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Abstract
This study aimed to develop and validate a cuproptosis-related gene signature for the 
prognosis of gastric cancer. The data in TCGA GC TPM format from UCSC were 
extracted for analysis, and GC samples were randomly divided into training and val-
idation groups. Pearson correlation analysis was used to obtain cuproptosis-related 
genes co-expressed with 19 Cuproptosis genes. Univariate Cox and Lasso regression 
analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox 
regression analysis was used to construct the final prognostic risk model. The risk 
score curve, Kaplan–Meier survival curves, and ROC curve were used to evaluate 
the predictive ability of Cox risk model. Finally, the functional annotation of the risk 
model was obtained through enrichment analysis. Then, a six-gene signature was 
identified in the training cohort and verified among all cohorts using Cox regres-
sion analyses and Kaplan–Meier plots, demonstrating its independent prognostic 
significance for gastric cancer. In addition, ROC analysis confirmed the significant 
predictive potential of this signature for the prognosis of gastric cancer. Functional 
enrichment analysis was mainly related to cell–matrix function. Therefore, a new 
cuproptosis-related six-gene signature (ACLY, FGD6, SERPINE1, SPATA13, RAN-
GAP1, and ADGRE5) was constructed for the prognosis of gastric cancer, allowing 
for tailored prediction of outcome and the formulation of novel therapeutics for gas-
tric cancer patients.
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Introduction

Gastric cancer (GC) is a widespread malignancy ranked 5th in the world’s top ten 
most common cancers (Ferlay et  al. 2021). It remains a significant malignancy 
globally, with over a million newly diagnosed cases in 2020 (Sung et al. 2021) and 
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although the burden of GC has decreased in China, the number of new cases will 
reach 509,421 and the deaths will be approximately 400,415 in 2022 (Xia et  al. 
2022). Despite the rapid improvement of surgical and adjuvant therapeutic technolo-
gies, the overall survival (OS) rates for patients with GC continue to be relatively 
low and vary greatly around the globe. For illustration, the five-year survival rate in 
the United States is 31%, 26% in Europe, and 19% in the United Kingdom (Allemani 
et al. 2018). GC is a tremendously heterogeneous malignancy, therefore the conven-
tional TNM classification is difficult to fully cover the indefinite genetic features and 
further research is required to identify helpful prognostic indicators and potential 
treatment targets.

Copper is a crucial trace element in the body and a component of numerous com-
pounds such as cytochrome oxidase, catalase, and ceruloprotein (Allemani et  al. 
2021; Vallet and Ricard-Blum 2019; Fujieda et  al. 2020; Katsuyama et  al. 2021; 
Ariöz and Wittung-Stafshede 2018), which promotes the transfer and utilization of 
iron in tissues (Myint et al. 2018). Moreover, cancer cells have a higher demand for 
copper (Shanbhag et al. 2021), with higher copper concentrations in the serum and 
tumor tissues of cancer patients than in healthy individuals (Lelièvre et al. 2020). 
Copper has been implicated in cancer progression (Luca et  al. 2019; Silva et  al. 
2022) and may trigger cell death, such as autophagy and apoptosis via the produc-
tion of reactive oxygen species, inhibition of the proteasome, and antiangiogenesis 
(Jiang et al. 2022) Multiple tightly controlled programmed cell death methods have 
been identified including pyroptosis, apoptosis, ferroptosis, necroptosis (Bock and 
Tait 2020), and more recently, cuproptosis. Elesclomol administration did not trigger 
caspase-3, an apoptosis marker, and inhibiting apoptosis or other defined pathways 
of programmed cell death could not inhibit copper-induced cell death, demonstrat-
ing that there is a difference between copper-induced cell death and other known 
pathways of cell death (Zheng et al. 2022). Elesclomol has been shown to degrade 
ATP7A resulting in copper-reliant ferroptosis in cancer cells of the colorectum (Gao 
et al. 2021) and Xia et al. found that in GC, a novel Schiff base coordinated cop-
per (II) compound promotes apoptosis and prevents tumor development (Xia et al. 
2019). Disulfiram/copper also promotes anticancer activity in GC via the NPL4 and 
ROS/MAPK pathways (Liu et al. 2022). However, the value of copper and copper 
metabolism-related genes in the diagnosis and prognosis of GC needs to be investi-
gated further.

