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Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic heart 
diseases. Its features include abnormal cardiomyocyte hypertrophy, microvascular 
dysfunction, and increased accumulation of intercellular matrix. We aim to unravel 
genes associated with the pathogenesis of HCM and provide a potential target for 
diagnosis and treatment. Key modules were identified by weighted gene co-expres-
sion network analysis (WGCNA). A miRNA-mRNA network was constructed with 
the predicted miRNA and the most likely hub gene was screened out for gene set 
enrichment analysis (GSEA). The diagnostic capacity of hub gene was verified by 
receiver operating characteristic (ROC) curves. Single-cell sequencing (sc-RNA 
seq) data of normal adult hearts were used to further predict the specific cell types 
expressing the hub gene. WGCNA assigned genes into different modules and found 
that the genes contained in the red module had the strongest positive correlation 
with HCM disease. 2.5% of the genes were common between DEG and hub genes. 
With the miRNA-mRNA network, osteomodulin (OMD) was identified as the most 
potential hub gene. GSEA showed that OMD was mainly involved in the synthesis 
of extracellular matrix and had a certain inhibitory effect on the immune system. 
The expression of OMD in HCM was validated and ROC curve analysis showed 
that OMD could distinguish HCM from controls with the area under the curve 
(AUC) > 0.7. The sc-RNA seq revealed that OMD was mainly expressed in the later 
stages of cardiac fibroblasts, suggesting that OMD may have an effect on fibroblasts, 
participating in the pathogenesis of HCM. OMD may serve as a biomarker and ther-
apeutic target for HCM in the future.
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Abbreviations
HCM  Hypertrophic cardiomyopathy
GEO  Gene expression omnibus
STRING  The search tool for the retrieval of interacting genes
sc-RNA seq  Single-cell RNA sequencing
OMD  Osteomodulin
WGCNA  Weighted gene co-expression network analysis
SD  Standard deviation
GS  Gene significance
MS  Module significance
GO  Gene ontology
CC  Cellular component
BP  Biological process
MF  Molecular function
MCC  Main connected component
HMDD  Human microRNA disease database
PPV  Positive predictive value
NPV  Negative predictive value
LUM  Lumican
MFAP4  Microfibrillar associated protein 4
GSEA  Gene Set Enrichment Analysis
MsigDB  Molecular Signatures Database
SLRP  Small leucine-rich proteoglycan family

Introduction

Hypertrophic cardiomyopathy (HCM) is a common myocardial disease with asym-
metric septal hypertrophy as the most important feature, which can induce heart fail-
ure, arrhythmia, and sudden cardiac death (Ullal et  al. 2016; Maron et  al. 2017). 
With the development of better diagnostic techniques, the prevalence of HCM is 
estimated to increase from 0.2 to 0.5% or even higher (Semsarian et al. 2015). Cur-
rently, there are several treatment strategies for HCM available. For patients with 
exertional dyspnea, pharmacological treatments including β-blocker, verapamil, and 
disopyramide are considered appropriate (Soullier et al. 2012; Wijnker and Velden 
2020). A septal myotomy-myectomy operation is considered a standard care for 
patients with severe refractory symptoms related to marked outflow obstruction 
(Kobayashi et al. 2014; Kim et al. 2016). Implantable cardioverter-defibrillator was 
also used for the prevention of sudden cardiac death for high-risk patients (Sidhu 
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et al. 2020). Moreover, alcohol septal ablation and pacing are also considered appro-
priate options (Liebregts et al. 2017; Daubert et al. 2018).

HCM is often associated with mutations in genes encoding proteins for myocar-
dial sarcomere, calcium-handling, and Z-disk (Maron 2002), with the mutations in 
β-myosin heavy chain, cardiac troponin T, and myosin-binding protein C accounting 
for the majority of HCM cases (Hossain et al. 2019; Cohn et al. 2019; Coppini et al. 
2020). However, due to the improvement in genetic technology, new genes involved 
in the pathogenesis of HCM are being continually discovered, which need to be fur-
ther studied. Histopathology of HCM patients has revealed the presence of microvas-
cular dysfunction, excessive fibrosis, and thickening of vascular intima and media, 
which were also associated with myocardial ischemia (Maron et al. 2009). Moreover, 
myofibril disruption, a massive increase in the extracellular matrix and the subsequent 
appearance of myocardial fibrosis, are also the main pathological changes leading to 
malignant ventricular arrhythmia, ventricular dilation dysfunction, and heart failure 
(Tsoutsman et  al. 2013; Harris et  al. 2006). Tissue-level inflammation also plays an 
important role in HCM (Becker et al. 2020). Taken together, it is clear that the etiol-
ogy of HCM can be varied, and hence, it is important to uncover and explore the genes 
related to its pathogenesis for precise diagnosis and treatment.

