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Abstract
Long non-coding RNAs play crucial role in the tumorigenesis of lung adenocarci-
noma (LUAD). However, the function of a large number of lncRNAs in LUAD has 
not been investigated yet. Weighted gene correlation network analysis (WGCNA) 
was applied to construct the co-expression module in the TCGA-LUAD cohort. Pro-
tein–protein interaction (PPI) network was used to explore the relationship of genes 
in the key module. The function of the key module on the prognosis in LUAD was 
analyzed using GO and KEGG analysis. Finally, we constructed the mRNA-lncRNA 
co-expression network in the key module to identify the hub lncRNAs that play cru-
cial role in the prognosis in LUAD. The most highly expressed 2500 mRNAs and 
2500 lncRNAs in the TCGA-LUAD cohort were clustered into 21 modules. After 
analyzing the correlation between the module and prognostic clinical traits, the Tan 
module, consisting of 130 genes, was selected as the key module on the prognosis in 
LUAD. And then, we found that genes in the key module were majorly enriched in 
ten multiple signaling pathways. Subsequently, we constructed the mRNA-lncRNA 
co-expression network based on the genes in the key module. Finally, we identi-
fied three lncRNAs and nineteen mRNAs that could be the promising prognostic 
biomarkers for LUAD. We identified three lncRNAs (MIR99AHG, ADAMTS9-
AS2, and AC037459.2) and nineteen mRNAs as potential prognostic biomarkers in 
LUAD, which provided new insight for prognosis monitoring and therapy develop-
ment in LUAD.
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Introduction

Lung cancer continues to be the leading cause of cancer death, and over 2.2 mil-
lion patients were diagnosed with lung cancer and approximately 1.8 million 
patients death caused by lung cancer in 2020 worldwide (Sung et  al. 2021). In 
China, over 87 thousand new cases and approximately 77 thousand new death 
caused by lung cancer in 2022, which made lung cancer still the cancer with the 
highest incidence and mortality in China (Xia et al. 2022). Lung adenocarcinoma 
(LUAD) is a subtype of non-small cell lung cancer, accounting for almost 40% of 
primary tumors. Owing to decreases in tobacco smoking, increased thoracoscopic 
surgeries and stereotactic radiation for early-stage disease, and better treatments 
for advanced-stage disease (Siegel et al. 2019; Boyer et al. 2017), the 5-year sur-
vival of lung cancer improved from 15.6% in 2011 to 19.4% in 2019. Even so, the 
outcome of patients with lung cancer is still very poor and there is an urgent need 
to identify novel effective prognostic biomarkers for patients with LUAD.

Non-coding RNA (ncRNA) is a kind of RNA with limited or without protein-
coding ability. Approximately 97% of RNA transcribed from the human genome 
is ncRNA, suggesting crucial role of ncRNA in cells (Yan and Bu 2021). 
According to the length, shape and location, ncRNAs have been majorly divided 
into three classes, including microRNA (miRNA), long ncRNA (lncRNA), 
and circular RNA (circRNA). miRNA is a kind of small RNA functioning in 
posttranscriptional regulation of gene expression (Saliminejad et  al. 2019). A 
large number of studies have demonstrated the powerful regulation of miRNA 
in cancer (He et al. 2020). Circular RNAs (circRNAs) are characterized by their 
covalently closed-loop structures without a 5′ cap or a 3′ poly(A) tail (Ju et  al. 
2022). An increasing number of studies have indicated that circRNA can be the 
potential target for various diseases including cancer (Najafi 2022). Long non-
coding RNA (lncRNA) is a module of non-coding RNA longer than 200nt in 
length. Although lncRNA has been considered as the noise in the genome for 
the first time, an increasing number of studies have demonstrated that lncRNA 
played role in the regulation of multiple biological processes through interaction 
with other biological substances including sponging target miRNAs, regulation of 
several signaling pathways, transcription factors, and effector proteins (Sanchez 
Calle et  al. 2018; Palazzo and Koonin 2020; Najafi et  al. 2022; Najafi et  al. 
2021). Besides, many lncRNAs have been investigated as biomarkers in cancer. 
For example, lncRNA HOTAIR is one of the most important lncRNAs which is 
highly expressed in lung cancer and correlated with invasion, metastasis, and poor 
survival in patients with lung cancer (Loewen et al. 2014). Besides, many studies 
have also indicated that MALAT1 may serve as a diagnostic and prognostic 
biomarker with sufficient specificity and sensitivity in NSCLC (Li et  al. 2018). 
Long Non-Coding RNA-TMPO-AS1 could predict poor prognosis in LUAD by 
upregulating the expression of STRIP2 (Wang et al. 2022). Besides, lncRNAs are 
stable and measurable in body fluids and thereby suitable for measurement via 
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non-invasive procedures, thus, the identification of novel prognostic lncRNAs 
in LUAD is helpful for patients’ prognosis monitoring. However, there are still 
a large number of lncRNAs have not been evaluated in LUAD yet and whether 
there are more effective lncRNAs in the prediction of the prognosis in LUAD 
arouses our interest.