This study aimed to develop a prognostic gene signature for GC using data from 
The Cancer Genome Atlas (TCGA) and previously identified cuproptosis-related 
genes. The properties of the gene signature in the tumor microenvironment were 
investigated using GO, KEGG, and GSEA, therefore, the developed prognostic 
assessment model may deepen the intrinsic relationship between GC and cuprotosis.



42 Biochemical Genetics (2024) 62:40–58

1 3

Materials and Methods

Data Acquisition

The corresponding clinical information and gene expression of GC samples were 
downloaded from the University of California Santa Cruz (UCSC) Xena browser 
(https:// xenab rowser. net/). The Wilcox test was used to identify differentially 
expressed genes (DEGs) between the tumor and normal groups, which is suitable 
for the analysis of large samples and TPM data. The criteria for DEGs were log Fold 
Change (LogFC) absolute value > 1 and p < 0.05. The UCSC database was accessed 
on August 1, 2022, to obtain all the data in HTseq-TPM format. The clinical infor-
mation of all samples was also downloaded including age, sex, TNM stage, AJCC 
stage, progression-free survival (PFS) time, OS time, and disease-specific survival 
(DSS) time. In total, the transcriptome data of 450 tissues (36 normal tissues and 
414 GC tissues) and 315 patients with complete survival data were retrieved.

Nineteen key genes involved in cancer cuproptosis have been proposed includ-
ing ATP7B, ATP7A, DBT, CDKN2A, DLD, DLAT, FDX1, DLST, GLS, GCSH, 
LIPT1, LIAS, MTF1, LIPT2, NLRP3, NFE2L2, PDHB, PDHA1, and SLC31A1 
(Tsvetkov et al. 2022; Emami et al. 2022; Deng et al. 2022). Pearson’s correlation 
analysis was performed between the 19 genes and DEGs to identify cuproptosis-
related genes according to the correlation coefficients (Cor Pearson > 0.4) and p val-
ues (p < 0.05).

Identification and Validation of the Cuproptosis‑Gene Signature

Three hundred fifty-one patients were assigned randomly to the training group 
(n = 176) with the R package “caret” and validation group (n = 175). Using the 
chi-square test, the baseline data of participants in the validation and training 
groups were compared to assess if the data in the two groups were uniform. A 
Cox regression model of the cuproptosis-related genes was constructed using the 
training group results. All cuproptosis-related genes underwent overall survival-
based univariate Cox regression analysis, then potential prognostic DEGs were 
screened. The Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion analysis was performed on potential prognostic genes to avoid overfitting the 
model. When the cross-validation error of LASSO regression is small, the list of 
prognostic genes corresponding to the best penalty parameter is obtained. Multi-
variate Cox regression analysis of the LASSO prognostic genes was performed to 
determine the final prognostic model. Each patient’s risk score was calculated using 
the formula: risk score = βmRNA1*ExprmRNA1+βmRNA2*ExprmRNA2+…
+βmRNAn*ExprmRNAn. Expr represented the expression value of each gene, and 
β was the estimated coefficient value obtained from the multivariate Cox regression 
model for this gene.

https://xenabrowser.net/
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Prognostic Risk Signature Construction

Based on the median risk score of the training group, subjects in the validation and 
training groups were grouped into low-risk (below the median risk score) or high-
risk (above the median of the risk score). In the entire cohort, validation, and train-
ing groups, the risk score was defined as an independent prognostic predictor in GC 
patients by multivariate and univariate Cox regression analyses. Each subject’s risk 
score and disease outcome were visualized by plotting the risk score curve, with 
Kaplan–Meier survival curves used to assess whether there were differences in PFS, 
DSS, and OS between patients in the high- and low-risk groups. The receiver oper-
ating characteristic (ROC) curve and the area under the ROC curve (AUC) were 
used to assess the risk score and the predictive power of each clinical characteristic 
for OS. Finally, PCA analysis was used to downscale the three sets of genes (DEGs, 
cuproptosis genes, cuproptosis-related genes, and risk model genes) in low- and 
high-risk patients to visualize the discriminative power of the risk scores.

