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Abstract
The complete mitogenome sequence of the Great Frigatebird, Fregata minor was 
sequenced for the first time in this study. The mitogenome (16,899 bp) comprises 
of 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 
transfer RNA (tRNA) genes, and a control region (CR). The mitogenome was AT-
rich (55.60%) with 11 overlapping and 18 intergenic spacer regions. Most of the 
PCGs were started by a typical ATG initiation codon except for cox1 and nad3. A 
maximum-likelihood phylogeny of concatenated PCGs resulted in a well-resolved 
phylogeny of all the species of Suliformes and illuminates the sister relationship 
of F. minor with F. magnificens. The present mitogenome-based phylogeny clearly 
enlightens the evolutionary position of Suliformes and Pelecaniformes species. 
Unique tandem repeats were identified in both F. minor and F. magnificens, which 
can be employed as a species-specific marker. To illuminate the population structure 
of this migratory seabirds, the present study advocate more sampling and the gener-
ation of additional molecular data to clarify their genetic diversity. The present study 
also rejects an earlier hypothesis on the mitochondrial gene order of Suliformes and 
corroborated the typical avian gene order in frigatebirds.

Keywords  Seabirds · Mitogenome · Phylogeny · Gene order · Evolution

 *	 Vikas Kumar 
	 vikaszsi77@gmail.com

1	 Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, 
Kolkata 700053, India

2	 Bird Section, Zoological Survey of India, Kolkata 700053, India

http://orcid.org/0000-0002-5488-4433
http://orcid.org/0000-0003-3577-966X
http://orcid.org/0000-0003-2496-9556
http://orcid.org/0000-0003-1064-9826
http://orcid.org/0000-0002-0215-0120
http://crossmark.crossref.org/dialog/?doi=10.1007/s10528-021-10156-6&domain=pdf


1178	 Biochemical Genetics (2022) 60:1177–1188

1 3

Introduction

The members of Fregatidae were formerly grouped under the order Pelecani-
formes along with other pelicans, cormorants, anhingas and darters, boobies and 
gannets, and tropicbirds (Nelson 2005). Later on, the cormorants, anhingas and 
darters, and frigatebirds are grouped under the order Suliformes (Christidis and 
Boles 2008; Gibb et  al. 2013; Gill and Donsker 2021). The family Fregatidae 
(order Suliformes) comprises a single genus with five species which are distrib-
uted across all tropical and subtropical oceans (BirdLife International 2021). The 
frigatebird species have partially overlapping distributions but their behavior, 
breeding and foraging ecology are almost similar (Valle 1986). They spend most 
of the day in flight searching for food (fish and squid) and rest on trees or cliffs at 
night. They were tracked to the atmospheric conditions to understand the evolu-
tion of flight strategies and evidence for long-distance migrations over months-
long transoceanic flights (Weimerskirch et al. 2016). Among all five extant spe-
cies, the Great Frigatebird, Fregata minor is distributed throughout the world’s 
tropical seas and is found foraging at low densities throughout the Indo-Malay 
archipelago during the non-breeding season (Rasmussen and Anderton 2012). 
Among the five species, the Ascension Frigatebird, F. aquila is Vulnerable, the 
Christmas Frigatebird, F. andrewsi is Critically Endangered, and the other three 
species (F. magnificens, F. ariel, and F. minor) are Least Concern in the IUCN 
Red List of Threatened species (IUCN 2021). This group of bird faces several 
threats such as, extreme atmospheric conditions, habitat alteration, and ecosystem 
degradation associated with climate change, marine pollution by heavy metals 
and industrial pollutants, and human persecution as well as accidental entangle-
ment during fishing activities.

