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Abstract
The common variants of the methylenetetrahydrofolate reductase (MTHFR) gene 
are related to the activity of the MTHFR enzyme and the concentrations of blood 
homocysteine (Hcy). This study was designed to investigate the associations of 
MTHFR in Chinese populations with early-onset coronary artery disease (EOCAD). 
The two common variants of the MTHFR gene were genotyped in 875 EOCAD 
patients and 956 controls using PCR, followed by direct sequencing of the PCR 
product. Serum levels of Hcy were measured using an automatic biochemistry ana-
lyzer. A significant association between the MTHFR-677C/T variant and the risk 
of EOCAD was detected in CC versus TT (odds ratio (OR) 1.456, 95% confidence 
interval (CI) 1.120–1.892), dominant genetic model (OR 1.266, 95% CI 1.027–
1.546), and recessive genetic model (OR 1.306, 95% CI 1.040–1.639). Hcy was 
most abundant in TT genotype (18.31 ± 7.22 μmol/L), least abundant in CC geno-
type (11.37 ± 5.23 μmol/L), and detectable at intermediate levels in heterozygotes 
(15.25 ± 6.58 μmol/L). Elevated serum Hcy levels were an independent risk factor 
for EOCAD (ORadjust 1.431, 95% CI 1.135–1.763). Our findings indicated that the T 
allele of -677C/T MTHFR variant predisposes to high levels of Hcy, and that the T 
allele is an important risk factor for EOCAD in the Chinese population.
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Introduction

The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) catalyzes the irre-
versible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. 
The latter provides methyl for the conversion of homocysteine (Hcy) to methionine 
(Biselli et  al. 2010). Thus, there is a close relationship between MTHFR activity 
and Hcy metabolism. Hcy impairs endothelial function and leads to platelet acti-
vation and thrombus formation (Hanratty et  al. 1998). Experimental evidence has 
demonstrated that elevated blood Hcy levels were significantly associated with an 
increased risk of cardiovascular events, which appears to be largely independent of 
other conventional risk factors (Refsum et al. 1998; Nygård et al. 1999).

Worldwide, coronary artery disease (CAD) remains the leading cause of death 
and disability. As a special type of CAD, early-onset coronary artery disease 
(EOCAD) has particular components of etiology, including family heredity, lipid 
metabolism, gender composition, and other risk factors. In our previous studies, 
we demonstrated that asymmetric dimethylarginine and uric acid associated with 
the presence and severity of EOCAD (Tian et al. 2018; Xuan et al. 2017). Familial 
aggregation strongly indicated the presence of genetic factors for increased suscep-
tibility to the disease (Engert et al. 2008). EOCAD affects young and middle-aged 
individuals, and is more harmful than conventional CAD.

In several previous studies, it has been suggested that common variants of the 
MTHFR gene (rs1801131, rs1801133) and elevated serum Hcy levels are impor-
tant risk factors for conventional CAD (Lewis et  al. 2005; Biselli et  al. 2010). In 
EOCAD patients, many countries and regions have also studied the relationships; 
however, the results were controversial (Hou et al. 2015). According to the principle 
of genetic diversity, there are differences in genes and phenotypes between different 
races due to evolutionary and environmental differences (Leimar 2005; Messer et al. 
2016). Therefore, it is critical to investigate the association between these genetic 
variations and disease susceptibility in different populations. To our knowledge, 
in Chinese population, there are few studies considering the relationships between 
common variants of the MTHFR gene, serum Hcy, and risk of EOCAD. In this 
study, we aimed to investigate these associations.

Materials and Methods

Subjects

In this hospital-based case–control study, all the participants visited The Affiliated 
Hospital of Qingdao University between January 2013 and June 2018. A total of 875 
patients who met CAD diagnostic criteria were enrolled in the study when their first 
onset of symptoms and hospitalization for coronary angiography occurred at age 
≤ 50 years. The diagnosis and severity of EOCAD were assessed by a cardiologist 
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who used angiographic findings. Patients with other serious illnesses and/or who 
were taking drugs (folic acid, vitamin B12) that might interfere with the results of 
the study were excluded. The 956 controls were age and sex-matched who did not 
show any signs or symptoms of cardiovascular events. All patients and controls 
included in the study signed informed consent prior to the start of the study. The 
Ethics Committee of our hospital approved the study, and the protocol was con-
formed the ethical guidelines of the Helsinki Declaration of 1975.