Functional Enrichment Analysis

Differential analysis was performed on the low-risk groups (n = 166) and high-risk 
groups (n = 167) in the entire cohort, |LogFC|> 0.6 and p < 0.05 were defined as 
risk-associated DEGs. KEGG and GO enrichment analyses of risk-associated DEGs 
were performed using the “ClusterProfiler” and “ggplot2” packages in R, with a 
p value < 0.05. The core genes in DEGs were screened out by constructing a PPI 
network. GSEA was established to evaluate the regulatory impact of high and low-
risk groups on the pathway. GSEA, using the GSEA software (GSEA 4.1.0), was 
employed for the entire cohort analysis. The h.all.v7.5.symbols.gmt data set in the 
MsigDB database was used as control data, the random sample permutations were 
set at 1000, and the nominal p value (NOM p value) < 0. 05, False discovery rates 
(FDR) < 0. 25 and normalized enrichment score |NES|> 1 were set as the signifi-
cance threshold.

Statistical Analysis

Statistical analysis was performed by using R (Version 3.6.3). Cox regression was 
utilized to assess each gene for the prognosis of GC by calculating the hazard ratio 
(HR) and 95% CI. Log-rank tests were used to evaluate the OS, DSS, and PFS of 
the three groups (entire, training, and validation). The Pearson correlation test was 
utilized for correlation analysis. The Ggplot2 R package performed the visualization 
of the data. Statistical significance was set at p < 0.05.
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Results

Data Acquisition

The transcriptome data of 450 tissues were retrieved (36 normal tissues and 414 GC 
tissues, with a total of 2349 (1980 upregulated genes and 369 downregulated genes, 
Supplementary Table 1). The DEGs were identified based on the screening criteria 
of |LogFC|> 1, p < 0.05. All genes are shown in the volcano plot in Fig. 1A and the 
expression of the risk score genes is shown in Fig. 1B.

Grouping and Establishment of the Cox Prognostic Model

Three hundred fifty-one patients were assigned randomly to the training group 
(n = 176), with the R package “caret” and validation group (n = 175). The 

Fig. 1  Construction process of COX risk model. A Volcano plot of DEGs. B Heatmap about the the 
expression levels of COX risk model genes in tumor tissues and normal tissues. C The upset plot shows 
the number and cross-linking of co-expressed genes of the 19 cuproptosis genes. D Distribution of 
LASSO coefficients of the 70 potential prognostic cuproptosis-related genes in training group. E The 
cross-validations curve of Laaso regression shows the best penalty parameter value in training group. F 
The 6 prognostic cuproptosis-related genes signature constructs the COX risk model in training group. 
G The correlation between 6 genes Signature and 19 cuproptosis genes. FC, fold change,  *p < 0:05; 
**p < 0:01; ***p < 0:001. DEGs: differentially expressed genes
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clinicopathological information of 351 GC patients is shown in Table  1 and 
there was no significant difference in the clinical characteristics between groups. 
Correlation analysis was performed between the 19 cuproptosis genes and 2349 
DEGs based on the correlation coefficient criterion > 0.4 and p < 0.05 to iden-
tify 1314 potential cuproptosis-related genes (Fig. 1C, Supplementary Table 2). 
Univariate Cox regression analysis of all cuproptosis-related genes identified 70 
(Supplementary Table 3) genes with potential prognostic value, which were then 
analyzed using a LASSO regression model based on OS (Fig. 1D). The result of 
LASSO regression revealed that the best penalty parameter corresponds to 13 

Table 1  Characteristics of GC patients

GC, gastric cancer; AJCC, American Joint Committee on Cancer
a AJCC stage

Covariates Type Entire cohort (n = 351) Validation group 
(n = 175)

