, separately (Supplementary Fig.  2). 
Finally, 12 lncRNAs identified twice (Fig.  2A, Supplementary Table 5). 11 lncR-
NAs were confirmed that there are associated with the prognosis of colon cancer 
patients using univariate Cox regression analysis (Fig. 2B).

GMM was utilized for identifying the optimal combination of lncRNAs. Three 
lncRNAs, CYB561D2, LINC00638, and DANCR, are identified as optimal lncRNAs 
that are related to the prognosis of colon cancer with the maximum AUC = 0.770 
(Fig.  2C). There is another combination of lncRNAs, CYB561D2, LINC00638, 
DANCR, and LINC01208, which have the same maximum AUC value. However, 
the number of lncRNAs is equal to four. Considering that the more detection index, 
the more cost will be taken, we choose three lncRNAs instead of four as the optimal 
combination.

A Scoring System Based on Immune‑Related and Prognostic lncRNAs

A scoring system based on immune-related and prognostic lncRNAs that can be 
used to detect the prognosis of colon cancer patients is constructed by multivariate 
Cox regression. Table 2 gives the detailed coefficient value of the above three lncR-
NAs. The immune-related and prognostic lncRNA signature can be calculated by 
the following formula:

Risk Score Model Is an Evaluation Indicator for Clinical Outcome

Multivariate Cox regression was constructed to distinguish the patients into two 
groups when setting the mean value of all risk scores as the cutoff. We defined the 
patient as high-risk if the score of the patient is larger or equal to the average value 
of all patients’ risk scores. On the contrary, we defined the patient as low-risk if the 
score of the patient is lower than the average value of all patients’ risk scores. Fig-
ure 3A is the distribution of patients’ age, gender, tumor stage, and survival status 
in low- and high-risk groups. It demonstrated that there were significant differences 
in tumor stage and survival status between the low- and high-risk groups, but there 
were no significant differences in age and gender between the low- and high-risk 
groups. Figure 3B shows a significant difference between low- and high-risk groups 
(P-value < 0.05), which hints that the low-risk group has a longer overall survival 

lncRNA signature = −0.356 × Exp(CYB561D2)
+ 0.830 × Exp(LINC00638)
− 0.170 × Exp(DANCR)



1938	 Biochemical Genetics (2024) 62:1925–1952

1 3

LASSO

RandomForest Boruta
Xgboost

1

9 0

15

2

0

1

1

19

0

1

70

2

2

19

15

9

7

2 2 2
1 1 1 1

0

5

10

15

20

In
te

rs
ec

tio
n 

S
iz

e

Xgboost

RandomForest

LASSO

Boruta

010203040
Set Size

0.4

0.5

0.6

0.7

−500 0 500 1000 1500 2000
model

au
c

cluster
cluster_1

cluster_2

cluster_3

cluster_4

cluster_5

cluster_6

cluster_7

cluster_8

cluster_9

CYB561D2 LINC00638

LINC01119

ADARB2.AS1

GABARAPL3PRR34.AS1
OVCH1.AS1

DANCR DSCR10

DSCR9

LINC01208

LINC00869

1.0

1.5

2.0

2.5

−2 0 2
Univariate Cox coefficient

−l
og

10
(P

−V
al

ue
)

A

B C

Fig. 2   The identification of prognostic and optimal lncRNAs. A The overlap lncRNAs among four dif-
ferent machine learning-based models, LASSO, RF, Boruta, and Xgboost. B Prognosis-related lncRNAs 
inferred by univariate Cox coefficient regression. C GMM model was conducted to identify the optimal 
combination of lncRNAs

Table 2   The coefficient of 
the three lncRNAs in the 
multivariate Cox regression 
model

The first column indicates the immune-related and prognostic 
lncRNA, the second column indicates the coefficient value corre-
sponding to its lncRNA, the third column indicates the HR value and 
the last two columns show the HR value’s low and high 95% confi-
dence interval

LncRNA Coefficient value HR HR.95L HR.95H

CYB561D2  − 0.356 0.700 0.508 0.965
LINC00638 0.830 2.294 1.275 4.129
DANCR  − 0.170 0.844 0.670 1.063
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time than the high-risk group. Figure  3C is the visualization of the relationships 
among the risk score of patients, survival time, and the expression levels of three 
lncRNAs in the risk score model. From the risk plot, we concluded that high-risk 
score patients are associated with shorter survival time compared to low-risk score 
patients. In addition, the expression level of LINC00638 is positively related to the 