In this study, we identified the key module that contributed to the prognosis in 
LUAD using the weighted gene correlation network analysis (WGCNA) and further 
analyzed the genes in the key module to explore the hub genes that play crucial role 
in the prognosis in LUAD. Besides, we analyzed the functional mechanism of the 
key module to reveal how the key module affects the prognosis in LUAD. Finally, 
we identified the prognostic lncRNAs in LUAD, excepting to provide new clues for 
the development of clinical biomarkers in LUAD.

Materials and Methods

Data Acquisition

The RNA sequencing data and corresponding clinical information of 585 patients 
with lung adenocarcinoma were downloaded from the Cancer Genome Atlas data-
base (https:// portal. gdc. cancer. gov). Eliminating the sample without complete clini-
cal information and survival data, a total of 514 LUAD samples were enrolled for 
further analysis. The RNA sequencing data of 514 LUAD samples were normalized 
by the “Limma” package with the Voom function.

Weighted Correlation Network Analysis (WGCNA)

Weighted correlation network analysis (WGCNA) is a systems biology method that 
aims to search for coexpressed gene module, and explore the correlation between 
gene networks and phenotypes of concern, as well as the core genes in the network 
(hub gene). Correlation networks facilitate network-based gene screening methods 
that can be used to identify candidate biomarkers or therapeutic targets. WGCNA 
achieves its goal based on two hypotheses: 1. Genes with similar expression patterns 
may be co-regulated, functionally related, or in the same pathway. 2. Gene networks 
conform to scale-free distribution. There are three steps to acquiring the coexpressed 
gene modules. Firstly, the outlier sample needs to be removed. Secondly, set a soft-
threshold to judge whether significant co-expression was found between two genes. 
Thirdly, clustering genes into different modules and identifying the coexpressed 
gene modules (Zhang and Horvath 2005). We first analyzed the expression level 
of mRNA and lncRNA in the LUAD samples. The expression data of 5000 genes, 
including the top 2500 lncRNA and 2500 mRNA, in 514 LUAD samples were used 
to develop co-expression modules with the “WGCNA” package (Langfelder and 
Horvath 2008).

https://portal.gdc.cancer.gov
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PPI Network

Protein–protein interaction (PPI) and the obtained networks are very important 
in the majority of biological functions and processes. PPI network analysis inves-
tigates the molecular mechanism of diseases and the development of new thera-
peutic targets through building up a PPI network (Athanasios et  al. 2017). The 
selected module genes were analyzed by inputting them into the Search Tool for 
the Retrieval of Interacting Genes (STRING) database (https:// cn. string- db. org/). 
A combined score of ≥ 0.5 was considered as significant to construct a PPI net-
work. The PPI network was displayed by Cytoscape software (v3.9.1) (Shannon 
et al. 2003). The hub genes were chosen based on a higher number of associations 
with other genes.

mRNA‑lncRNA Co‑expression Network

Gene co-expression analysis is a data analysis technique that helps identify groups 
of genes with similar expression patterns across several different conditions (Mon-
tenegro 2022). The mRNA-lncRNA co-expression networks of significant modules 
were performed to explore the association between mRNA and lncRNA. Signifi-
cant correlation pairs were applied to build the network in accordance with Pearson 
correlation coefficients. And the differential co-expression network was visualized 
using Cytoscape software (Version 3.9.1).