Weighted gene co-expression network analysis (WGCNA) is a common tool to 
explore the correlation of gene modules with disease status and it has been widely 
applied in multiple types of cancer, autoimmune diseases, and brain imaging analysis 
(Anaya et al. 2016; Liu et al. 2019; Tang et al. 2020). By transforming gene expression 
data into co-expression gene modules and relationship between gene and clinical traits, 
WGCNA is useful for the identification of potential biomarkers or therapeutic targets 
(Langfelder and Horvath 2008).

In this study, WGCNA was used to analyze gene expression data from GEO. To 
identify the key module, a functional enrichment analysis was carried out to explore 
potential functions of genes related to HCM. Furthermore, a gene set enrichment analy-
sis was performed for the selected hub gene to find the relevant gene sets.

Methods

Data Collection

The GSE36961, GSE89714, and GSE134355 datasets were downloaded from the 
NCBI Gene Expression Omnibus (GEO) (https:// www. ncbi. nlm. nih. gov/ geo/). 
GSE36961 consisted of 106 HCM samples and 39 controls, the platform was Illumina 
HumanHT‐12 V3.0 expression bead chip (GPL15389), clinical information included 
age, gender and disease status (Bos et al. 2020). GSE89714 contained 5 HCM sam-
ples and 4 controls, the platform was Illumina HiSeq 2000 (GPL11154). GSE134355 
contained single-cell sequencing data of human organs, the platform was HiSeq X Ten 
(GPL20795), and the data on adult hearts were selected for further analysis.

https://www.ncbi.nlm.nih.gov/geo/
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Weighted Gene Co‑Expression Network Analysis

The top 5000 genes from the GSE36961 dataset, ranked by standard deviation (SD) 
from large to small, were selected for WGCNA. The appropriate soft-threshold 
power for network construction was provided by calculating the scale-free topol-
ogy fit index for several powers using R package “WGCNA” (Langfelder and Hor-
vath 2008). The adjacent matrix was transformed into TOM (Topological Overlap 
Matrix) and a hierarchical clustering tree was constructed to assign genes with simi-
lar expression profiles into the same module. The correlation between modules and 
clinical traits was calculated. The gene significance(GS) was defined as the  log10 
transformation of the P value of the linear regression between the gene expression 
and clinical traits. The definition of module significance(MS) was the average GS 
for all genes included in the same module. The module with the highest absolute MS 
was considered the key module most relevant to the clinical traits.

Identification of Hub Genes in the Key Module

The Search Tool for the Retrieval of Interacting Genes (STRING) (http:// string- db. 
org/) is a database that can search and predict the interactions between known pro-
teins, which was used to analyze the interactions in this study. Genes that interacted 
highly with others in the same module were considered as hub genes. Cytoscape 
was used for the visualization of genes from the key module and the top 20 
genes were chosen for further analysis based on the result of the main connected 
component(MCC) calculation. The selection of differential expressed genes (DEGs) 
were done with R package “limma”, with  log2|FC|> 0.6 and adjusted P value < 0.01 
by Benjamini–Hochberg as the cutoff value. Volcano plots and hierarchical cluster-
ing analysis were performed on R “ggplot2” and “pheatmap”, respectively. Venn 
diagrams of overlapping hub genes in the key module and DEGs were created using 
the online tool “Venny” (http:// bioin fogp. cnb. csic. es/ tools/ venny/) (Bardou et  al. 
2014).

Functional Enrichment Analysis

The R package “clusterprofiler” was used for Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment analysis of the key module 
and differentially expressed genes (DEGs). The GO terms included biological pro-
cess (BP), molecular function (MF), and cellular component (CC) (Yu et al. 2012). 
Adjusted P value of < 0.05 was regarded significant.

miRNA‑mRNA Network

To refine the potential target gene, miRNAs upstream of the hub genes were pre-
dicted by “TargetScan” and “miRTarBase” (Agarwal et al. 2015; Chou et al. 2018). 
The intersection was used for the construction of the miRNA-mRNA network using 

http://string-db.org/
http://string-db.org/
http://bioinfogp.cnb.csic.es/tools/venny/


1189

1 3

Biochemical Genetics (2021) 59:1185–1202 

Cytoscape. Based on the Human microRNA Disease Database (HMDD) (http:// 
www. cuilab. cn/ hmdd) and published studies, we identified the miRNAs which had 
been reported to be associated with HCM pathology and the hub genes regulated 
by those miRNAs were selected for further analysis and validation (Lu et al. 2008; 
Kuster et al. 2013; Fang et al. 2015).

