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Abstract
Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown 
that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment 
outcomes in patients. We designed this study to reveal influences of hsa-miR-
195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. 
The expression data of LUAD-related mRNAs were downloaded from TCGA-
LUAD database for differential expression analysis. The bioinformatics databases 
(hTFtarget, starBase and TargetScan) were used to predict the upstream and down-
stream regulatory molecules of E2F7. Then the binding relationships between 
E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter 
assay. qRT-PCR and western blot were used to detect the mRNA and protein lev-
els of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the 
half-maximal inhibitory concentration  (IC50) and cell proliferation ability of LUAD 
cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apop-
tosis/autophagy markers and LC3 aggregation were detected by western blot and 
immunofluorescence, respectively. Finally, the mouse transplantation model was 
constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, 
E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less 
expressed. The ChIP or dual-luciferase assays demonstrated the binding relation-
ships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3’-UTR of 
E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stim-
ulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, 
while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-
195-5p overexpression. In  vivo experiments identified that hsa-miR-195-5p/E2F7/
CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted 
apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced 
gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may 
be a novel target for LUAD.
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Introduction

In recent years, the relationship between apoptosis and autophagy in tumor cells has 
become a hot research topic. Autophagy is an intracellular self-digestion process 
in evolution, while apoptosis is a classical programmed death pathway, and there 
is a relatively complex molecular regulatory mechanism between them (Mulcahy 
Levy and Thorburn 2020). The activation of autophagy can utilize aging organelles, 
and denatured and necrotic macromolecules in tumor cells to maintain cell energy 
metabolism, promote the survival of tumor cells and inhibit apoptosis. Besides, 
autophagy can also promote apoptosis and inhibit tumor cell survival by main-
taining genome stability, limiting oxidative stress, and inducing immune response 
(Booth et  al. 2020; Yang and Klionsky 2020). Previous studies have shown that 
miR-138-5p inhibits autophagy of pancreatic cancer by targeting SIRT1, thus, inhib-
iting tumor growth (Tian et al. 2017). However, some studies have found that tumor 
cells can be killed by promoting autophagy. For example, SOCS5 silencing can 
induce autophagy activation through the PI3K/Akt/mTOR pathway, thus, inhibiting 
invasion and migration of liver cancer cells (Zhang et al. 2019). Thus, influences of 
autophagy on tumor cells are double-sided. Therefore, the exploration of this aspect 
can help us to understand the development of tumors and the mechanism of drug 
resistance.

Increasing evidence has confirmed that autophagy is important in anticancer drug 
therapy (Li et al. 2017). Autophagy maintains cell homeostasis by providing meta-
bolic support for the degradation and renewal of dysfunctional organelles and long-
lived proteins. Autophagy continues to occur at the normal basal metabolic level of 
cells. In response to starvation, hypoxia, ischemia, oxidative stress, and endoplasmic 
reticulum stress, autophagy can be rapidly regulated and lead to cell death (Saha 
et  al. 2018). Tumor cells can produce resistance to anti-tumor drugs by inducing 
autophagy (Levy et al. 2017; Wu et al. 2015; He et al. 2015). Chen et al. (Ma et al. 
2018) have found that USP9X downregulation can improve sensitivity of pancreatic 
cancer patients to gemcitabine by inhibiting autophagy. TNNC1 reduces the sensi-
tivity of non-small cell lung cancer to gemcitabine chemotherapy through increasing 
autophagy level (Ye, et al. 2020). To conclude, autophagy exerts an imperative func-
tion in regulating chemotherapy sensitivity. Hence, we aimed to unveil the related 
mechanism between autophagy and tumor chemotherapy resistance.

Herein, we observed the abnormal expression states of E2F7 and hsa-miR-
195-5p, and their modulatory influence on proliferation, apoptosis, autophagy, and 
gemcitabine resistance of LUAD cells. We also explored the relevant downstream 
regulatory mechanisms that may be affected by E2F7 and found that E2F7 could 
activate CEP55 to inhibit apoptosis of LUAD cells, stimulate autophagy, and reduce 
gemcitabine sensitivity. These findings contributed to a bolstered understanding of 
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mechanisms of disease development and gemcitabine resistance and suggested that 
hsa-miR-195-5p/E2F7/CEP55 axis may be potential therapeutic target for LUAD.

Materials and Methods

Bioinformatics Analyses

LUAD-related mRNA expression data were downloaded from TCGA-LUAD data-
base (normal: 59, tumor: 535) and subjected to differential expression analysis using 
the “edgeR” package (|logFC|> 2, FDR < 0.05) to acquire differentially expressed 
mRNAs (DEmRNAs). Target gene E2F7 was identified by literature citation. 
HTFtarget database was used to predict the potential target mRNA downstream of 
E2F7 in LUAD. StarBase and TargetScan were used to predict the regulatory genes 
upstream of E2F7. Pearson correlation analysis was used to investigate the correla-
tion between E2F7 and the expression levels of regulatory molecules. JASPAR was 
employed to predict the binding sites between E2F7 and regulatory molecules.