Training group 
(n = 176)

p value

Age 0.9402
 ≤ 60 118 (33.62%) 58 (33.14%) 60 (34.09%)
 > 60 233 (66.38%) 117 (66.86%) 116 (65.91%)

Grade 0.75
G1 8 (2.28%) 4 (2.29%) 4 (2.27%)
G2 117 (33.33%) 55 (31.43%) 62 (35.23%)
G3 226 (64.39%) 116 (66.29%) 110 (62.5%)

pM stage 0.297
M0 327 (93.16%) 166 (94.86%) 161 (91.48%)
M1 24 (6.84%) 9 (5.14%) 15 (8.52%)

pN stage 0.6203
N0 111 (31.62%) 58 (33.14%) 53 (30.11%)
N1 240 (68.38%) 117 (66.86%) 123 (69.89%)

pT stage 0.1358
T1 16 (4.56%) 4 (2.29%) 12 (6.82%)
T2 72 (20.51%) 35 (20%) 37 (21.02%)
T3 163 (46.44%) 80 (45.71%) 83 (47.16%)
T4 100 (28.49%) 56 (32%) 44 (25%)

Gender 0.5528
Female 130 (37.04%) 68 (38.86%) 62 (35.23%)
Male 221 (62.96%) 107 (61.14%) 114 (64.77%)

Stagea 0.122
Stage I 47 (13.39%) 18 (10.29%) 29 (16.48%)
Stage II 110 (31.34%) 61 (34.86%) 49 (27.84%)
Stage III 156 (44.44%) 81 (46.29%) 75 (42.61%)
Stage IV 38 (10.83%) 15 (8.57%) 23 (13.07%)
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prognostic genes (Fig. 1E, Table 2). The obtained 13 genes were again subjected 
to multivariate Cox regression analysis showing that six cuproptosis-related 
genes were independent prognostic factors for GC patients (Fig. 1F). These six 
genes were therefore the final genes for constructing the prognostic model. The 
correlation between the six gene signatures and 19 cuproptosis genes is shown in 
Fig. 1G. The risk score was calculated as follows: (− 0.385*ExpressionSPATA
13)+0.515*ExpressionACLY+(−  0.681*ExpressionRANGAP1)+(−  0.419*Exp
ressionADGRE5)+(0.495*ExpressionFGD6)+(0.225*ExpressionSERPINE1).

Validation of the Cox Risk Model

The risk scores were calculated for each patient based on the prognostic model 
relative to the training group median risk score (risk score = 1.004) and the par-
ticipants were classified into high and low-risk groups (risk score higher or no 
more than the median risk score). The distribution of outcome status, gene pro-
files, and risk scores for the six-gene signature in the entire, validation and train-
ing groups are shown in Fig. 2. As exhibited in Fig. 2A–C, significantly more 
incidents occurred in the high-risk group compared to the low-risk group.

The heatmaps show that ACLY, FGD6, and SERPINE1 were overexpressed 
in high-risk cases, while SPATA13, RANGAP1, and ADGRE5 were downregu-
lated (Fig. 2D–F). In addition, Kaplan–Meier curves showed that high-risk sub-
jects had lower OS, PFS, and DSS (Fig.  3A–C, D–F, and G–I, respectively). 
Furthermore, the prognostic accuracy of this Cox model was assessed using 
ROC curve analysis. The AUC in the entire cohort, training group, and valida-
tion group was 0.705, 0.719, and 0.715, respectively, higher than other baseline 

Table 2  Cuproptosis-related prognostic genes obtained from lasso and univariate cox regression model