Validation and Efficacy Evaluation of Hub Gene

Hub gene expression was validated using the GSE89714 dataset. The correlation 
between hub genes and other genes was applied by the Pearson correlation coef-
ficient. Moreover, ROC curves and AUC of the hub gene and genes highly con-
nected with the hub gene were calculated using R package “pROC” to evaluate 
the capacity to distinguish HCM patients and controls. GSE36961 and GSE89714 
datasets were normalized and integrated. 70% of the samples were randomly 
selected as a training cohort and 30% were selected as a validation cohort. The 
optimal cutoff values of studied genes were obtained by ROC analysis in the 
training cohort and applied to the validation cohort to evaluate the diagnostic 
ability of studied genes. The indexes included sensitivity, specificity, positive pre-
dictive value(PPV) and negative predictive value(NPV).

GSEA Analysis of Hub Gene

Gene Set Enrichment Analysis (GSEA) for the single hub gene was performed 
as described previously (Subramanian et  al. 2005) using the R “clusterprofiler” 
and c2.cp.kegg.v7.1.symbols.gmt, the c5.all.v7.1.symbols.gmt from Molecular 
Signatures Database (MSigDB) were chosen as reference gene sets. According 
to the median expression level of the hub gene, 145 samples were divided into 
a high expression group or a low expression group. The expression levels of all 
genes between the two groups (high/low) were compared and sorted from upregu-
lated genes to downregulated genes. By comparing with the GSEA reference gene 
set, the signal pathways that were activated or suppressed in each group were 
obtained. Adjusted P value of < 0.05 was selected as a cutoff.

Single‑Cell Sequencing

To further explore the possible mechanism of the hub gene in the heart tissue, we 
extracted the single-cell sequencing data on adult hearts from GSE134355. The R 
package “Seurat” was used for data integration, elimination of batch effect, and 
quality control (Tran et al. 2020). Cells were divided into various clusters using 
t-SNE analysis and cluster annotation was performed by R package “scHCL” 
(Han et al. 2020). Moreover, single-cell pseudotime trajectories were carried out 
with the R package “monolce2” for further exploration of the dynamic changes in 
the hub gene (Qiu et al. 2017).

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
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Results

Expression Profiling

The dataset GSE36961 included 106 HCM and 39 controls. For genes matched 
by multiple probes, the median was considered as the expression value. Finally, a 
total of 37,846 genes were extracted and the top 5000 genes selected for WGCNA 
were ranked based on standard deviation in descending order. Based on a clus-
ter analysis of these 5000 genes, the cohort of 145 samples was further divided 
into two clusters (Supplementary Fig. 1). To identify the relatively balanced scale 
independence and mean connectivity of WGCNA, a network topology analysis 
was carried out to select the suitable soft-thresholding power from 1 to 20. A 
power value of 6 was chosen for the hierarchical clustering tree of the selected 
5000 genes with 0.9 as the correlation coefficient threshold (Fig. 1a, b).

Weighted Co‑Expression Network (WGCNA)

Based on the degree of connectivity, genes were assigned to 14 different mod-
ules. There were 191 genes in the black module, 916 genes in the blue module, 
776 genes in the brown module, 43 genes in the cyan module, 248 genes in the 
green module, 102 genes in the green-yellow module, 143 genes in the magenta 
module, 181 genes in the pink module, 116 in the purple module, 220 genes in 
the red module, 50 genes in the salmon module, 54 genes in the tan module, 1189 
genes in the turquoise module and 454 genes in the yellow module. The genes 
that could not be assigned into any module were assigned to the gray module, and 
removed from subsequent analysis (Fig. 2a).

Fig. 1  Clustering of samples and determination of soft-thresholding power. a Analysis of the scale-free 
fit index for various soft-thresholding power(β). b Analysis of the mean connectivity for various soft-
thresholding power. In all, 6 was the most fit power value
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Correlations and Identification of the Key Module

Intermodular association analysis showed that the modules were independent of 
each other, indicating relative independence of gene expression in each module as 
shown in the heat map in Fig. 3a. The eigengenes were calculated and clustered 
based on the correlation to explore the co-expression similarity of all modules. 
The red module showed the highest positive correlation, while the brown module 
showed the highest negative correlation with disease status (HCM and control), 
suggesting that the red module was the most positively associated with the dis-
ease status of HCM (Fig. 3b). Also, The result revealed that the 14 modules was 
mainly separated into 3 clusters, which was similar to the result of the heat map 
(Fig. 3c, d).