Cell culture and Cell Transfection

Human LUAD cell lines H1299 (BNCC-100859) and A549 (BNCC-100215), 
HCC827 (BNCC-353294) and human bronchial epithelial cells BEAS-2B (BNCC-
339275) bought from BeNa Culture Collection (BNCC, China) were placed in 
RPMI-1640 plus 10% fetal bovine serum (FBS). Cells were maintained under condi-
tions of 37 ℃ and 5%  CO2.

Lipofectamine 2000 Kit (GenePharmam Suzhou, China) was utilized to perform 
cell transfection of LUAD cells with si-E2F7, oe-E2F7, si-CEP55, oe-CEP55, hsa-
miR-195-5p mimic, hsa-miR-195-5p agomir, and corresponding negative controls 
(GenePharmam Suzhou, China).

qRT‑PCR

Total RNA extraction was performed by Trizol method (Invitrogen, USA). cDNA 
was then obtained and subjected to qRT-PCR on SYBR Green Master (Roche, Swit-
zerland). β-actin was taken as an endogenous reference for E2F7 and CEP55, and 
U6 for hsa-miR-195-5p. Data were analyzed by  2−ΔΔCt method. Specific primer 
sequences are presented in Table 1.

Western Blot

Detailed steps of western blot were performed according to previous description 
(Chen, et al. 2021). Primary antibodies, including rabbit anti-human LC3I/II (LC3B, 
ab192890, 1:2000), β-actin (ab8227, 1:2000), CEP55 (ab170414, 1:5000), Bcl-2 
(ab32124, 1:1000), Bax (ab32503, 1:2000), Cleaved caspase-3 (ab32042, 1:500), 
and p62 (ab91526, 1:2000), were purchased from Abcam (UK). Primary antibody 
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rabbit anti-human E2F7 (DF2444, 1:2000) was accessed from Affinity (USA). Sec-
ondary antibody goat anti-rabbit IgG (ab205718, 1:50000) was purchased from 
Abcam (UK).

Chromatin Immunoprecipitation (ChIP)

ChIP assay was conducted as per steps in the previous article (Zhao et  al. 2020). 
According to the kit instructions, ChIP assay was performed using IP grade anti-
E2F7 antibodies (ab245655, 1: 1000), Rabbit IgG (ab172730,1:1000), and corre-
sponding Simple ChIP enzymatic chromatin IP kit (CST, USA). qPCR was used to 
evaluate the purified DNA. Primers are listed in Table 2.

Dual‑Luciferase Assay

Luciferase reporter vectors of pGL3-CEP55-WT and pGL3-CEP55-MUT (Promega, 
USA) were constructed. A pRL reference plasmid was used as a control. Then, the 
LUAD cell line HCC827 (2 ×  105 cells/well) was plated into 96-well plates. Next, 
cells were co-transfected with luciferase reporter plasmid, Renilla luciferase reporter 
plasmid and oe-NC or oe-E2F7. 48  h later, the luciferase activity was measured 
using a dual-luciferase reporting system (Promega, USA). This assay was performed 
in triplicate.

CCK‑8 Assay

CCK-8 (Beyotime Institute Biotech, China) was conducted for assessing prolif-
erative property of LUAD cells. Transfected cells from each group were collected 

Table 1  Primer sets for qRT-PCR

Gene Forward Reverse

E2F7 5’-AAA GGG ACT ATT CCG ACC CAT-3’ 5’-ACT TGG ATA GCG AGA AAC T-3’
CEP55 5’-TCG ACC GTC AAC ATG TGC AGCA-3’ 5’-GGC TCT GTG ATG GCA AAC TCATG-3’
β-actin 5’-AGA TGT GGA TCA GCA AGC AG-3’ 5’-GCG CAA GTT AGG TTT TGT CA-3’
miR-

195-5p
5’-TAG CAG CAC AGA AAT ATT GGC-3’ 5’-CTC AAC TGG TGT CGT GGA GTC-3’

U6 5’-GCT TCG GCA GCA CAT ATA CTA AAA T-3’ 5’-CGC TTC ACG AAT TTG CGT GTCAT-3’

Table 2  Primer sets for ChIP-
qPCR assay

Primer sets Sequence (5’-3’)

SP1 (Forward) GGC AGG TGT GGA ATT GGA GT
SP1 (Reverse) TCC CTG TTC ACC TTC AAG CC
SP2 (Forward) CTT TGT GAA ATC CCG TTG TCCC 
SP2 (Reverse) CTG CGC TCT TGA GCA TAG ATT 
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and prepared into cell suspensions. 100 μL cell suspensions were then plated into 
96-well plates (2 ×  103 cells/well), and then the plates were precultured with stand-
ard conditions. At 0, 24, 48, 72, and 96 h, CCK-8 solution (10 μL) was slowly added 
to the wells. Cells containing CCK-8 solution were incubated for 2 h. At the end of 
the incubation, absorbance value at 450 nm was assessed with a microplate reader 
(Sunnyvale, USA) (Zhao et al. 2021).