Pathway Enrichment Analysis

Gene ontology (GO) is a controlled vocabulary of terms to represent biology in a 
structured way. The terms are subdivided in three distinct ontologies that represent 
different biological aspects: Molecular Function (MF), Biological Process (BP), and 
Cellular Component (CC). Kyoto encyclopedia of genes and genomes (KEGG) is 
an encyclopedia of genes and genomes integrating eighteen databases categorized 
into systems, genomic, chemical and health information (Kanehisa and Goto 2000; 
Kanehisa et al. 2021). Assigning functional meanings to genes and genomes both at 
the molecular and higher levels is the primary objective of the KEGG database pro-
ject (Kanehisa et al. 2017). KEGG pathway enrichment analysis and the GO analysis 
were performed to explore the possible mechanism of the key module in LUAD. We 
analyzed the enriched pathways of the genes in the key module using “ClusterPro-
filer” R package (Yu et al. 2012).

Statistical Analysis

Prognosis analysis was performed by Kaplan-Meier survival analysis using the 
“Survival” R package. The log-rank test was used to compare the difference between 

https://cn.string-db.org/
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the two groups. A comparison of gene expression levels between the TCGA-LUAD 
cohort and the GTEX-normal cohort was performed using a t-test. All the statistical 
analyses were performed using the R (version 4.3.1) and a p-value<0.05 was consid-
ered a significant difference.

Results

Co‑expression Modules Construction in LUAD

We first compared the expression level of all genes contained in the RNA sequenc-
ing data in the TCGA-LUAD cohort. The most highly expressed 2500 mRNAs 
and 2500 lncRNAs in the TCGA-LUAD cohort were selected for WGCNA anal-
ysis. And then, we clustered the LUAD samples to detect the outliner, and no 
sample was identified as outliner (Supplementary Figure 1). Thus, all 514 LUAD 
samples were used for WGCNA analysis. The basic clinical characteristics of 514 
samples in the TCGA-LUAD cohort are shown in Table 1. The independence and 
the average connectivity degree of the co-expression modules were decided by 
power value (β) and scale R2 value. First, a set of soft-thresholding powers were 
plotted. When the power value was equal to 5, the scale R2 was up to over 0.8 
(Fig. 1A). Therefore, we define the adjacency matrix using soft-thresholding with 
β = 5 to construct and identify distinct co-expression gene modules in LUAD. A 
cluster dendrogram of all selected genes was constructed based on a TOM-based 

Table 1  Clinical features of 514 
patients in the TCGA-LUAD 
cohort

Characteristics Total n/%
514

Age
 <60 years 140 (27.2)
 ≥60 years 374 (72.8)

Gender
 Female 277 (53.9)
 Male 237 (46.1)

TNM stage
 Stage I–II 401 (79.2)
 Stage III–IV 105 (20.8)

T stage
 T1–T2 447 (87.5)
 T3–T4 64 (12.5)

N stage
 N0 336 (67.1)
 N1–N3 165 (32.9)

M stage
 M0 343 (93.5)
 M1 24 (6.5)



269

1 3

Biochemical Genetics (2024) 62:264–280 

dissimilarity measure. These identified co-expression modules were distributed 
in different colors (Fig. 1B). A total of twenty-one co-expression modules were 
identified and the number of genes in each module is shown in Table 2. Besides, 
we analyzed the correlation between these twenty-one modules using Pearson’s 
correlation analysis (Fig. 1C).