HR, hazard ratio

Gene symbol Lasso coefficient HR HR.95L HR.95H p value

ACLY 0.347 1.273 1.013 1.599 0.038
ADGRE5 − 0.279 0.676 0.498 0.918 0.012
DPP3 − 0.075 0.660 0.468 0.930 0.017
FGD6 0.177 1.381 1.010 1.887 0.043
GASK1B 0.059 1.378 1.098 1.730 0.006
KIAA1217 − 0.089 0.725 0.539 0.976 0.034
LRRC32 0.012 1.288 1.066 1.557 0.009
MMRN1 0.014 1.323 1.061 1.650 0.013
NRP1 0.015 1.422 1.127 1.795 0.003
RANGAP1 − 0.288 0.637 0.434 0.935 0.021
SERPINE1 0.101 1.217 1.060 1.399 0.006
SPATA13 − 0.209 0.713 0.538 0.943 0.018
THBS2 0.044 1.191 1.043 1.362 0.010
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clinical data (Fig. 4A–C). Interestingly, the risk score time-dependent survival 
ROC curve revealed the good predictive power of 1-, 3-, and 5-years survival 
compared to other clinical data (Fig. 4D–F).

PCA analysis was used to investigate the distribution of high- and low-risk 
groups, showing that compared to DEGs(Fig. 4G) cuproptosis genes (Fig. 4H), 
and cuproptosis-related genes (Fig. 4I), the six-gene signature can more clearly 
divide all patients into two risk groups (Fig. 4J).

The Risk Score Independent Prognostic Value

Using multivariate and univariate Cox regression analyses, the risk score was 
evaluated as an independent prognostic factor compared to several clinicopatho-
logical data (age, grade, N stage, T stage, M stage, risk scores, and gender). Uni-
variate Cox analysis demonstrated statistically significant differences between 
age, risk score, N stage, T stage, and M stage in the entire group (Fig. 5A). In 

Fig. 2  Risk scores, risk curves and 6 genes signature heatmaps of GC patients in all cohorts. The distri-
bution trend of risk score, OS time, PFS time, DSS time in entire group (A), in training group (B), and 
in validation group (C). Prognostic signature signal heatmaps in entire cohort (D), in training group (E), 
and in validation group (F). OS, overall survival; PFS, progression-free survival; DSS, disease-specific 
survival
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multivariate Cox analysis, the T stage was culled (Fig.  5B). In univariate and 
multivariate Cox regression analyses, age and the risk score were significantly 
linked to OS time in the training group (Fig. 5C, D). In the validation group, risk 
score, T stage, and N stage correlated with OS in univariate Cox regression anal-
yses (Fig. 5E). Multivariate analysis showed that gender was also associated with 
OS in addition to the univariate inclusions (Fig. 5F). Furthermore, we confirmed 
that the risk score correlated with OS in the three groups. p < 0.05 was considered 
a statistically significant difference.

KEGG and GO Analyses

DEGs between high- and low-risk groups were used for functional enrich-
ment analysis. In total, 691 genes were upregulated and 107 genes were 

Fig. 3  The differences in survival time of GC patients between high- and low-risk groups. The OS, 
PFS and DSS time KM curve in entire group (A, D, G), in training group (B, E, H), and in validation 
group (C, F, I). The differences between the high- and low-risk groups were measured by log-rank. KM, 
Kaplan–Meier
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Fig. 4  Validating the prognostic predictive power of the COX risk models. ROC curve of the COX risk 
model and clinical characteristics in entire group (A), in training group (B), and in validation group (C). 
ROC curves of risk models predict 1-, 3-, and 5-year OS rates in entire group (D), in training group (E), 
and in validation group (F). PCA analysis of DEGs (G), cuproptosis genes (H), cuproptosis-related genes 
(I), and 6 genes Signature (J) in GC patients. ROC, receiver operating characteristic; AUC, area under 
ROC curve; PCA, principal component analysis; DEGs, differentially expressed genes