CCK-8 (Beyotime Institute Biotech, China) was employed to assay sensitivity 
of LUAD cells to gemcitabine (An et al. 2018). The  IC50 value was determined as 
per instructions. LUAD cells (5 ×  103 cells/well) were inoculated into 96-well plates 
for 24 h incubation. Absorbance value at 450 nm was measured with a microplate 
reader (Sunnyvale, USA). Gemcitabine was purchased from Merck Life Sciences 
(China). After treatment with Gemcitabine (0, 0.001, 0.01, 0.1, 1, 5, and 10 μg/mL) 
for 24 h and 48 h, respectively,  IC50 value was detected.

Flow Cytometry

Apoptosis of LUAD cells was assayed via flow cytometry (BD Biosciences, USA). 
This assay was conducted according to the kit instructions (Invitrogen, USA). Dou-
ble Annexin V/PI staining was adopted and flow cytometry was performed.

Immunofluorescence

The immunofluorescence test was performed by referring to the method described 
previously (Wang et al. 2018). The LC3 antibody used was the same as western blot.

Mouse Transplantation Model

20 BALB/c nude mice (4 weeks; 18–25 g) with specific pathogen-free grade were 
provided by SLAC Laboratory Animal Co. Ltd. (China) and then assigned randomly 
to four groups (five mice/group). Cells transfected with NC-agomir + oe-NC, hsa-
miR-195-5p agomir + oe-NC, hsa-miR-195-5p agomir + oe-E2F7, and hsa-miR-
195-5p agomir + oe-CEP55 (2 ×  106  cells/mice) were injected into mice subcu-
taneously, and growth of tumors was recorded every 7  days. 4  weeks later, mice 
were euthanized and tumor tissues were removed. Volume (volume = L ×  W2/2) 
and weight of tumors were measured for subsequent experiments. The study was 
approved by the Ethics Committee.

Statistical Analysis

All data were expressed as Mean ± SD. In this study, difference significance among 
multiple groups was assessed by one-way analysis of variance (ANOVA) and that 
between two groups was tested by Student’s t test. Each experiment was indepen-
dently repeated three times. P < 0.05 indicated significant difference.
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Results

E2F7 is Highly Expressed in LUAD Tissues and Cells

LUAD-associated mRNA expression data from TCGA-LUAD database were sub-
jected to differential analysis, with the result disclosing that E2F7 was evidently 
increased in LUAD tissues compared with normal tissues (Fig. 1A). The results 
of survival analysis illustrated that early survival rate of patients with relatively 
poor E2F7 expression was markedly higher than those with high E2F7 expression 
(Fig. 1B). Combined with previous studies, we believed that E2F7 could facili-
tate the malignant progression of LUAD (Wang et  al. 2021; Liang et  al. 2018). 
To verify this result, qRT-PCR and western blot assays analyzed E2F7 level in 
A549, H1299, HCC827, and BEAS-2B cells. It was observed that E2F7 expres-
sion in LUAD cells was noticeably up-regulated (Fig. 1C–D). The expression of 
E2F7 was relatively high in H1299 and HCC827 cells, so these two cell lines 

Fig. 1  E2F7 is highly expressed in LUAD tissues and cells. A Expression of E2F7 in normal tissues and 
LUAD tissues; B The survival curve of LUAD patients based on median E2F7 expression in LUAD tis-
sues; C–D: The mRNA and protein expression of E2F7 in LUAD cell lines (A549, H1299, HCC827) and 
human bronchial epithelial cells (BEAS-2B). ***, **** meant P < 0.001, 0.0001, respectively (one-way 
ANOVA)
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were selected for subsequent assays. These results suggested a significantly high 
expression of E2F7 in LUAD.

Effects of E2F7 on Proliferation, Apoptosis, Autophagy, and Sensitivity 
to Gemcitabine of LUAD Cells

As the role of E2F7 in LUAD progression was underexplored, si-NC and si-E2F7 
were transfected into H1299 and HCC827 cells, with transfection efficiency being 
detected via qRT-PCR and western blot. Significantly lower E2F7 expression was 
presented in si-E2F7 treatment group than in control (Fig. 2A–B). Later, we tested 
the effect of E2F7 on LUAD cell proliferation through CCK-8, which presented sup-
pression of LUAD cell proliferation by knockdown of E2F7 (Fig. 2C). Subsequently, 
flow cytometry results showed that silencing E2F7 promoted apoptosis of LUAD 
cells (Fig.  2D). Meanwhile, we detected the expression of apoptosis-associated 
proteins using western blot. Silencing E2F7 reduced Bcl-2 protein expression but 
increased Bax and Cleaved caspase-3 protein expression in LUAD cells (Fig. 2E). 
Next, impact of E2F7 on autophagy of LUAD cells was unveiled. LC3 aggregation 
was assayed through immunofluorescence assay. It was markedly reduced in si-E2F7 
group compared with control group (Fig. 2F). Meanwhile, we measured autophagy-
related protein levels in LUAD cells. LC3 II/LC3 I protein expression was remarka-
bly lowered and that of p62 protein was evidently elevated in LUAD cells in si-E2F7 
group (Fig. 2G). Finally, to study influence of E2F7 on gemcitabine chemotherapy 
sensitivity, we measured the  IC50 value of LUAD cells to gemcitabine in each group 
by using CCK-8 assay. We found a significantly decreased  IC50 value of LUAD cells 
to gemcitabine in si-E2F7 group compared with the si-NC group (Fig. 2H–I), sug-
gesting that silencing E2F7 could improve the sensitivity of LUAD cells to gemcit-
abine. In conclusion, E2F7 stimulated proliferation and autophagy of LUAD cells, 
constrained apoptosis of LUAD cells, and reduced the sensitivity of LUAD cells to 
gemcitabine.