Clinical Parameters and Biochemical Measurements

Data on physical examination including smoking and drinking habits, gender, age, 
height, weight, myocardial infarction (MI), hypertension, and diabetes mellitus 
(DM) were recorded. Whole blood was collected by vacuum blood collection with-
out anticoagulant, and was centrifuged at 1500×g for 15 min. Serum concentrations 
of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high-density 
lipoprotein cholesterol (HDL-C), total cholesterol (TC), serum creatinine (SCr), fast-
ing blood glucose (FBG), Lipoprotein(a) (Lp(a)), and Hcy were determined in the 
morning after fasting of at least 8 h. Serum biochemical indicators were determined 
using an automatic biochemistry analyzer (Hitachi HCP-7600, Hitachi, Japan).

DNA Isolation and Genotyping

Whole blood was collected by vacuum blood collection using an EDTA-K2 anti-
coagulant. Genomic DNA was isolated by a Blood Genomic DNA Extraction Kit 
(Tianlong Science and Technology, Xi’an, China) according to the instructions 
using an NP968 Nucleic Acid Extraction System (Tianlong Science and Technol-
ogy, Xi’an, China), which was based on a magnetic bead separation method. DNA 
was extracted from 200 μL whole blood and stored at − 80 °C. Primers for the two 
common variants of MTHFR were as follows: Forward (rs1801133): 5′-CGG​TGC​
ATG​CCT​TCA​CAA​-3′ and reverse: 5′-CTG​ACC​TGA​AGC​ACT​TGA​AGGA-3′. 
Forward (rs1801131): 5′-CCC​GAG​AGG​TAA​AGA​ACA​AAG​ACT​T-3′ and reverse: 
5′-GGA​GGA​GCT​GCT​GAA​GAT​GTG-3′. The standard PCR protocol for amplify-
ing targets was as follows: one cycle of 1 min at 95 °C, then 36 cycles of 30 s at 
94 °C and 30 s at 65 °C/60 °C, followed by 10 min at 72 °C using a GeneAmp PCR 
machine (Tianlong Science And Technology, Xi’an. China). PCR products were 
directly sequenced using a genomic company (Genewiz Biotechnology, Suzhou, 
China). Common variants of the MTHFR gene were identified by Gene Tools, LLC 
(Philomath, OR, USA) according to the reference sequence (from NCBI).

Statistical Analysis

Unpaired t test was used to compare continuous variables, and the χ2 test was used 
to compare categorical variables. A Q test with one degree of freedom was used to 
test the Hardy–Weinberg equilibrium (HWE) (Xuan et al. 2014; Xuan et al. 2016). 
In genetic models, the contrast of A versus a, AA versus aa, dominant genetic model 
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(AA+Aa vs. aa), and recessive genetic model (AA vs. Aa+aa) were also investi-
gated. The associations between common variants of the MTHFR gene and the risk 
of EOCAD were estimated using the odds ratio (OR) and the 95% confidence inter-
val (CI). Adjusted ORs and 95% CIs after adjustment for age, gender, BMI, hyper-
tension, diabetes, smoking, and biochemical indicators were estimated by logistic 
regression. Analyses were performed using SPSS software version 11.0, and Stata 
software version 11.0 and P < 0.05 was considered statistically significant.

Results

Characteristics of Participants

A total of 875 EOCAD patients (mean age 46.20 ± 4.32; 91.20% men) and 956 con-
trols (mean age 43.96 ± 5.52; 90.27% men) were enrolled in the present study. No 
significant differences were observed between EOCAD patients and controls regard-
ing gender, age, hypertension, TC, and SCr. However, BMI, and levels of FBG, TG, 
HDL-C, LDL-C, and Lp(a) were significantly elevated in EOCAD patients when 
compared to controls. In addition, the patients group had higher diabetes, smoking 
and drinking rate compare with controls. In the EOCAD patients group, 285 patients 
were diagnosed with MI. The EOCAD patients group included 576 patients with 
single-vessel disease, 212 patients with double-vessel disease, and 87 patients with 
triple-vessels disease. Clinical characteristics of all participants are summarized in 
Table 1.