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time(years)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Risk + +High risk Low risk

281 248 206 165 131 102 79 52 34 20 18 9 5 3 3 1 1
281 262 237 204 170 132 105 70 44 34 25 21 13 8 4 3 1Low

High

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time(years)

R
is

k

AUC at 3 years = 0.700

AUC at 5 years = 0.702

AUC at 7 years = 0.651
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC =  0.770

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

GSE39582 Age Gender Stage Status

Low Risk
(n = 281)

High Risk
(n = 281)

<60 >=60 Female Male
Stage 0 Stage I Stage II

Stage III Stage IV
Alive Dead

P-value=0.355 P-value=0.175 P-value=0.001 P-value=0.004

0 100 200 300 400 500

0.
5

1.
5

2.
5

3.
5

Patients (increasing risk socre)

R
is

k 
sc

or
e

0 100 200 300 400 500

0
50

10
0

15
0

20
0

Patients (increasing risk socre)

S
ur

vi
va

l t
im

e 
(y

ea
rs

)

LINC00638

CYB561D2

DANCR

type

type
high
low -6    -4    -2     0     2      4     6

B

A C

D E

p=2.401e-4
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set. A The pie chart displayed the difference in patients’ age, gender, tumor stage, and survival status 
between low- and high-risk groups. B The survival curve reflected that there is a significant difference 
between low- and high-risk cohorts. C The risk plot demonstrated the relationship among risk score, 
survival time, and lncRNA expression levels. D The ROC curve of this scoring system. The AUC is 
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risk score, while the expression levels of CYB561D2 and DANCR are negatively 
related to the risk score. AUC is an index for describing the performance of the 
risk score model. Our scoring model has a high correction ratio (Fig. 3D). The high 
accuracy indicates our model can be well used to distinguish the prognostic effect 
of training samples. Also, the time-dependent ROC (tROC) supported that our pro-
vided scoring system has a satisfactory performance at 3-, 5-, and 7-years (Fig. 3E).

The Risk Score Model Has a Good Robustness

TCGA-COAD dataset was treated as an independent validating dataset. Our pro-
vided scoring system was also applied to this independent dataset. The C-index and 
SE (C-index) values of the training dataset (GSE39582, self-validation) are 0.599 
and 0.022, respectively. And the C-index and SE (C-index) values of the testing 
dataset (TCGA, independent validation) are 0.592 and 0.032, respectively (Fig. 4A). 
Thus, our scoring system has good robustness and the ability to avoid overfitting 
problems. Figure  4B indicates there is a significant difference between low- and 
high-risk score groups, and the survival time of high-risk score patients is signifi-
cantly lower than low-risk score patients. The risk plot shows that the high-risk 
score group tends to have a shorter survival time compared to the low-risk score 
group (Fig.  4C). The heatmap reflects that the expression level of LINC00638 is 
positively related to the risk score, while the expression levels of CYB561D2 and 
DANCR are negatively related to the risk score (Fig. 4C). ROC and tROC were cal-
culated to evaluate the effect of the model prediction. Figure 4D and E exhibited that 
this scoring model has a high accuracy of prediction.

Immune Infiltration‑Related lncRNA Signature Is an Independent Prognostic 
Factor

To determine which clinical characteristics are associated with survival time, each 
clinical trait is compared individually with survival time and survival status. The 
results showed that patients’ age, TNM_t, TNM_n, TNM_m, and risk score are sig-
nificantly related to survival, while patients’ gender is not significantly related to 
survival (Fig. 5A). Further, we simultaneously considered all clinical factors to sur-
vival for identifying independent prognostic factors. Finally, patients’ age, gender, 
TNM_t, TNM_n, TNM_m, and risk score can serve as six independent prognostic 
factors in colon cancer (P-value < 0.05), while TNM_stage can be represented by 
other clinical factors (Fig. 5B).