The taxonomic identification of this group of birds is challenging due to their 
phenotypic similarity and impressive plumage differences within the group (James 
2004; Valle et al. 2006). Hence, molecular information tools are required for rapid 
and reliable species level identification and to resolve their phylogenetic relation-
ships. Mitochondrial and nuclear DNA has been used to elucidate the phylogeny of 
various groups of birds, including frigatebirds (Hedges and Sibley 1994; Friesen and 
Anderson 1997; Kennedy and Spencer 2004; Paton and Baker 2006; Brown et al. 
2008; Patterson et al. 2011). In addition, the mitogenome, the whole genome, and 
comparative genomics approaches have also been used to examine the relationships, 
divergence time, and classification of avian species (Harrison et al. 2004; Gibb et al. 
2007, 2013; Hackett et al. 2008; Pacheco et al. 2011; McCormack et al. 2013; Jarvis 
et  al. 2014). So far, the mitogenome of only a single species, F. magnificens was 
assembled and publicly available at GenBank (Feng et  al. 2020). Another mitog-
enome (GenBank accession number AP009192) was not identified to species (Wata-
nabe et al. 2006). To enrich the global database and help understand the phylogenet-
ics of frigatebirds, the present study aimed to generate the complete mitogenome of 
F. minor and compared with other Suliformes.

Remarkably, the mitogenome of Suliformes represent unique gene order with 
duplicated region due to pseudogenization or loss of selected genes and/or the 
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control region (Urantówka et  al. 2020). The duplicated control regions with 
contiguous genes could enhance the effectiveness of replication and transcrip-
tion (Kumazawa et al. 1996; Jiang et al. 2007). In this context, we revisited the 
mitochondrial gene order of both cormorants and darters as well as compared 
with frigatebirds mitogenome to assure the recent views on the organization and 
evolution of Suliformes mitogenome (Morris-Pocock et  al. 2010; Gibb et  al. 
2013; Rodrigues et al. 2017; Zhang et al. 2017; Urantówka et al. 2020). The gene 
arrangement information will help to elucidate the evolution of studied avian 
groups as well as their evolutionary relationships.

Materials and Methods

Ethics Statement and Sample Collection

A dead sub-adult frigatebird was recovered by West Bengal Forest Department on 
29 May 2020 from Basirhat (22° 37′ 53.12′′ N, 88° 53′ 7.39′′ E), North 24 Parganas, 
West Bengal, India. This about 80 km inland from the nearest sea coasts of Sunder-
ban Biosphere Reserve and subsequently sent the specimen to Zoological Survey 
of India (ZSI) for its identification. The bird may have been driven inland due to 
the cyclonic storm ‘Amphan’ which hit eastern India in May 2020. Before preserva-
tion of the specimen in the National Zoological Collection’s of the Bird Section, 
ZSI under the voucher number 41302/AVES, a tissue sample was collected from the 
hind leg using sterile surgical blade and forceps. No bird specimen was sacrificed in 
the present study.

The collected frigatebird species was identified as the sub-adult of Great Frig-
atebird, Fregata minor using the literature (James 2004; Rasmussen and Anderton 
2012; Maheswaran and Alam 2014). The studied specimen had a pale and tawny 
head, white breast divided by a dark brown breast-band, slenderer in middle and 
white belly patch almost round in the anterior region and becoming narrower in its 
posterior region ending in cloaca. The alar bars are prominent but buff in colour and 
rounded to the posterior of the belly patch, and the absence of axillary spurs. The 
culmen of the studied specimen was 111 mm, which is congruent with the earlier 
report of F. minor (96–117 mm). The total length was 890 mm, while the length of 
head was 180 mm, tail and wing were 365 mm and 800 mm, respectively.

Mitochondrial DNA Extraction and Sequencing

The tissue sample was homogenized with 1 ml buffer comprising 0.32 M Sucrose, 
1 mM EDTA, and 10 mM TrisHCl by the in-house WiseTis HG-15 homogenizer. 
The mixture solution was centrifuged at 700×g for 5  min at 4  °C to remove the 
nuclei and cell debris. The supernatant was collected in 1.5 ml tube and centrifuged 
at 12,000×g for 10  min at 4  °C to precipitate the mitochondrial pellet. The pel-
let was re-suspended in 500 μl of ATL buffer (50 mM TrisHCl, 25 mM of EDTA, 
150 mM NaCl) and incubated overnight at 37 °C along with 20 μl of proteinase K 
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(20 mg/ml). Mitochondrial DNA was extracted using QIAamp DNA Investigator Kit 
(QIAGEN Inc.) with standard protocol. The sequencing of the F. minor sample was 
carried out on the Illumina platform (Illumina Hiseq 2500) with 150 bp paired-end 
read chemistry. Paired end libraries were constructed using TruSeq DNA Library 
Preparation kit with standard protocols. The high-quality reads were downsampled 
using Seqtk (https://​github.​com/​lh3/​seqtk) and assembled using NOVOPlasty v2.6.7 
using default parameters (Dierckxsens et al. 2017). The mitogenome was submitted 
to the GenBank database.