Validation and Efficacy Evaluation of Hub Gene

According to the result of WGCNA, a correlation coefficient of 0.78 between the 
module membership and GS in the red module was found to be the most relevant 
to the disease status (Fig.  4a). Cytoscape was used to select the top 20 genes 
from the red module based on MCC calculation (Fig. 4b). With the cutoff value at 
 log2|FC|> 0.6 and adjusted P value at < 0.01, a total of 648 DEGs were screened 
out, which included 254 upregulated and 394 downregulated genes (Fig.  4c, 
d). Figure  4e demonstrates a Venn Diagram of 16 genes common between the 
DEGs and hub genes in the red module. The common genes were DIO2, IRX6, 

Fig. 2  Construction of co-expression modules by WGCNA package in R. a The cluster dendrogram of 
genes in GSE36961. Each branch in the figure represents one gene, and every color below represents one 
co-expression module
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LUM, PDE4D, PROS1, PDE5A, OMD, THBS4, COMP, ACE2, SYNPO2L, 
TMEM30B, PLCE1, APCDD1L, SFRP4 and IL17D (Fig. 4e). We speculated that 
these 16 common genes may be more relevant to the pathogenesis of HCM than 
the other genes in the red module. The miRNAs-mRNA network showed there 
were 27 miRNAs that could regulate more than one of these gene (Supplementary 
Fig. 2). Searching the HMDD database and published literature, we found that the 
downregulation of hsa-miR-34b and hsa-miR-373 was related to the development 
of HCM. Further analysis revealed that the downstream target of hsa-miR-34b 
was PLCE1 and TMEM30B; meanwhile, hsa-miR-373 targeted SYNPO2L and 
OMD. Transcript abundance of the four genes-PLCE1, TMEM30B, SYNPO2L, 
and OMD was significantly upregulated in the HCM cohort (Fig. 5a). As the asso-
ciation between the upregulation of SYNPO2L and HCM was well established, 
we chose OMD as our target for further analysis and validation. Validation with 
GSE89714 concurred with the findings observed with GSE36961- that OMD was 
highly expressed in HCM (Fig. 5b, c). In order to further evaluate the predictive 

Fig. 3  a Interaction relationship analysis of co-expression genes. Different colors of vertical axis and 
horizontal axis represent different modules. The density of yellow in the middle represents the degree of 
connectivity of different modules. b Heatmap of the correlation between module eigengenes and disease 
status of HCM. The red module showed to be the most positively correlated with the disease status. c 
Hierarchical clustering of module hub genes. d Heatmap plot of the adjacencies in the hub gene network
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ability of OMD, GSE36961 dataset and GSE89714 dataset were normalized and 
integrated, 70% of samples were randomly chosen as a training cohort and 30% 
of the samples were chosen as a validation cohort. The ROC analysis was applied 
to OMD and several genes closely related to OMD including LUM and MFAP4 
in the training cohort (Fig.  5d–f). Based on ROC, the optimal cutoff values for 
OMD, LUM and MFAP4 were obtained.Applying these cutoff values to the vali-
dation cohort, the sensitivity, specificity, positive predictive value(PPV), and 
negative predictive value(NPV) in predicting HCM were calculated and shown 
in Table 1. For HCM, high expression of OMD, LUM and MFAP4 had PPV of 
96.15%, 91.67% and96.30%,respectively. The low expression of OMD, LUM, and 
MFAP4 had NPV of 42.86%, 63.64%, and 45.00%, respectively.

Functional Enrichment Analysis

The KEGG pathway analysis demonstrated that the red module was primar-
ily enriched in the TGF-beta signaling pathway, ECM-receptor interaction, 

Fig. 4  a The gene significance for HCM in the red module (One dot represents one gene in the red 
module). b The top 20 hub genes in the red module. The color of nodes represents the degree of gene 
interaction, the darker the color,the higher connectivity of the genes. The edge represents the interac-
tion between genes. c Volcano plot visualizing DEGs in GSE36961. d Heat map hierarchical cluster-
ing shows DEGs in HCM samples compared with normal samples. e Identification of common genes 
between DEGs and red module



1194 Biochemical Genetics (2021) 59:1185–1202

1 3

Complement and coagulation cascades (Fig.  6a). The GO enrichment analysis 
showed that the genes were mainly enriched in extracellular structure organizations, 
extracellular matrix organizations, and ossifications (Fig.  6b). Moreover, DEGs 
were mainly enriched in metabolic pathways, phagosomes, and pathways in cancer 
after KEGG pathway analysis (Fig. 7a). The GO enrichment analysis showed that 
the DEGs were enriched in extracellular structure organizations, extracellular matrix 
organizations, and neutrophil-mediated immunities (Fig. 7b). Hence, this indicated 
that both the hub genes from WGCNA and DEGs showed strong correlation with 
the extracellular matrix.