CEP55 is a Downstream Regulator of E2F7

To understand mechanism of E2F7 modulating LUAD progression, the target 
mRNAs of transcription factor E2F7 in LUAD were predicted by hTFtarget data-
base. From the intersection of 145 potential target genes and 1,969 up-regulated 
genes, 8 DEmRNAs were identified as the potential target genes (Fig.  3A). The 
results of survival analysis illustrated a substantially higher survival rate of patients 
with low CEP55 level than those with high CEP55 level (Fig.  3B), indicating 
that high CEP55 level was closely implicated in unfavorable prognoses of LUAD 
patients. Next, Pearson correlation analysis showed that CEP55 level was signifi-
cantly and positively correlated with E2F7 (Fig.  3C). Subsequently, binding sites 
of E2F7 to TSS region of CEP55 promoter were searched by JASPAR database. 
The results showed that there were two potential binding sites at the first 2000 bp of 
CEP55 promoter (Fig. 3D), and CEP55 was evidently overexpressed in LUAD tis-
sues (Fig. 3E). Then, qRT-PCR was used to analyze CEP55 mRNA level in LUAD 



1535

1 3

Biochemical Genetics (2023) 61:1528–1547 

and bronchial epithelial cells, the result of which exhibited that CEP55 was remark-
ably increased in LUAD cells (Fig.  3F). As E2F7 had a significant effect on the 
apoptotic phenotype of HCC827 cell line, it was selected for further analyses. Then, 
ChIP result validated the binding relationship of E2F7 with CEP55 (Fig. 3G). Dual-
luciferase assay verified the targeting between E2F7 and CEP55, indicating that 

Fig. 2  Effects of E2F7 on apoptosis, autophagy, and gemcitabine chemotherapy sensitivity of LUAD 
cells. A, B E2F7 mRNA and protein expression in LUAD cells (H1299 and HCC827) in each group; 
C The proliferation ability of LUAD cells; D The apoptosis level of LUAD cells in each group; E The 
expression of apoptosis-related proteins in LUAD cells; F Immunofluorescence assay on the expression 
of E2F7 and LC3 protein in LUAD cells in each group; G The expression of autophagy-related proteins 
in LUAD cells; H, I The  IC50 value of LUAD cells in different groups treated with gemcitabine (0, 0.001, 
0.01, 0.1, 1, 5, and 10  μg/mL) for 24  h and 48  h, respectively. **, ***, **** meant P < 0.01, 0.001, 
0.0001, respectively (Student’s t test)
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Fig. 3  CEP55 is a downstream regulatory molecule of E2F7. A Venn diagram of target genes of E2F7 
predicted by bioinformatics analysis and differentially up-regulated genes; B The survival curve of 
LUAD patients based on median CEP55 expression in LUAD tissues; C Pearson correlation analysis of 
E2F7 and CEP55; D The binding sites of E2F7 to the TSS region of CEP55 promoter was validated by 
JASPAR database; E CEP55 expression in normal tissues and LUAD tissues; F The mRNA expression 
of CEP55 in human bronchial epithelial cells (BEAS-2B) and LUAD cell lines (A549, H1299, HCC827); 
G, H: CHIP and dual-luciferase assays that verifies the binding relationship between E2F7 and CEP55 
promoter; I The expression level of CEP55 when E2F7 was knocked down. ***, **** meant P < 0.001, 
0.0001, respectively (one-way ANOVA)
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E2F7 overexpression increased luciferase activity of wild-type CEP55 but did not 
alter the luciferase activity of mutant CEP55 (Fig. 3H). The expression of CEP55 
after E2F7 knockdown was inhibited as detected via qRT-PCR (Fig.  3I). Hence, 
E2F7 could directly facilitate the transcription of CEP55.

E2F7 Affects Proliferation, Apoptosis, Autophagy, and Gemcitabine 
Chemotherapy Resistance of LUAD Cells via CEP55