Sequence Identity

Following Sangster and Luksenburg (2021), we verified the identity of our mitoge-
nome sequence of F. minor with reference sequences of three commonly used mito-
chondrial markers in waterbird systematics: NADH dehydrogenase subunit 2 (ND2, 
1041  bp; n = 416, incl. four of F. minor), part of cytochrome c oxidase subunit I 
(COI, 696 bp; n = 1681, incl. ten of F. minor), and cytochrome b (Cyt b, 1141 bp; 
n = 636, incl. four of F. minor).

Data Set Construction and Comparative Analysis

The circular representation of the generated F. minor mitogenome was plotted by 
CGView Server (http://​stoth​ard.​afns.​ualbe​rta.​ca/​cgview_​server/) with default 
parameters (Grant and Stothard 2008). The direction and arrangements of protein-
coding genes (PCGs), transfer RNA (tRNA), and ribosomal RNA (rRNA) were con-
firmed through MITOS online server (http://​mitos.​bioinf.​uni-​leipz​ig.​de) (Bernt et al. 
2013). On the basis of taxonomic hierarchy, five Suliformes species mitogenomes 
were downloaded from GenBank to construct the phylogenetic dataset (Table S1). 
The genome size and nucleotide composition of the studied species were calculated 
using MEGA X (Kumar et al. 2018). The overlapping regions and intergenic spacers 
of the studied mitogenome were calculated manually. Further, the structural charac-
teristics and duplication of CR act a crucial role in regulating transcription and rep-
lication in the mitogenome (Ruokonen and Kvist 2002; Hanna et al. 2017). Hence, 
the present study evaluated the tandem repeats in the CR of both F. minor and F. 
Magnificens by online Tandem Repeats Finder web tool (https://​tandem.​bu.​edu/​trf/​
trf.​html) (Benson 1999).

Phylogeny and Gene Order (GO) Analyses

To assess the phylogenetic relationships, the PCGs were aligned and concatenated 
using TranslatorX (with MAFFT algorithm with L-INS-i strategy and GBlocks 
parameters) and SequenceMatrix v1.7.84537 (Abascal et  al. 2010; Vaidya et  al. 
2010). The best fit model (GTR+I+G) was calculated by PartitionFinder 2 using 
lowest BIC criterion (Lanfear et  al. 2016) and the maximum-likelihood (ML) 
tree was constructed using the IQ-Tree web server with 1000 bootstrap replicates 
(Trifinopoulos et  al. 2016). The mitogenome of Ardea cinerea (accession No. 

https://github.com/lh3/seqtk
http://stothard.afns.ualberta.ca/cgview_server/
http://mitos.bioinf.uni-leipzig.de
https://tandem.bu.edu/trf/trf.html
https://tandem.bu.edu/trf/trf.html
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NC_025900) of the family Ardeidae was used as an out-group. Further, to screen 
the genearrangement scenario, the TreeREx analysis was acquired to understand the 
evolutionary pathways within the Suliformes, considering to the detected diversity 
of the GOs. TreeREx can definitely discriminate the putative GOs at the internal 
nodes of a reference topology as the mechanism in a bottom-up manner through 
the iterative investigation of triplets or quadruplets of GOs to determine all the 
GOs in the entire topology (Bernt et al. 2008). We applied the default parameters 
of TreeREx indicated on the website (http://​pacosy.​infor​matik.​uni-​leipz​ig.​de/​185-0-​
TreeR​Ex.​html) to examine each node of the reference phylogenetic tree.