Genetic Variants Of The MTHFR Gene

The genotypes of variants were summarized in Table 2. The two common variants 
of the MTHFR gene (rs1801133 and rs1801131) were genotyped in all participants, 
including 875 EOCAD patients and 956 controls. The distribution of genotypes in 
controls was compatible with HWE (P > 0.05).

MTHFR Gene Variants and EOCAD Risk

In this study, we showed a significant association between the MTHFR-677C/T 
variant and the risk of EOCAD in contrast of CC versus TT (OR 1.456, 95% CI 
1.120–1.892), dominant model (OR 1.266, 95% CI 1.027–1.546), and recessive 
model (OR 1.306, 95% CI 1.040–1.639). Allele T of the MTHFR-677C/T is a risk 
allele for EOCAD (OR 1.208, 95% CI 1.061–1.377). After adjusting confounding 
factors, including age, gender, BMI, hypertension, diabetes, smoking, and biochemi-
cal indicators, the allele T was identified as an independent risk factor for EOCAD 
(ORadjust 1.182, 95% CI 1.035–1.396). The results are shown in Table 3.

The association between the MTHFR-1298A/C variant and EOCAD risk was also 
detected in AA versus CC (OR 1.613, 95% CI 1.039–2.503), the dominant genetic 
model (OR 1.615, 95% CI 1.045–2.495), but not in the recessive genetic model (OR 
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Table 1   Demographic and clinical characteristics of EOCAD patients and controls

EOCAD early-onset coronary artery disease, BMI body mass index, Hcy Homocysteine, FBG fasting 
blood glucose, LDL-C low-density lipoprotein cholesterol, TG triglyceride, HDL-C high-density lipo-
protein cholesterol, LDL-C low-density lipoprotein cholesterol, Lp(a) lipoprotein(a), TC total cholesterol, 
SCr serum creatinine
a Categorical variables are expressed as percentages. The P value of the categorical variables was calcu-
lated by χ2 test
b Continuous variables are expressed as mean ± SD. The P value of the continuous variables was calcu-
lated by the unpaired t test

Variable EOCAD
(n = 875)

Control
(n = 956)

P-value

Gender, male n (%)a 798 (91.20) 863 (90.27) 0.494
Age, yearsb 46.20 ± 4.32 43.96 ± 5.52 0.324
BMI (kg/m2)b 27.31 ± 3.88 24.65 ± 4.38 < 0.001
Hypertension, n (%)a 237 (27.09) 243 (25.42) 0.418
Diabetes, n (%)a 166 (18.97) 78 (8.16) < 0.001
Smoking, n (%)a 389 (44.46) 380 (39.75) 0.041
Drinking, n (%)a 677 (61.94) 415 (43.41) < 0.001
FBG, mmol/lb 5.86 ± 2.37 5.34 ± 1.83 < 0.001
TG, mmol/lb 2.18 ± 1.76 1.55 ± 1.32 < 0.001
TC, mmol/lb 4.34 ± 1.56 4.58 ± 2.03 0.256
HDL-C, mmol/lb 1.06 ± 0.29 1.29 ± 0.45 < 0.001
LDL-C, mmol/lb 2.66 ± 1.12 2.53 ± 0.86 0.012
Lp(a), mmol/lb 298.89 ± 345.65 200.35 ± 221.76 < 0.001
SCr, μmol/lb 75.65 ± 16.78 73.64 ± 15.32 0.231
Myocardial infarction, n (%) 285 (32.57) – –
Severity of EOCAD – – –
 Single-vessle disease, n (%) 576 (65.83) – –
 Double-vessles disease, n (%) 212 (24.23) – –
 Triple-vessles disease, n (%) 87 (9.94) – –

Hcy, μmol/lb 18.85 ± 6.93 13.56 ± 5.83 < 0.001
 Male, μmol/lb 19.21 ± 6.67 13.95 ± 5.96 < 0.001
 Female, μmol/lb 16.39 ± 6.21 10.51 ± 4.36 < 0.001

Table 2   Genotype frequencies 
of MTHFR gene in EOCAD and 
control groups

EOCAD Early-onset coronary artery disease, HWE Hardy–Weinberg 
equilibrium

Groups -677 C/T(rs1801133) -1298 A/C(rs1801131)

Genotype HWE Genotype HWE

CC CT TT AA AC CC

EOCAD (n = 875) 163 424 288 – 567 256 52 –
Control (n = 956) 220 469 267 0.605 633 287 36 0.597
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1.065, 95% CI 0.878–1.291). No significant association was observed between allele 
C and EOCAD risk (OR 1.120, 95% CI 0.952–1.319). The adjusted results (ORadjust 
1.095, 95% CI 0.899–1.465) were consistent with the original results. The results 
are shown in Table 3.