To unveil function of E2F7/CEP55 axis in LUAD progression, we set up the fol-
lowing experimental groups: si-NC+oe-NC, si-CEP55+oe-NC, si-NC+oe-E2F7, 
and si-CEP55+oe-E2F7. First, the transfection efficiency of HCC827 cells in each 
treatment group was determined through qRT-PCR and western blot experiments. 
Compared with control group, CEP55 expression was decreased in si-CEP55+oe-
NC group and substantially elevated in si-NC+oe-E2F7 group, and that in si-
CEP55+oe-E2F7 group was recovered (Fig. 4A–B). CCK-8 assay for assessment 
of proliferative property revealed the result that as compared to control, cell pro-
liferation property of si-CEP55+oe-NC group was significantly reduced, and that 
of si-NC+oe-E2F7 group was significantly increased. The cell proliferation abil-
ity of si-CEP55+oe-E2F7 group was restored to the level of si-NC+oe-NC group 
(Fig. 4C). Then, flow cytometry for apoptosis analysis depicted the finding that 
apoptosis rate of LUAD cells reduced upon E2F7 overexpression and increased 
upon CEP55 silencing and that simultaneous CEP55 silencing and E2F7 over-
expressing could restore the apoptosis level of LUAD cells (Fig.  4D). Next, 
apoptosis-related proteins were further detected. It was shown that CEP55 silenc-
ing remarkably elevated Cleaved caspase-3 and Bax protein levels but decreased 
that of Bcl-2 protein in LUAD cells and that simultaneous CEP55 silencing and 
E2F7 overexpressing could restore apoptosis-related protein levels in LUAD cells 
(Fig. 4E). Then, LC3 aggregation was assayed via immunofluorescence assay. In 
comparison with the control, CEP55 silencing significantly reduced LC3 aggre-
gation in LUAD cells, but forced expression of E2F7 rescued the effect of CEP55 
silencing on LC3 aggregation of LUAD cells (Fig. 4F). Meanwhile, autophagy-
related protein levels in LUAD cells were assayed. Compared with si-NC + oe-NC 
group, CEP55 silencing prominently decreased LC3 II/LC3 I protein level and 
substantially elevated P62 protein level. However, E2F7 overexpression had the 
opposite effects. Overexpression of E2F7 reversed impact of CEP55 silencing on 
autophagy in LUAD cells (Fig. 4G). Finally, we investigated the effects of E2F7/
CEP55 axis on gemcitabine resistance in LUAD cells. As compared to control, 
E2F7 overexpression and CEP55 silencing resulted in a notable increase and 
decrease in the  IC50 value of LUAD cells to gemcitabine, respectively. However, 
simultaneous operation of CEP55 silencing and the E2F7 overexpression restored 
the  IC50 value of LUAD cells response to gemcitabine (Fig. 4H–I). Hence, CEP55 
silencing enhanced sensitivity of LUAD cells to gemcitabine, and further over-
expression of E2F7 overturned influence of CEP55 silencing on sensitivity of 
LUAD cells to gemcitabine. In order to check whether overexpression of CEP55 
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can abrogate the phenotypes of E2F7 in LUAD cells, we constructed si-NC+oe-
NC, si-E2F7+oe-NC, si-NC+oe-CEP55, and si-E2F7+oe-CEP55 transfection 
groups for verification. Overexpression of CEP55 did not change E2F7 level but 
could restore the changes of proliferation, apoptosis, autophagy, and gemcit-
abine sensitivity of LUAD cells induced by knockdown of E2F7, which further 
indicated that E2F7 regulated the malignant progression of LUAD by targeting 
CEP55 (Supplementary Fig. 1). In conclusion, by activating CEP55, E2F7 inhib-
ited LUAD cell apoptosis, promoted LUAD cell proliferation and autophagy, and 
increased the drug resistance of LUAD cells to gemcitabine.

Fig. 4  E2F7 affects apoptosis, autophagy, and gemcitabine resistance of LUAD cells via CEP55.A, B 
The mRNA and protein expression of CEP55 of HCC827 cells in each group; C The proliferation ability 
of LUAD cells; D The apoptosis of HCC827 cells in each group; E The expression of apoptosis-related 
proteins in LUAD cells; F Immunofluorescence assay of E2F7 and LC3 protein expression in HCC827 
cells in each group; G The expression of autophagy-related proteins in HCC827 cells; H, I The cell via-
bility and  IC50 values respond to 24 h and 48 h of gemcitabine treatment (0, 0.001, 0.01, 0.1, 1, 5, 10 μg/
mL), respectively. *, **, ***, **** meant P < 0.05, 0.01, 0.001, 0.0001, respectively (one-way ANOVA)
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Hsa‑miR‑195‑5p is an Upstream Regulatory Gene of E2F7

Regulatory mechanism of E2F7 in LUAD cells was to be revealed, therefore, we 
used starBase and TargetScan to predict the regulatory genes upstream of E2F7. 
The results were intersected with 16 down-regulated miRNAs, and 5 differential 
miRNAs were identified (Fig. 5A). Pearson correlation analysis between E2F7 and 
the predicted five target genes revealed that hsa-miR-195-5p was most significantly 
associated with E2F7, and correlation was negative (Fig.  5B). Therefore, miR-
195-5p was deemed as target gene, and TCGA database analysis illustrated that it 
was markedly under-expressed in LUAD tissues (Fig.  5C). Subsequently, binding 
site of E2F7 to hsa-miR-195-5p was obtained through JASPAR database (Fig. 5D), 
and the targeting relationship between the two was further verified by dual-luciferase 