Results and Discussion

Mitogenome Structure and Organization

The complete mitogenome of F. minor (accession no. MZ681908) was 16,899 bp 
with 44.40% GC content. The mitogenome of F. minor was 111 bp longer than that 
F. magnificens. This was due to variation in length within the control regions of 
both species. The F. minor mitogenome contained 37 genes, comprising 13 PCGs, 
22 tRNAs, 2 rRNAs, and a major non-coding control region (CR). Among them, 
nine genes (nad6 and eight tRNAs) were identified on the negative strand, while 
the remaining 28 genes were identified on the positive strand (Table 1, Fig. 1). The 
total length of PCGs was 11,390 bp, that of ribosomal RNA was 2531 bp, transfer 
RNA was 1548 bp, and the control region was 1320 bp. The gene order of F. minor 
was identical to that of F. magnificens. A total of 18 intergenic spacer regions with a 
total length of 136 bp were observed with the longest region (38 bp) between tRNA-
Valine (trnV) and Large Ribosomal subunit (rrnL) (Table 1). Further, 11 overlap-
ping regions with a total length of 39 bp were distinguished in F. minor. The longest 
overlapping region (10 bp) was observed between the ATP synthase F0 subunit 8 
(atp8) and ATP synthase F0 subunit 6 (atp6). Most of the PCGs of F. minor initiated 
with an ATG start codon; however, the GTG initiation codon was found in cox1 and 
ATC in nad3. Six PCGs had TAA as their termination codon, while TAG was the 
termination codon of nad2, AGG that of cox1 and nad6, GAA that of nad3, incom-
plete TA(A) by nad1, and T(AA) by both cox3 and nad4 respectively. A total of four 
tandem repeats, (105 bp)2, (10 bp)2.7, (21 bp)1.9, and (7 bp)13.3 were found in F. 
minor, while two tandem repeats, (10 bp)6.5 and (7 bp)8.1 were detected in F. mag-
nificens. These distinguished genomic features could be used as a species-specific 
marker to identify the frigatebird species promptly.

Phylogeny and Mitochondrial Gene Arrangements

The partial mitochondrial markers-based phylogenyelucidates that the generated 
sequence of F. minor clustered with the reference sequences of F. minor avail-
able in the database, indicating that our sample was correctly identified through 
morphology (Fig. S1). The concatenated PCGs-based ML phylogeny distinctly 

http://pacosy.informatik.uni-leipzig.de/185-0-TreeREx.html
http://pacosy.informatik.uni-leipzig.de/185-0-TreeREx.html
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Table 1   List of annotated mitochondrial genes of Fregata minor 

Gene Strand Start Stop Length (bp) Anti-Codon Start codon Stop codon Intergenic 
nucleo-
tides

trnF  +  1 70 70 GAA​ – –  − 1
rrnS  +  70 1045 976 – – –  − 1
trnV  +  1045 1115 71 TAC​ – – 38
rrnL  +  1154 2708 1555 – – –  − 1
trnL2  +  2708 2781 74 TAA​ – – 6
nad1  +  2788 3758 971 – ATG​ TA(A) 18
trnI  +  3777 3848 72 GAT​ – – 9
trnQ  −  3858 3928 71 TTG​ – –  − 1
trnM  +  3928 3997 70 CAT​ – – 0
nad2  +  3998 5038 1041 – ATG​ TAG​  − 2
trnW  +  5037 5106 70 TCA​ – – 1
trnA  −  5108 5176 69 TGC​ – – 2
trnN  −  5179 5251 73 GTT​ – – 5
trnC  −  5257 5323 67 GCA​ – –  − 1
trnY  −  5323 5393 71 GTA​ – – 1
cox1  +  5395 6945 1551 – GTG​ AGG​  − 9
trnS2  −  6937 7010 74 TGA​ – – 2
trnD  +  7013 7081 69 GTC​ – – 1
cox2  +  7083 7766 684 – ATG​ TAA​ 1
trnK  +  7768 7838 71 TTT​ – – 1
atp8  +  7840 8007 168 – ATG​ TAA​  − 10
atp6  +  7998 8681 684 – ATG​ TAA​  − 1
cox3  +  8681 9464 784 – ATG​ T(AA) 0
trnG  +  9465 9533 69 TCC​ – – 0
nad3  +  9534 9882 349 – ATC​ GAA​  − 5
trnR  +  9888 9958 71 TCG​ – – 1
nad4l  +  9960 10,256 297 – ATG​ TAA​  − 7
nad4  +  10,250 11,627 1378 – ATG​ T(AA) 0
trnH  +  11,628 11,697 70 GTG​ – – 0
trnS1  +  11,698 11,763 66 GCT​ – – 0
trnL1  +  11,764 11,834 71 TAG​ – – 0
nad5  +  11,835 13,652 1818 – ATG​ TAA​ 15
cytb  +  13,668 14,810 1143 – ATG​ TAA​ 4
trnT  +  14,815 14,883 69 TGT​ – – 23
trnP  −  14,907 14,976 70 TGG​ – – 8
nad6  −  14,985 15,506 522 – ATG​ AGG​ 3
trnE  −  15,510 15,579 70 TTC​ – – 0
D-loop  +  15,580 16,899 1320 – – – –
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Fig. 1   The spherical representation of mitochondrial genome of F. minor. Direction of gene transcription 
is indicated by arrows. PCGs are shown as green arrows, rRNA genes as violet arrows, tRNA genes as 
black arrows, and non-coding control region as gray rectangle. The Gcskew is plotted using orange and 
blue colors, and GC content is plotted using red color sliding window as the deviation from the average 
in the complete mitogenome. The species photograph was acquired from the Wikimedia Commons, the 
free media repository under creative commons attribution-share alike 3.0 unported and edited manually 
in Adobe Photoshop CS 8.0