Immune‑Related and Prognostic lncRNA Signature Is Associated with Immune 
Cell Infiltration

Further, we explored this kind of disorder in the immune infiltration levels. We con-
sidered 28 different kinds of immune cell types in the analysis. We found that patient 
risk groups stratified by IRL signature showed distinct immune infiltration patterns. 
As shown in Fig. 6A, patients in the low-risk group were enriched with six immune 
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subpopulations, while only two immune subpopulations were enriched in patients 
with high risk (P-value < 0.01). These results suggested that the higher score of IRL 
corresponded to less immune cell infiltration and poor outcome, while lower score of 
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IRL corresponded to greater immune cell infiltration and better outcome. Figure 6A 
demonstrated significantly positive relationships between risk scores and immune 
cell types, including memory B cells, natural killer cells, macrophages, mast cells, 
etc. We further examined the risk score distribution among five immune subtypes 
reported by a recent study (Thorsson et al. 2019). Risk score showed a notable dif-
ference among five different immune subtypes (Fig.  6B). LINC00638 (Fig.  6C) 
showed a notable difference among five kinds of immune subtypes (P-value < 0.05), 
while CYB561D2 (Fig. 6D) and DANCR (Fig. 6E) didn’t show a notable difference 
among five types of immune subtypes (P-value > 0.05). Because C1, C2, C3, C4, and 
C6 classification systems were from pan-cancer research (Charoentong et al. 2017), 
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we defined them as tumor immune environments. The combination of LINC00638, 
CYB561D2, and DANCR is closely associated with the tumor immune microenvi-
ronment. However, each lncRNA in the model might not be closely associated with 
the tumor immune microenvironment. The enrichment of 28 immune cell types with 
positive and negatively associated the expression levels of three IRL, LINC00638, 
CYB561D2, and DANCR, calculated by normalized enrichment score (NES) score 
from gene set enrichment analysis (GESA) was shown in Supplementary Fig. 3.

Immunotherapy Response Prediction

Researchers designed immunotherapy drugs based on the targeted immune check-
point proteins. PD-1 is an immune checkpoint receptor in T cells, which serves as 
a “switch-off” (Wang et  al. 2022). When the PD-1 binds to the PD-L1 of tumor 
cells, T cells will not attract tumor cells (Yu et al. 2022). By developing an inhibitor 
for PD-1, we can extensively block the combination between PD-1 and PD-L1, fur-
ther enhancing immune response. CTLA-4 (also known as CD152) is constitutively 
expressed in regulatory T cells (Wang et al. 2022). In cancer cells, CTLA-4 is up-
regulated after the immune system activation (Iranzo et al. 2022).
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Thus, we explored the expression levels of PD-1, PD-L1, and CTLA-4 between 
low- and high-risk score groups. We didn’t identify a significant difference between 
low- and high-risk score groups for PD-1 (Fig. 7A) and CTLA-4 (Fig. 7E). However, 
a significant difference exists between low- and high-risk score groups for PD-L1 
was observed (Fig. 7C). Recently, researchers reported that high PD-L1 expression 
on tumor cells indicates the presence of an anti-tumor immune response (Sorensen 
et al. 2016; Shah et al. 2022). This is consistent with our conclusion. This phenom-
enon indicates that the model helps to propose drugs related to immunotherapy.

Nomogram‑Based Survival Prediction

A comprehensive model, including immune-related and prognostic lncRNA sig-
nature and clinical characteristics, was developed and displayed as the nomogram 
(Fig.  8A). Its prognosis reliability was established by the calibration examination 
(Fig. 8B, D, and F). The nomogram demonstrated viability for 3-, 5-, and 10-year 
survival under control, as indicated by the Decision Curve Analysis (DCA) curve 
(Fig. 8C, E, and G). These results demonstrated that the nomogram achieved favora-
ble predictive performance.

Discussion

Colon cancer, also known as colorectal cancer, is one kind of cancer that develops 
from colon or rectum (Labianca et al. 2010; Terzić et al. 2010). The mechanism of 
colon cancer development and progression is still unclear. Recent studies have found 
that tumor immune cell infiltration is associated with cancer development and may 
adversely affect cancer prognosis (Kong et al. 2022; Wei et al. 2022). Accumulating 
evidence demonstrated that lncRNAs play essential roles in the immune response by 
participating in cancer progression; for example, Wu et al. revealed that most marker 
genes of immune cells showed a significant correlation with LINC00665 (Wu et al. 
2020a). Especially the expression of LINC00885 has a positive relationship with 
marker genes of M2 macrophages (Wu et al. 2020a). However, a systematic model 
for identifying immune-related lncRNAs is currently lacking. Therefore, we aim to 
develop a risk score model to mine regulatory lncRNAs in the colon cancer immune 
microenvironment.