Fig. 5  Risk score from COX risk model is an independent predictor of prognosis in GC patients. Uni-
variate and Multivariate COX analysis of risk score and clinical characteristics in entire group (A, B), in 
training group (C, D), and in validation group (E, F)
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downregulated (Fig.  6A, B, Supplementary Table  4). Additionally, we com-
pleted the protein–protein interaction networks (PPI) analysis of the DEGs 
based on the STRING database (https:// string- db. org/), and Fig.  6C shows the 
core genes with a degree value greater than 30. According to GO enrichment 
analysis, the biological processes included extracellular matrix organization, 
muscle system process, extracellular structure organization, and transmembrane 
receptor protein serine (cellular component contains cell–cell junction, collagen-
containing extracellular matrix, endoplasmic reticulum lumen, and contractile 
fiber). The molecular functions included glycosaminoglycan binding, heparin-
binding, extracellular matrix structural constituent, and sulfur compound bind-
ing (Fig. 6D). Analysis of KEGG pathways revealed that the DEGs participated 
in cancer-related pathways, for instance, focal adhesion, protein digestion and 
absorption, the PI3K-Akt signaling pathway, vascular smooth muscle contrac-
tion, and proteoglycans in cancer (Fig. 6E).

Fig. 6  Risk score-related enrichment analysis in GC patients. A, B The volcano plot and heatmap present 
the difference analysis results between high and low-risk groups. C PPI analysis shows the core genes 
with a degree value greater than 30 of the DEGs. GO analysis (D) and KEGG analysis (E) results of risk 
score-related differentially expressed genes. GO, gene ontology, KEGG, Kyoto encyclopedia of genes 
and genomes

https://string-db.org/
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GSEA Analyses

GSEA was utilized to determine the pathway enrichment characteristics in sam-
ples from the full cohort of high and low-risk groups, with ten signaling path-
ways meeting the screening criteria (Fig.  7A–J). Five of these pathways were 
activated in the high-risk group: focal adhesion, neuroactive ligand-receptor 
interaction, complement and coagulation cascades, vascular smooth muscle con-
traction and calcium signaling pathway, and, and five signaling pathways were 
activated in the low-risk group: base excision repair, DNA replication, protea-
some signaling pathway, aminoacyl tRNA biosynthesis and pyrimidine metabo-
lism. It is speculated that the disparity between the low- and high-risk groups is 
related to the pathogenesis of GC.

Discussion

A cuproptosis-related six-gene signature for the prognosis of GC was developed 
using UCSC database mining. First, 1314 cuproptosis-related genes were attained, 
then the GC patients were randomly assigned to validation and training groups. 
Using LASSO regression and the Cox regression model, prognostic cuproptosis-
related genes were confirmed based on the training group. The risk score was then 
utilized to classify the patients as low or high risk, with a statistically significant dif-
ference in OS, DS, and PFS between the low- and high-risk groups. The prediction 
ability of the gene signature was indicated by AUC and the Cox analysis indicated 
that the risk score was an independent predictor of GC. PCA analysis intuitively dis-
criminated between high- and low-risk groups. The six-gene signature was validated 
in the entire cohort, with GSEA, GO and KEGG analyses revealing the signature-
related characteristics and pathways.

Copper is an essential trace element and a transition metal that is a crucial com-
ponent for all living organisms. The significance of physiological copper was first 

Fig. 7  Risk score-related GSEA analysis in GC patients. GSEA analysis according to high-risk groups 
(A–E) and low-risk groups (F–J) of GC patients. GSEA, gene set enrichment analysis
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recognized in 1928 (Jiang et al. 2022) and the disturbance of copper ions can lead to 
a variety of pathologies (Balsano et al. 2018). Furthermore, copper ions are involved 
in cancer progression, with serum copper levels in some cancers positively correlat-
ing with cancer grade (Lelièvre et al. 2020) and copper can induce cell death (Jiang 
et al. 2022). Recently, intracellular copper accumulation has been shown to induce 
the accumulation of lipoylated proteins of the mitochondria as well as the instability 
of Fe-S cluster proteins, resulting in a unique type of cell death called cupropto-
sis (Tang et  al. 2022). There are three mechanisms involved in cuproptosis. First, 
Cu-mediated Fenton reaction, oxidative stress, or depletion of antioxidants result in 
higher ROS levels, thus promoting mitochondrial dysfunction and leading to apop-
tosis (Aboelella et al. 2021; Hao et al. 2021; Ngamchuea et al. 2016). Second, the 
inhibition of the proteasome may stimulate the entry of cytochrome c into the cyto-
plasm as well as activate the caspase cascade, further triggering tumor cell apoptosis 
(Gałczyńska et al. 2020). Cu (II) ions suppress the proteasome by directly binding 
and producing partial redox effects in cell-free conditions or HeLa cells (Santoro 
et al. 2016). Third, copper depletion inhibits the development of new blood vessels 
that supply the tumor tissue with nutrients. Copper deficiency can shut down the 
“angiogenic switch,” halt the proliferation of the endothelial cells and arrest the cell 
cycle in the G0 phase (Narayanan and Natarajan 2018).