Fig. 5  Hsa-miR-195-5p is an upstream regulatory gene of E2F7. A Intersection of predicted miRNAs 
targeting E2F7 and differentially down-regulated miRNAs; B Pearson correlation analysis results of 
E2F7 and the predicted five miRNAs, and Pearson correlation analysis results of hsa-miR-195-5p and 
E2F7; C The expression level of hsa-miR-195-5p in LUAD tissues analyzed by TCGA database; D The 
binding site of E2F7 to hsa-miR-195-5p; E Dual-luciferase assay was used to detect the targeting rela-
tionship between E2F7 and hsa-miR-195-5p; F The expression of hsa-miR-195-5p in different cells; G 
The mRNA expression of E2F7 in cells after overexpression of hsa-miR-195-5p. **, ***, **** meant 
P < 0.01, 0.001, 0.0001, respectively (one-way ANOVA)
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experiment. When hsa-miR-195-5p was overexpressed, dual-luciferase activity of 
wild-type E2F7 was substantially reduced, but dual-luciferase activity of mutant 
E2F7 did not change significantly (Fig. 5E), suggesting that hsa-miR-195-5p could 
target and bind E2F7. Then, qRT-PCR assayed mRNA level of hsa-miR-195-5p in 
BEAS-2B, A549, H1299, and HCC827, with the experimental results showing that 
hsa-miR-195-5p was notably decreased in LUAD cells (Fig.  5F). Finally, we also 
tested regulatory relationship between hsa-miR-195-5p and E2F7, with the result 
presenting that E2F7 level was noticeably reduced with overexpressed hsa-miR-
195-5p (Fig. 5G). Based on the findings, we concluded that hsa-miR-195-5p was an 
upstream regulatory gene of E2F7 and negatively modulated E2F7 level.

Hsa‑miR‑195‑5p/E2F7/CEP55 Axis can Promote LUAD Cell Apoptosis, Inhibit 
Proliferation and Autophagy, and Reduce the Resistance of LUAD Cells 
to Gemcitabine

To analyze impact of hsa-miR-195-5p/E2F7/CEP55 axis on functions of LUAD 
cells, the following experimental groups were set: NC mimic+oe-NC, hsa-miR-
195-5p mimic+oe-NC, hsa-miR-195-5p mimic+oe-E2F7, and hsa-miR-195-5p 
mimic+oe-CEP55. Firstly, CEP55 mRNA and protein levels in HCC827 cell treat-
ment groups were determined via qRT-PCR and Western blot to evaluate trans-
fection efficiency. Compared with the control group (NC mimic+oe-NC), CEP55 
expression was decreased in hsa-miR-195-5p mimic+oe-NC group but was notably 
increased by E2F7 overexpression. The expression of CEP55 in hsa-miR-195-5p 
mimic+oe-CEP55 group was restored to the level of NC mimic+oe-NC group 
(Fig. 6A–B). CCK-8 for determination of proliferative property illustrated that com-
pared with control, proliferation ability of hsa-miR-195-5p mimic+oe-NC group 
was remarkably reduced, but it was substantially increased with forced expression 
of E2F7/CEP55. Cell proliferation ability of hsa-miR-195-5p mimic+oe-E2F7 
group and hsa-miR-195-5p mimic+oe-CEP55 group was restored to the level of NC 
mimic+oe-NC group (Fig. 6C). Subsequently, cell apoptosis was analyzed via flow 
cytometry. The apoptosis rate of cells in hsa-miR-195-5p mimic+oe-NC group was 
dramatically elevated, and further overexpression of E2F7/CEP55 could noticeably 
decrease apoptosis rate (Fig. 6D). Apoptosis-related protein detection results showed 
that in LUAD cells, cleaved caspase-3 and Bax protein levels were prominently up-
regulated in hsa-miR-195-5p mimic+oe-NC group, but Bcl-2 protein level was in 
the opposite. Further overexpression of E2F7/CEP55 down-regulated Cleaved 
caspase-3 and Bax protein expression, and up-regulated Bcl-2 protein expression. 
Apoptosis-related protein levels in hsa-miR-195-5p mimic+oe-E2F7 group and hsa-
miR-195-5p mimic+oe-CEP55 group were recovered (Fig.  6E). Then, the aggre-
gation of LC3 in different treatment groups was assayed via immunofluorescence 
assay. LC3 aggregation in LUAD cells in hsa-miR-195-5p mimic+oe-NC group 
was remarkably decreased in comparison to control, and further overexpression of 
E2F7/CEP55 significantly increased LC3 aggregation. Intracellular LC3 aggrega-
tion was restored to the level of NC mimic+oe-NC group (Fig.  6F). Meanwhile, 
autophagy-related protein levels in LUAD cells were assayed. Compared with NC 
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mimic + oe-NC group, LC3 II/LC3 I protein level was notably decreased and the 
protein level of P62 was substantially elevated in hsa-miR-195-5p mimic+oe-NC 
group. Further overexpression of E2F7/CEP55 significantly increased the intracel-
lular protein level of LC3 II/LC3 I and significantly decreased that of P62 (Fig. 6G). 
Finally, we investigated the impact of hsa-miR-195-5p/E2F7/CEP55 axis on gem-
citabine resistance in LUAD cells. As in comparison to control group, forced 