Firstly, we obtained the top 30% highly expression lncRNAs from gene expres-
sion profiles of 19 immune cell types. Two-hundred and twenty-one HKLncRNAs 
and Two-hundred and twenty-one cell type-specific lncRNAs in immune cells were 
screened by calculating the cell type specificity index. The results can be validated 
by manually reviewing publications. For example, CYB561D2 and EHIH are two 
HKLncRNAs in immune cells. CYB561D2 encoded cytochrome B561 family mem-
ber D2 participating in ion metabolism and stress defense pathways (Sananmuang 
et al. 2020). Sordillo et al. reported that oxidative stress is a major underlying reason 
for inflammatory dysfunction (Sordillo and Aitken 2009). Sun et al. validated that 
EHIH is a diagnostic and prognostic biomarker in pan-cancer, and it is involved in 
an immune-oncogenic system combined with YBX3, particularly for colon cancer 



1945

1 3

Biochemical Genetics (2024) 62:1925–1952	

Wilcoxon, p = 0.710
1

2

3

4

5

6

hig
h

lowrisk

P
D

-1

5.0

5.5

6.0

6.5

1 2 3
risk score

P
D

-1

Wilcoxon, p = 0.019
2.5

5.0

7.5

10.0

hig
h

lowrisk

P
D

-L
1

5

7

9

1 2 3
risk score

P
D

-L
1

Wilcoxon, p = 0.160
2

4

6

hig
h

lowrisk

C
TL

A-
4

4.5

5.0

5.5

6.0

1 2 3
risk score

C
TL

A-
4

R=-0.0038, p = 0.93

R=-0.054, p = 0.2

R=0.088, p = 0.037

A B

C D

E F

Fig. 7   The relationship between immune checkpoint genes (PD-1, PD-L1, and CTLA-4) and risk score. 
The distribution of normalized expression levels of the PD-1 (A), PD-L1 (C), and CTLA-4 (E) across 
low- and high-risk score groups. The correlation between the normalized expression levels of three 
immune checkpoint genes [PD-1 (B), PD-L1 (D), CTLA-4 (F)] and risk score



1946	 Biochemical Genetics (2024) 62:1925–1952

1 3

(Sun et al. 2022). Then, we identified 87 lncRNAs that are up-regulated in immune 
samples and down-regulated in colon cancer samples, which demonstrated their 
expression specificity to immune cells rather than tumor cells. We aimed to iden-
tify lncRNAs that can be used as biomarkers to improve colon cancer’s prognosis 
and patients’ immunotherapy response. These lncRNAs were treated as specific-
ity expression in immune cells compared to tumor cells. Combining with clinical 
traits information, we got lncRNAs that were significantly associated with the sur-
vival time of colon cancer patients. These lncRNAs were incorporated into four 
machine learning-based algorithms, LASSO regression analysis, RF, Boruta, and 
Xgboost. Twice lncRNAs identified from four methods are CYB561D2, PRR34-
AS1, DANCR, LINC00638, LINC01119, ADARB2-AS1, GABARAPL3, OVCH1-AS1, 
DSCR10, DSCR9, LINC00869, and LINC01208. Only LINC00869 was neglected 
because there is no significant relationship between expression level and progno-
sis of colon patients. For maximum prediction accuracy and minimum cost, three 
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Fig. 8   The construction and validation of a nomogram for predicting the survival of colon cancer 
patients. A The nomogram is displayed to estimate the results for CRC patients. The prognostic risk 
score model is presented in a visualization pattern. The nomogram is shown to assess the outcome of 
CRC patients. It is a readable style of the prognostic risk score model. The patient survival calibration 
curve at 3- (B), 5- (D), and 10-year (F) years. The x-axis displays the OS probability predicted by the 
nomogram at that time, while the y-axis displays the actual data at different timepoint. The optimum 
prediction is shown by the 45° grey line. The training dataset is represented by the dots, while the valida-
tion dataset is represented by the curve line. The figure also included a label for the 95% CI. Nomogram 
DCAs for the OS at the 3- (C), 5- (E), and 10-year (G) intervals
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immune-related and prognostic lncRNAs, LINC00638, CYB561D2, and DANCR, 
were used to create the risk score model.