However, there are very few studies of cuproptosis in GC. In this paper, a predic-
tion model related to cuproptosis was established and verified through data mining, 
and the six genes related to cuproptosis were ACLY, FGD6, SERPINE1, SPATA13, 
RANGAP1, and ADGRE5.

ATP-citrate lyase (ACLY), an enzyme that produces acetyl-CoA from citrate, is 
the initial rate-regulating enzyme in lipid synthesis (Wen et  al. 2019), facilitating 
metastasis of colon cancer cells by CTNNB1. Studies have shown that the tempo-
ral and spatial control of acetyl-CoA production by ACLY is involved in the DNA 
repair pathway (Sivanand et  al. 2017). Copper may, directly and indirectly, inter-
fere with the synthesis of acetyl-CoA and the formation of biological CH4 (Abdel 
Azim et al. 2019), so ACLY is closely related to copper metabolism. Acetyl-CoA 
metabolism supports multistep pancreatic tumorigenesis (Carrer et  al. 2019) and 
ACLY is a possible independent biomarker for breast cancer recurrence prediction 
(Chen et al. 2020). SERPINE1 (the Serpin family E member 1), a serine proteinase 
inhibitor, is a key regulator of extracellular matrix remodeling. Elevated SERPINE1 
expression promoted cellular invasiveness in mesenchymal lung cancer cells (Kong 
et al. 2021). By regulating VEGFA expression, SERPINE1 substantially contributed 
to the proliferation and apoptosis of TNBC cells (Zhang et al. 2020). Furthermore, 
SERPINE1 modulates directional movement and cell-substrate adhesion of GBM 
cells, and its expression is controlled by TGF signaling (Seker et al. 2021). In gastric 
adenocarcinoma, SERPINE1 promotes tumor cell proliferation, migration, and inva-
sion by controlling EMT (Yang et al. 2019).

ADGRE5/CD97 is a class II TM7 receptor protein belonging to the epidermal 
growth factor seven-transmembrane (EGF-TM7) family. Numerous studies have 
implicated CD97 in tumor migration, dedifferentiation, metastasis, and invasiveness. 
The overexpression of ADGRE5/CD97 in cervical cancer is associated with tumor 
aggressiveness and it is an indicator of a poor prognosis in cervical cancer (He et al. 
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2019). ADGRE5 is a crucial regulator of acute myeloid leukemia stem cell func-
tion (Martin et al. 2019) and in hepatocellular carcinoma, ADGRE5 increases tumor 
aggressiveness via G protein-coupled receptor-mediated signaling (Yin et al. 2018).

Faciogenital dysplasia6 (FGD6) is a member of the 7 FGD family of proteins. 
FGD6 contains two pleckstrin homologous structural domains, the FYVE and the 
Rho guanine nucleotide exchange factor (GEF) structural domain, which are associ-
ated with the PM of the fold and are distributed at the boundaries of the fold (Steen-
block et al. 2014). FGD6 can promote tumor epithelial mesenchymal transition by 
activating CDC42 which belongs to the Rho family of small GTPases (Maldonado 
and Dharmawardhane 2018). It has been shown that FGD6 promotes proliferation, 
macrophage increase and tumor growth in pancreatic ductal cell carcinoma (Zhang 
et al. 2022).