Identification of Key Module in the Prognosis in LUAD

To identified the key module that was associated with the prognosis in LUAD, 
we selected the clinical traits that had significant prognosis value in LUAD using 
univariate Cox analysis and three clinical traits were significant factors for the 
prognosis in LUAD, including TNM stage, T, N, and M. And then, we analyzed 
the relationship between the co-expression modules and these three prognostic 
clinical traits. We found that the Yellow module was negatively correlated with 
the N (Pearson’s r = −0.2, p = 3e−06). The Tan module was positively correlated 
with both TNM stage (Pearson’s r = 0.19, p = 2e−05) and N (Pearson’s r = 0.2, 
p = 5e−06). The turquoise module was positively correlated with N (Pearson’s 
r = 0.2, p = 7e−06) (Fig. 2A). And then, we analyzed the correlation between 
gene significance (GS) and module membership (MM) in the co-expression mod-
ule. As displayed in the scatterplots, we found that MM in the Tan module sig-
nificantly correlated with TNM stage (Fig.  2B, r  =  0.52, p =  2.3e−10) and N 
(Fig. 2C, r = 0.6, p = 4.6e−14), and genes with high module membership often 
had high gene significance, which suggested that hub genes of the co-expression 
Tan module tend to be highly correlated with selected clinical characteristics. 
Considering the correlation coefficient, p-value, and consistency between mod-
ule-trait relationships plot and the scatterplot, we chose the Tan module for fur-
ther analysis.

Functional Enrichment Analysis

One hundred and thirty genes in the Tan module were used to perform both the 
KEGG pathway enrichment analysis and GO analysis. For KEGG pathway enrich-
ment analysis, the top ten enriched pathways included Antigen processing and pres-
entation, cell cycle, central carbon metabolism in cancer, Glycolysis/Gluconeogen-
esis, Glyoxylate and dicarboxylate metabolism, Spliceosome, Protein processing in 
endoplasmic reticulum, Tight junction, Biosynthesis of amino acids, and Carbon 
metabolism (Fig. 3A). The complete result of the KEGG pathway enrichment anal-
ysis is shown in Supplementary Table 1. For GO analysis, the Tan module genes 
were enriched in 50 BP pathways, nine CC pathways, and eight MF pathways (Sup-
plementary Table 2). The most ten BP enriched pathways included protein folding, 

Fig. 1  Identification of key module by WGCNA. A Analysis of the scale-free index for various soft-
threshold powers (β). B Analysis of the mean connectivity for various soft-threshold powers. C Dendro-
gram of all differentially expressed genes clustered based on the measurement of dissimilarity (1-TOM). 
The color band shows the results obtained from the automatic single-block analysis. The heatmap shows 
the correlation between each module

▸
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chaperone-mediated protein folding, protein refolding, mRNA catabolic process, 
ribonucleoprotein complex biogenesis, regulating of DNA biosynthetic process, 
RNA catabolic process, positive regulation of DNA biosynthetic process, response 
to unfolded protein, and chaperone cofactor-dependent protein refolding (Fig. 3A). 
The enriched CC pathways included ficolin-1-rich granule, chaperone complex, 
region of cytosol, proteasome complex, endopeptidase complex, secretory granule 
lumen, cytoplasmic vesicle lumen, and vesicle lumen (Fig. 3A). The enriched MF 
pathways included protein folding chaperone, unfolded protein binding, heat shock 
protein binding, ubiquitin protein ligase binding, ubiquitin-like protein ligase bind-
ing, misfolded protein binding, cadherin binding, and ATPase activity (Fig. 3A).