Fig. 2   The ML phylogeny based on the concatenated nucleotide sequences of 13 PCGs showing the 
phylogenetic relationship of F. minor with other Suliformes species. The bootstrap support values were 
superimposed with each node. The illustrations of representative birds were acquired from the digital 
edition of ‘Birds of the Indian Subcontinent’ by Grimmett et al. (2014) and edited manually in Adobe 
Photoshop CS 8.0
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separated all the Suliformes species with high bootstrap support (Fig.  2). The 
studied species, F. minor shows a close relationship with its sister species F. mag-
nificens. The members of Fregatidae, Phalacrocoracidae, and Anhingidae (order 
Suliformes) showed cohesive clustering and branched from Ardeidae species 
(order Pelecaniformes) with high bootstrap supports. The newly generated com-
plete mitogenome of F. minor might be useful for further in-depth phylogenetic 
relationships with more taxon sampling from different taxonomic groups as well 
as in population genetics analysis.

The common mitochondrial gene arrangement in birds is unique and derived from 
the typical vertebrate gene order (Desjardins and Morais 1990). Later on, the fully 
duplicated region with pseudogenization or loss of selected genes and/or the control 
region was found in the mitogenome of Gruidae, Suliformes, Pelecaniformes, Pro-
cellariiformes, Bucerotiformes, and Psittaciformes species (Abbott et al. 2005; Gibb 
et al. 2007, 2013; Morris-Pocock et al. 2010; Sammler et al. 2011; Zhou et al. 2014; 
Lounsberry et  al. 2015; Eberhard and Wright 2016; Akiyama et  al. 2017; Rodri-
gues et al. 2017; Zhang et al. 2017; Urantowka et al. 2018). However, limited taxon 
sampling was considered to reveal gene order scenario of Suliformes (Urantówka 
et  al. 2020). We observed the gene order of the Neotropic Cormorant, Phalacro-
corax brasilianus and the Great Cormorant, Phalacrocorax carbo have the fully 
duplicated region gene order as described earlier (Urantówka et al. 2020). However, 
the frigatebirds (F. magnificens, and F. minor) and the Double-crested cormorant, 
Phalacrocorax auritus have the typical avian gene order. In addition, the duplica-
tion of the 3′ end of both Cytb and CR were detected in the Oriental Darter, Anhinga 
melanogaster mitogenome (Fig. 3). Hence, we speculate that the mitochondrial gene 
arrangements of the order Suliformes) is not congruent with the earlier hypothe-
sis and phylogenetic relationship (Urantówka et al. 2020). However, to confirm the 
complete mitochondrial gene order perception within the ancestral lineages and all 
modern taxa, further studies with many avian representatives are necessitated.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10528-​021-​10156-6.
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