Spermatogenesis-associated protein 13 (SPATA13) is a guanine nucleo-
tide exchange factor (GEF) expressed primarily in discrete brain regions and the 
extended central amygdala (CeA) in adults (Waseem et al. 2020). This suggests that 
SPATA13 may play an important role in brain function and output (Bourbia et al. 
2019). SPATA13 regulates cell migration and adhesion (Bhattacharya et al. 2022). 
Khan et al. showed that fusion mutated SPATA3 is associated with highly aggres-
sive meningiomas (Khan et al. 2020). Methylation of SPATA13 may be a biomarker 
for BRCA1-like breast cancer risk and help prevent and target this cancer subtype.

RAN GTP hydrolase activating protein 1 (RANGAP1), located on the nuclear 
pore complex (NPC) is closely related to the function of RNA (Lange et al. 2021). 
RANGAP1 and RANBP1 are overexpressed in melanoma and promote apoptosis 
through the ERK1/2 pathway (Audia et al. 2023). Other studies suggest that Ran-
GAP1 deletion may lead to chromosome destabilization and promote the develop-
ment of osteosarcoma. Recent study showed that RanGAP1 deletion may lead to 
chromosome destabilization and promote the development of osteosarcoma (Gong 
et al. 2023).

The KEGG pathway enrichment and GO annotation revealed that DEGs are 
mainly involved in extracellular structure organization, extracellular matrix organi-
zation, cell–cell junctions, collagen-containing extracellular matrix, glycosamino-
glycan binding, and an extracellular matrix structural constituent. The extracellular 
matrix and tumor cells interact to determine the biological behavior of the tumor, 
that is, growth, infiltration, metastasis, etc. (Karamanos et  al. 2021). The KEGG 
pathway analysis showed that cuproptosis-related genes are primarily enriched in 
focal adhesion, vascular smooth muscle contraction, PI3K-Akt signaling pathway, 
proteoglycans in cancer, and protein digestion and absorption. The PI3K/Akt sign-
aling pathway is a key cellular signaling pathway involved in cell development, 
proliferation, metabolism, size, and motility (Alzahrani 2019), and activated PI3K/
AKT signaling promotes GC development (Wang et al. 2019). The PI3K pathway is 
activated in ovarian cancer contributing to enhanced cell chemoresistance and sur-
vival (Huang et  al. 2020). Focal adhesions are huge macromolecular assemblages 
implicated in several pathological and cellular processes, including polarization, 
migration, and the genesis of metastatic cancer (Schumacher et al. 2022). Lin et al. 
verified a gene signature related to a novel focal adhesion that can be utilized for the 
prognosis of HCC, providing a possible treatment option (Lin et al. 2021). Activated 



54 Biochemical Genetics (2024) 62:40–58

1 3

focal adhesion signaling regulates cell proliferation and tumor growth of CRC (Lin 
et al. 2022). Proteoglycans (PGs) constitute the majority of ECM macromolecules 
and interact with numerous growth factors, cytokines, adhesion molecules, cell sur-
face receptors, glycoproteins, and enzymes to affect cell behavior and matrix charac-
teristics, as well as the proliferation, angiogenesis, invasion, and metastasis of cancer 
cells (Wei et al. 2020). From the above results, the functional enrichment of copper 
death-related genes mainly affects the ECM. Complex and regular interactions with 
matrix molecules are spatially and temporally controlled to influence cell behavior 
and phenotypic via the structure of the ECM. This lack of tissue homeostasis has 
been associated with several cancer hallmarks, such as metabolic reprogramming 
(Park et al. 2020). The role of ECM, as a dynamic structure, in the development of 
cancer is essentially mediated by its constituents, the dysregulated feedback between 
cellular constituents and their local TEM, and the matrix’s biomechanical and bio-
chemical features (Wei et  al. 2020). Inevitably, there are some limitations to our 
research. To evaluate the efficacy of the signature of cuproptosis-related genes, we 
employed the UCSC validation group and the complete group. More extra patients 
can increase the model’s dependability. Additional experimental research is neces-
sary to elucidate the molecular processes of cuproptosis-related genes.

Conclusions

We constructed a scoring model based on six genes associated with cupropto-
sis. This novel model may offer new research tools for investigating the causes of 
cuproptosis and provide personalized prognoses for GC patients.
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