Association of Genes in the Tan Module

We constructed the PPI network based on the genes in the Tan module to explore 
the interaction between genes in the module. We found that five genes interacted 
with other genes in the Tan module strongly, including GAPDH, HSP90AA1, 
HSPA8, HSPA4, and CCT7 (Fig. 3B). These five genes were the hub genes in the 
Tan module, which might play crucial role in the prognosis in LUAD. And then, 
we further constructed the mRNA-lncRNA co-expression network in the tan module 
using the mRNA-lncRNA pairs with a correlation coefficient larger than 0.5 and 

Table 2  The number of genes in 
each module

Co-expression module color Gene frequency

Black 180
Blue 434
Brown 362
Cyan 107
Green 329
Green yellow 136
Grey 884
Grey60 72
Light cyan 77
Light green 62
Light yellow 51
Magenta 153
Midnight blue 104
Pink 156
Purple 152
Red 207
Royal blue 44
Salmon 109
Tan 130
Turquoise 903
Yellow 348
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a p-value less than 0.01. The result showed that eleven lncRNAs (AC092071.1, 
TYMSOS, AC037459.2, AL157394.1, MEF2C-AS1, MRI99AHG, AC008669.1, 
ADAMTS9-AS2, AL356599.1, AC004982.1, and AL031058.1) correlated with 72 
mRNAs in the tan module (Fig. 3C).

Identification of Prognostic lncRNAs in LUAD

We identified novel prognostic indicators in LUAD based on the mRNA-lncRNA 
co-expression network. The lncRNAs and mRNAs in the network with both sig-
nificantly different expression levels between the TCGA-LUAD cohort and the 
GTEX-normal cohort, and between the high and low expression groups were 
defined as potential prognostic biomarkers in LUAD. Finally, we found that three 
lncRNAs, including MIR99AHG, ADAMTS9-AS2, and AC037459.2, were sig-
nificantly down-expressed in LUAD compared to normal samples, which were 
all associated with poor prognosis (Fig.  4). Besides, nineteen mRNAs, includ-
ing AHSA1, SLC2A1, FKBP4, HMGA1, PSMD2, GAPDH, MCM7, ARPC1A, 
CCT7, TUBA1C, ACTG1, ATIC, MDH2, TIP1, CCT8, EIF2S2, PA2G4, EIF4A3, 
and SHMT2, were highly expressed in LUAD and associated with poor prognosis 
(Figs. 5, 6).
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Discussion

Cancer ranks as one of the deadliest diseases worldwide and lung cancer continues 
to be one of the most prevalent cancers with poor prognosis globally. The outcomes 
of patients with lung cancer remain poor even many new treatment have been devel-
oped clinically. Therefore, searching novel promising biomarker for lung cancer is 
very important to provide basis for prognosis management and therapy development 
in lung cancer. Nowadays, many lncRNAs have been claimed as useful biomark-
ers for the diagnosis and prognosis of cancer patients. However, the function of a 
large number of lncRNAs in lung cancer still needs to be further investigated. In this 
study, we identified three lncRNAs as the potential prognostic indicators for patients 
with LUAD using the WGCNA analysis including MIR99AHG, ADAMTS9-AS2, 
and AC037459.2. A study has demonstrated that MIR99AHG was significantly cor-
related with survival in lung squamous cell carcinoma (Ning et al. 2018). Besides, 
another study further revealed that the axis of MIR99AHG had significant diag-
nostic and prognosis prediction values in human lung cancer (Sweef et  al. 2022) 
Our findings suggested that MIR99AHG might play role in LUAD by cooperating 
mRNA HMGA1, which provided new knowledge for a better understanding the 
ceRNA network in LUAD biology. In addition, some studies have also demon-
strated that ADAMTS9-AS2 played inhibitory role in LUAD acting as a prognostic 
biomarker (Liu et al. 2021; Lin et al. 2021). Our findings were consistent with the 
results of these previous studies and provided more evidence to support that lncRNA 
ADAMTS9-AS2 could be a promising prognostic biomarker clinically. Moreo-
ver, we also found a new lncRNA AC037459.2 that have not been reported yet. 
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We found that lncRNA AC037459.2 was down-regulated in LUAD and associated 
with poor prognosis, suggesting lncRNA AC037459.2 might be a promising prog-
nostic indicator for LUAD. We further found that lncRNA AC037459.2 interacted 
with 28 mRNAs in LUAD, including some mRNAs with crucial role in LUAD. For 
example, SNRPB has been illuminated to promote tumorigenesis and negatively 
regulate cisplatin resistance in non-small cell lung cancer (Liu et  al. 2019, 2021). 
TUBA1C and PSMD2 have been found to be closely correlated with tumor-infiltrat-
ing immune cells in LUAD (Bian et al. 2021; Zhao and Lu 2022). Many studies have 
been illuminated that EIF4A3 played essential role in lung cancer acting as a target 
for various lncRNA or circRNA (Zhang et al. 2022; Takahashi et al. 2021x; Yang 
et al. 2020; Xu et al. 2023). Therefore, our findings provided a new clue for better 
understanding the mechanism of tumorigenesis and development in LUAD.