Then, multivariate regression analysis was conducted to construct a risk score 
model. Our linear mathematically combinational model was validated by sur-
vival analysis, ROC, tROC, C-index, risk plot analysis, and independent data-
set analysis. In addition, there is an immune checkpoint gene named PD-L1 that 
is expressed differently between low- and high-risk score groups, which sug-
gests that our model can be used to assess patient’s immune response. Tao et al. 
reported CYB561D1 is up-regulated in glioma samples compared to normal sam-
ples (Tao et al. 2021). And they concluded that the over-expression of CYB561D1 
is associated with a short survival time of high-grade glioma (Tao et  al. 2021). 
The mechanism is that the over-expression of CYB561D1 increased the expression 
of CCL2 and PD-L1 and triggered immunosuppression in T cells by activating the 
STAT3 signaling pathway (Tao et al. 2021). At the same time, LINC00638/miR-
4732-3p/ULBP1 is a lncRNA-related competitive endogenous RNA (ceRNA) 
network, which is highly associated with immune filtration and tumor mutation 
burden (TMB) in hepatocellular carcinoma (HCC) (Qi et al. 2021). In HCC with 
elevated TMD, LINC00638/miR-4732-3p/ULBP1 is a prognostic predictor and 
controls immunological escape via PD-L1 (Qi et al. 2021). LINC00638/hsa-miR-
29b-3p/CDCA4 is a candidate regulatory network in liver hepatocellular carci-
noma (LIHC). Tumor immune evasion and anti-tumor immunity may play a role 
in CDCA4-mediated LIHC carcinogenesis (Wang et al. 2023). The prognosis of 
LIHC patients is dramatically improved by low CDCA4 expression, and CDCA4 
is a promising novel biomarker for predicting LIHC prognosis. Tumor immune 
evasion and anti-tumor immunity may play a role in CDCA4-mediated LIHC car-
cinogenesis (Wang et al. 2023). In recent years, more and more studies have been 
done on using DANCR as a biomarker to predict colon cancer prognosis (Yang 
et al. 2018; Shi et al. 2020; Sun et al. 2020b). DANCR was extensively expressed 
in colon cancer tissue and cell lines (Sun et al. 2020b). Sun et al. reported that 
higher levels of DANCR were associated with a poorer prognosis and shorter 
patient survival time for colon cancer (Sun et  al. 2020b). Cell proliferation and 
colony formation were drastically reduced when DANCR was silenced by short-
interfering RNA (siRNA) (Yang et al. 2018). Although immune checkpoint inhib-
itors targeting PD-1, PD-L1, and CTLA-4 have been developed to treat cancer and 
improve survival time (Sun et al. 2020a, b). However, the immune responses of 
different patients are not the same due to the heterogeneity of the tumor immune 
environment. Our findings revealed that the lncRNAs have complex crosstalk 
between tumor cells and immune cells. Low-risk group patients have high expres-
sion of PD-L1 and longer survival time compared to high-risk group patients.

Compared to published studies (Toth et al. 2019; Wallentin et al. 2021; Jiang et al. 
2021; Chai et al. 2021; Zhang et al. 2022b, a; Hu et al. 2022), our framework has the 
advantage of considering multiple machine learning-based methods. We proposed that 
immune-related and prognostic lncRNAs have a great potential to predict the survival 
of colon cancer patients based on the linear regression model. The feature selection pro-
cess is achieved by combing four machine learning methods, keeping prognosis-related 
lncRNAs, and selecting the optimal combination of lncRNAs from 4095 combinations 
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using GMM. We provided a nomogram with the maximum performance and minimum 
cost. This framework is very helpful for distinguishing patients into two groups and 
gives different treatment strategies not only for colon cancer but also can be used for 
other cancers. However, this study also has some limitations. First of all, this study is a 
retrospective experiment. Second, the mechanism of DANCR is not fully explained in 
the previous research. Further experiments should be conducted to validate our model.

In conclusion, we give an immune-related and prognostic lncRNA signature by com-
bining transcriptome data and clinical data. This signature can be validated by ROC, 
tROC, C-index, independent dataset, and literature. It has a good potential to predict 
the outcome of colon cancer patients. Applying this model to colon cancer patients, we 
can discover that the tumor immune microenvironment is different between low- and 
high-risk score groups, which is beneficial for immunotherapy and precision medicine.
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