Gene Set Enrichment Analysis

The KEGG pathway analysis showed that high expression of OMD could activate 
valine, leucine, and isoleucine degradation, Huntington disease, and the TGF-beta 

Fig. 5  a The extracted miRNA-mRNA regulatory network, the green nodes represent the downregulated 
disease-related miRNAs, and the red circular nodes represent the upregulated hub genes in the red mod-
ule. b Expression of OMD in GSE36961. c Validation of OMD in GSE89714. d ROC curve of OMD. e 
ROC curve of LUM. f ROC curve of MFAP4

Table 1  The Sensitivity, 
specificity, PPV and NPV of 
relative genes

PPV negative predictive value, NPV positive predictive value

Gene Sensitivity (%) Specificity (%) PPV (%) NPV (%)

OMD 67.57 9.00 96.15 42.86
LUM 89.19 70.00 91.67 63.64
MFAP4 70.27 90.00 96.30 45.00
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signaling pathway, and primarily suppressed B cell receptors, Toll-like receptors, 
MAPK signaling pathways, and cytokine receptor interactions (Fig.  8a). By GO, 
OMD was found to be enriched in extracellular matrix structural constituents, colla-
gen-containing extracellular matrices, microtubule-based movements, and extracel-
lular structural organizations, and suppressed in the cellular response to biotic stim-
uluses, B cell-mediated immunities, activation of innate immune responses, antigen 
receptor-mediated signaling pathways, and B cell activation (Fig. 8b). This GSEA 
suggested that higher expression of OMD promoted extracellular matrix remodeling 
and inhibited immune function to a certain degree.

Single‑Cell Sequencing

The sc-RNA sequencing data from normal adult hearts were extracted from 
GSE134355, and after normalization, data quality control, and removal of batch 

Fig. 6  KEGG pathway and GO functional enrichment analysis of red module. a Bubble plot showing the 
KEGG pathway of red module. b Bubble plot showing the GO enrichment analysis of red module
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effect, a total of 19,996 cells were selected for analysis. Cells were divided into 8 
clusters and cell types were annotated according to the marker genes, including car-
diomyocyte, endothelial cell, fibroblast, macrophage, monocyte, neutrophil, natural 
killer(NK) cell, and smooth muscle cell (Fig. 9a–c). Our results showed that within 
the cardiac tissue, OMD was mainly expressed in fibroblasts (Fig. 9d). We extracted 
the expression matrix of fibroblasts and based on the variable genes, fibroblasts were 
further divided into 4 subgroups and OMD was found to be primarily expressed in 
clusters 1 and 2 (Fig. 9e–f). A pseudotime trajectory of the fibroblasts using the R 
package “monocle2”, showed 8 branches, and the cells were grouped into 9 states 
(Fig. 9g–i). The root of trajectory was populated by the majority of cluster 0, while 
the end of the trajectory was mainly populated by clusters 1 and 2. According to the 
estimated pseudotime trajectory, we considered that the cells may travel from cluster 
0 to 1 and 2. Also, the dynamic changes in the relative expression of OMD indi-
cated that OMD was lower in the early states of the fibroblasts than the later states 

Fig. 7  KEGG pathway and GO functional enrichment analysis of DEGs. a Bubble plot showing the 
KEGG pathway of DEGs. b Bubble plot showing the GO enrichment analysis of DEGs
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where it was higher (Fig. 9j–l). These results implied that the increased expression 
of OMD may affect the function of fibroblasts at later states.

Discussion

HCM is one of the most common nontraumatic causes of cardiac death. Histopatho-
logical findings have revealed that a variety of pathological processes are involved in 
the development of HCM, including microvascular dysfunction, increased intersti-
tial space due to extracellular matrix formation, myofibrillar disruption, and inflam-
matory responses at the tissue level. In this study, we used a global approach to con-
struct co-expression network of HCM to predict the clusters of genes involved in the 

Fig. 8  Gene set enrichment analysis (GSEA). a The full list of KEGG pathway enriched in the sam-
ples with OMD highly expressed. b The full list of GO enrichment in the samples with OMD highly 
expressed
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pathogenesis of HCM. We aimed to find new and critical biomarkers and to under-
stand the molecular mechanism of HCM, which might contribute to the diagnosis 
and treatment of the disease.