LncRNA has limited or even no ability to code a protein. It is generally speaking 
that lncRNA regulates the expression of mRNA by sponging miRNA which is small 
RNA that can bind mRNA resulting in the inhibition of mRNA translation. There-
fore, the ceRNA hypothesis has emerged to reveal the mechanism of RNA interac-
tion. The lncRNA-mRNA axis is important to reveal the mechanism of lncRNA in 
LUAD. In this study, we found that the prognostic lncRNAs were interacting with a 
large number of mRNA, and nineteen of them were associated with poor prognosis 
in LUAD which were valuable to investigate further, including AHSA1, SLC2A1, 
FKBP4, HMGA1, PSMD2, GAPDH, MCM7, ARPC1A, CCT7, TUBA1C, ACTG1, 
ATIC, MDH2, TIP1, CCT8, EIF2S2, PA2G4, EIF4A3, and SHMT2. Although some 
of these nineteen mRNAs have been reported as prognostic biomarkers in LUAD, 
including SLC2A1 (Guo et al. 2020), FKBP4 (Meng et al. 2020), HMGA1 (Saed 
et  al. 2022), PSMD2 (Zhao and Lu 2022), MCM7 (Wang et  al. 2017), TUBA1C 
(Bian et al. 2021), ATIC (Niu et al. 2022), MDH2 (Ma et al. 2021), EIF4A3 (Qiu 
et al. 2022), and SHMT2 (Luo et al. 2021), the function of the other mRNAs has 
been reported in some of the other types of cancer, but not in LUAD. For example, 
overexpression of AHSA1 was associated with poor prognosis in hepatocellular car-
cinoma, breast cancer, and osteosarcoma (Li and Liu 2022; Shi et  al. 2022; Shao 
et al. 2016). Besides, the prognostic relevance of CCT8 in multiple types of cancer 
has also been investigated (Liao et al. 2021; Liu et al. 2019). Our findings provided 
new clues for these mRNAs that might also be promising prognostic biomarkers in 
LUAD. Notably, we found that GAPDH was both the hub gene and prognostic indi-
cator in LUAD. GAPDH is well-known as the housekeeping gene and widely used 
as an internal control in experiments on proteins, mRNA, and DNA. However, some 
studies have illuminated that GAPDH played important role in tumor progression 
by regulating energy metabolism. Our findings provided new clues that GAPDH 
might also be the prognostic indicator for patients with LUAD. In conclusion, we 
identified novel prognostic lncRNAs and mRNAs in LUAD, expecting to help the 
improvement of LUAD patients’ outcomes.

However, there are still some limitations in this study. For example, our findings 
were generated using the in-silicon analysis and validating our result with in-house 
cohort would be advantaged. Besides, the mechanism of the prognostic lncRNAs in 
LUAD has not been fully investigated. In the future, we will attempt to overcome 
these shortcomings with in-vivo and in-vitro experiments.
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Conclusion

This study identified three lncRNAs (MIR99AHG, ADAMTS9-AS2, and 
AC037459.2) and nineteen mRNAs as potential prognostic biomarkers in LUAD, 
which provided new insight for prognosis monitoring and therapy development in 
LUAD.
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Fig. 5  Kaplan-Meier survival curve of prognostic mRNAs in LUAD
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