Fig. 6  Hsa-miR-195-5p/E2F7/CEP55 axis can promote apoptosis of LUAD cells, inhibit autophagy, 
and reduce gemcitabine resistance in LUAD. A, B The transfection efficiency was evaluated by qRT-
PCR and Western blot; C The proliferation ability of LUAD cells in each transfection group; D The 
apoptosis of each transfected group; E The expression of apoptosis-related proteins in each transfected 
group; F The aggregation of LC3 was detected by immunofluorescence assay; G The expression level 
of autophagy-related proteins in the transfected cells; H, I: The cell viability and  IC50 values respond to 
24 h and 48 h of gemcitabine treatment (0, 0.001, 0.01, 0.1, 1, 5, 10 μg/mL), respectively. **, ***, **** 
meant P < 0.01, 0.001, 0.0001, respectively (one-way ANOVA)
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expression of hsa-miR-195-5p significantly reduced  IC50 value of LUAD cells to 
gemcitabine, and further overexpression of E2F7/CEP55 attenuated the drug sensi-
tivity of LUAD cells to gemcitabine, resulting in a substantial increase in  IC50 value 
of gemcitabine in LUAD cells (Fig. 6H–I). In conclusion, hsa-miR-195-5p promoted 
LUAD cell apoptosis, inhibited proliferation and autophagy, and attenuated gemcit-
abine resistance via regulating E2F7/CEP55.

Hsa‑miR‑195‑5p/E2F7/CEP55 Axis can Inhibit the Growth of LUAD Tumors

We have previously found that hsa-miR-195-5p/E2F7/CEP55 can inhibit malig-
nant progression of LUAD cells through in  vitro experiments. Here, we verified 
influence of hsa-miR-195-5p/E2F7/CEP55 axis on LUAD tumor growth in mice 
through animal experiments. First, we randomly divided the mice into four groups: 
NC-agomir+oe-NC, hsa-miR-195-5p agomir+oe-NC, hsa-miR-195-5p agomir+oe-
E2F7, and hsa-miR-195-5p agomir+oe-CEP55. The cells after different treatments 
were subcutaneously injected into mice according to groups. Tumor growth rate 
and weight of hsa-miR-195-5p agomir group were notably inhibited. Compared 
with hsa-miR-195-5p agomir+oe-NC, the tumor growth trend and tumor weight of 
hsa-miR-195-5p agomir+oe-E2F7 group and hsa-miR-195-5p agomir+oe-CEP55 
group were noticeably increased, which was similar to the NC-agomir+oe-NC 
group (Fig. 7A–C). qRT-PCR and Western blot were used to assess expression of 

Fig. 7  Hsa-miR-195-5p/E2F7/CEP55 axis can inhibit the growth of LUAD tumors. A–C Representative 
images (A), of tumors derived from xenograft animal models (B), tumor volumes (C), tumor weights; 
D, E The expression of CEP55 mRNA and protein in different mouse models. **, ***, **** meant 
P < 0.01, 0.001, 0.0001, respectively (one-way ANOVA)
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CEP55 mRNA and protein in mice. The expression of CEP55 mRNA and protein 
was significantly decreased in the hsa-miR-195-5p agomir group. CEP55 level in 
hsa-miR-195-5p agomir+oe-E2F7 group and hsa-miR-195-5p agomir+oe-CEP55 
group was prominently elevated and returned to the level of NC-agomir+oe-NC 
group (Fig.  7D–E). We, therefore, concluded that hsa-miR-195-5p/E2F7/CEP55 
axis played a role in inhibiting LUAD tumor growth in vivo.

Discussion

In this work, we investigated the role and regulatory mechanism of E2F7 in LUAD 
progression. Our results demonstrated a substantially high E2F7 level in LUAD. 
Additionally, silencing E2F7 inhibited autophagy of LUAD cells and promoted 
cell apoptosis and gemcitabine chemotherapy sensitivity by LUAD cells. Bioinfor-
matics analysis revealed that E2F7 binds to TSS region of CEP55 promoter, and 
hsa-miR-195-5p binds to E2F7 3’-UTR region. Further studies demonstrated that 
hsa-miR-195-5p promoted apoptosis of LUAD cells via E2F7/CEP55 and inhibited 
autophagy and gemcitabine chemotherapy resistance of LUAD.

E2F family is the genome encoding various transcription factors in higher eukar-
yotes, and they participated in cell cycle, angiogenesis, DNA damage response, 
etc. (DeGregori and Johnson 2006; Endo-Munoz et  al. 2009; Yang et  al. 2020a). 
E2F7 stimulates metastasis and cell proliferation of colon cancer (Guo et al. 2020), 
esophageal cancer (Lu et al. 2020), and thyroid cancer (Guo and Zhang 2019). Our 
results suggested a significant up-regulation of E2F7 in LUAD tissues and cells. 
Previous investigations reported that E2F7 drives cancer development through the 
proliferation and differentiation of cancer cells in cutaneous squamous cell carci-
noma and gallbladder carcinoma by competitively binding with E2F1 (Endo-Munoz 
et al. 2009; Xiang et al. 2019). In addition, in the studies about LUAD, it was mani-
fested that E2F7 is target of miRNA-26a-5p (Liang et al. 2018) and miRNA-140-3p 
(Wang et al. 2021) and could promote the malignant progression of tumor cells. In 
our study, we found that there was a close relationship between E2F7 expression and 
proliferation and apoptosis in LUAD cells and that E2F7 functioned as an oncogene 
in LUAD progression.