We utilized WGCNA to construct a HCM-related gene co-expression net-
work that was grouped into 14 modules. Among these, the red module contain-
ing 220 genes was most relevant to the disease status. A GO enrichment analysis 

Fig. 9  a Integration of sc-RNA seq datasets of adult hearts in GSE134355, in which the batch effect has 
been removed. b t-SNE plot showing the cell types of 19,996 single cells isolated from adult hearts. c 
Heatmap showing the DEGs of each cell type. d t-SNE plot showing that OMD was mainly expressed 
in fibroblasts. e t-SNE plot showing that fibroblasts were grouped into four clusters. f t-SNE plot show-
ing that OMD was mainly expressed in cluster 1 and 2 in fibroblasts. g–i Monocle analysis showing 
fibrobalsts in pseudotime. Cells are colored based on cluster (g), state (h), and pseudotime (i). j–l Mono-
cle analysis showing the expression of OMD in fibroblast in pseudotime. Cells are colored based on clus-
ter (j), state (k), and pseudotime (l)
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demonstrated that the 648 DEGs and hub genes in the red module were mainly 
enriched in extracellular structure organizations, extracellular matrix organizations, 
and ossifications. These findings were in accordance to previously reported changes 
in the extracellular matrix in interstitial spaces in HCM.

We identified 16 hub genes common between DEGs and the red module, and 
upstream miRNAs regulating them were predicted for the construction of a miRNA-
mRNA network. Based on the results of HMDD and published studies related to 
HCM, OMD was finally chosen as a potential target gene for the disease. OMD 
is a leucine- and aspartic acid-rich keratan sulfate proteoglycan, which belongs to 
the small leucine-rich proteoglycan family (SLRP) family (Juchtmans et al. 2015). 
SLRPs are produced and function in a tissue-specific manner, and are known to be 
involved in the regulation of matrix assembly and host immunity. SLRP in bone is 
related to collagen fibrillogenesis and bone mineralization, while in renal disease, 
it plays an important role in signal transduction and immune response (Zvackova 
et al. 2017; Zou et al. 2019). OMD was first isolated from the mineralized matrix 
of bone and a recent study has shown that OMD could directly bind to Type I col-
lagen, further regulating the diameter and shape of collagen fibrils (Tashima et al. 
2015). Moreover, GSEA revealed that OMD was enriched in extracellular matrix 
structural constituents, collagen-containing extracellular matrix, microtubule-based 
movements, and extracellular structural organizations. Taken together, these results 
provided an implication that OMD was associated with the regulation of the extra-
cellular matrix.

The upregulation of OMD in HCM samples when compared with controls was 
confirmed and validated with GSE89714. Our findings were in line with those 
reported on distinct populations, using different platforms for gene expression anal-
ysis, suggesting that the upregulation of OMD in HCM was universal. The ROC 
curves of OMD and genes highly connected with OMD based on GSE36961 gener-
ated AUCs greater than 0.7, suggesting that OMD had a good diagnostic value for 
HCM.

Single-cell sequencing data of normal adult hearts from GSE134355 showed 
that OMD was mainly expressed in fibroblasts. The fibroblasts were divided into 
4 clusters and OMD was mainly expressed in cluster 1 and cluster 2. A pseudotime 
trajectory analysis and dynamic changes in the expression showed that the expres-
sion of OMD was on the rise at the later stage of fibroblasts. Based on these results, 
we speculated that the increased expression of OMD may regulate the synthesis of 
extracellular matrix by fibroblasts at the later stages of the disease. Besides, GSEA 
also showed that OMD could suppress the cellular response to Biotic stimulus, B 
cell-mediated immunity, activation of an innate immune response, antigen receptor-
mediated signaling pathway, and B cell activation. These results implied that the 
higher expression of OMD may influence not only fibroblasts but also immune cells 
in HCM.

There were some limitations to our study. First, this study was primarily in sil-
ico data analysis and data mining, and the results were not validated in vitro and 
in vivo. Second, the exact molecular mechanisms of OMD in HCM was not further 
explored. Hence, studies to elucidate the molecular mechanisms of OMD in HCM is 
necessary in the future.
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