The bioinformatics analysis unveiled that CEP55 is a target downstream of 
transcription factor E2F7. CEP55 has originally described as a key centrosome-
related protein in mitotic outlet and cytokinesis (Fabbro et al. 2005). It has been 
reported that the up-regulation of CEP55 expression can facilitate cell migration 
and invasion and that high expression of CEP55 is implicated in poor prognoses 
of patients with liver cancer (Yang et  al. 2020b), anaplastic thyroid cancer (Li 
et  al. 2020), cervical cancer (Qi et  al. 2018), and LUAD (Wu et  al. 2019). Liu 
et al. (Liu et al. 2016) found that inhibition of CEP55 expression reduced viabil-
ity and induced apoptosis of LUAD cells, which was consistent with the results 
of this study. We also verified the binding between CEP55 and E2F7 by using 
ChIP and dual-luciferase assays, and confirmed that E2F7 increased the activ-
ity of LUAD cells and inhibited apoptosis via activating CEP55 by using cell 
experiments.
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Recently, a lot of studies confirmed the importance of autophagy in genesis, 
development, and treatment of tumors. Especially in the process of tumor treat-
ment, a variety of treatments including radiotherapy and chemotherapy can lead 
to autophagy of tumor cells (Chiu et  al. 2016; Michaud, et  al. 2011). Autophagy 
is a protective mechanism that mediates drug resistance of tumor cells. Therefore, 
inhibiting autophagy re-sensitizes tumor cells and strengthen cytotoxicity of chemo-
therapy agents (Sui, et al. 2013). Autophagy is pivotal in the modulation of chemo-
therapy sensitivity of colon cancer, osteosarcoma, glioblastoma, and other malignant 
tumors (Lv et al. 2016; Xu et al. 2016; Li et al. 2018). Yin et al. (Lv et al. 2016; Xu 
et al. 2016; Li et al. 2018) found in a study of bladder cancer that CYLD overexpres-
sion and Livin gene knockout can improve gemcitabine chemotherapy sensitivity 
by reducing autophagy and increasing apoptosis. MiRNA-29c elevates gemcitabine 
chemotherapy sensitivity through inhibition of USP22-mediated autophagy of pan-
creatic cancer cells (Huang et al. 2018). We displayed that E2F7 level was closely 
related to autophagy and gemcitabine chemotherapy sensitivity of LUAD cells. 
Decreased E2F7 expression led to decreased autophagy level of LUAD cells, which 
in turn increased the sensitivity of LUAD cells to gemcitabine chemotherapy.

MiRNAs are endogenously expressed non-coding RNAs that can be used as mod-
ulators of post-transcriptional genes (Duan, et al. 2022). After identifying the regu-
latory mechanism of E2F7/CEP55 in LUAD, we continued to explore the upstream 
regulatory genes of E2F7. MiR-195-5p exerts an inhibitory role in the progres-
sion of various cancers, such as cervical cancer (Liu et al. 2020), lung cancer (Bu 
et al. 2021), colorectal cancer (Li et al. 2021), etc. Cheng et al. (Yuan et al. 2021) 
showed that miR-195-5p represses growth and promotes apoptosis of LUAD cells 
through targeting HOXA10 and enhances sensitivity of LUAD cells to X-ray irra-
diation. Herein, we reported that hsa-miR-195-5p was an upstream regulatory gene 
of E2F7, which could stimulate LUAD cell apoptosis, constrain proliferation and 
autophagy of LUAD cells, and enhance sensitivity of LUAD cells to gemcitabine 
via targeting E2F7/CEP55, which was basically in line with findings by Cheng et al. 
In a word, aberrant expression of hsa-miR-195-5p/E2F7/CEP55 can affect tumor 
cell autophagy, which may be a key pathway affecting drug resistance. In addition, 
Xu et  al. (Xu et  al. 2015) showed in their study on hepatocellular carcinoma that 
hsa-miR-195-5p significantly inhibits xenograft tumor growth in nude mice. In this 
study, xenograft experiments illustrated that hsa-miR-195-5p constrained LUAD 
tumor growth by targeting E2F7 and regulating CEP55, which was in line with 
in vitro results, again proving the reliability of the conclusions of this study.

To sum up, this research confirmed that hsa-miR-195-5p/E2F7/CEP55 axis 
is involved in the molecular mechanism of regulating autophagy and gemcitabine 
resistance of LUAD cells. The results of this study preliminarily confirmed that 
E2F7 may be an autophagy-related drug-resistance gene, providing a reference for 
clinical cancer treatment guided by the next-generation sequencing. However, there 
are still some deficiencies in this study. There was no in-depth investigation at the 
clinical level, which was a deficiency. We will further explore at the clinical level, so 
as to lay a more reliable basis for the precise treatment of LUAD.
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