MTHFR Gene Variants and Serum Hcy Concentrations

Our study showed a trend in correlation between serum Hcy levels and the MTHFR-
677C/T genotype in controls. In general, the Hcy concentration successively 
decreased in the homozygous mutant, heterozygous mutant, and wild type. When 
comparing the serum Hcy concentrations in the CC genotype (11.37 ± 5.23 μmol/L), 
the serum Hcy concentrations in the TT genotype (18.31 ± 7.22 μmol/L, P < 0.01, 
one-way ANOVA, Fig.  1) and CT genotype (15.25 ± 6.58  μmol/L, P < 0.01, one-
way ANOVA, Fig. 1) were significantly increased. The significant increase was not 
observed in the MTHFR-1298A/C variant.

Serum Hcy Concentrations and Risk of EOCAD

In this study, serum Hcy concentrations were determined in all participants, 
and the data showed that the serum Hcy concentration was closely related to the 
risk of EOCAD. In EOCAD patients, the mean concentration of serum Hcy was 
18.85 ± 6.93  μmol/L. Serum Hcy levels were significantly elevated in EOCAD 
patients when compared to controls (13.56 ± 5.83 μmol/L, P < 0.001, Fig. 2a). After 
further adjusting all conventional factors, serum Hcy concentrations remained sig-
nificantly associated with the risk of EOCAD (ORadjust 1.431, 95% CI 1.135–1.763).

Fig. 1   Influence of the MTHFR gene polymorphism (rs1801133) on serum homocysteine (Hcy) con-
centrations in controls. The serum Hcy concentrations in TT genotype of MTHFR gene-677C/T poly-
morphism (18.31 ± 7.22  μmol/L, n = 267) shows significantly increase to compare with the concentra-
tions in CC genotype (11.37 ± 5.23  μmol/L, P < 0.01, n = 220, one-way ANOVA) and CT genotype 
(15.25 ± 6.58 μmol/L, P < 0.01, n = 469, one-way ANOVA)
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Subgroup analysis was performed by gender, and serum Hcy levels were signifi-
cantly lower in female controls (10.51 ± 4.36 μmol/L) when compared with female 
EOCAD patients (16.39 ± 6.21 μmol/L, P < 0.001, Fig. 2b). A similar finding was 
observed in male EOCAD patients (19.21 ± 6.67  μmol/L) versus male controls 
(13.95 ± 5.96 μmol/L, P < 0.001, Fig. 2b).

Regarding disease severity, serum Hcy concentrations were 17.55 ± 6.41 μmol/L 
(n = 476), 18.21 ± 6.83  μmol/L (n = 279), and 20.11 ± 7.21  μmol/L (n = 120) in 
EOCAD patients with single, double, and triple-vessels disease, respectively. 
We detected significant differences between the three groups (one-way ANOVA, 
P < 0.01). Levels of serum Hcy in the group with triple-vessels disease were sig-
nificantly higher when compared to those in groups with single-vessel disease and 
double-vessels disease (one-way ANOVA, P1 vs. 3 < 0.01, and P2 vs. 3 < 0.01, Fig. 3a). 
In addition, as one of the most serious forms of CAD, serum Hcy levels in the MI 
group (22.53 ± 7.41 μmol/L, n = 285) were significantly higher compared to that in 
the non-MI group (17.23 ± 6.34 μmol/L, n = 590, P < 0.001, Fig. 3b).

Discussion

In the present study, we demonstrated that (1) the -677C/T common variant of 
the MTHFR gene was closely related to EOCAD risk in the Chinese population, 
and that the allele T of the variant was a risk allele. (2) The C677T variant of the 

Fig. 2   Serum Hcy con-
centrations in patient and 
control groups. a Serum 
Hcy levels in healthy con-
trols (13.56 ± 5.83 μmol/L, 
n = 956) were significantly 
increased when compared 
with the EOCAD patients 
(18.85 ± 6.93 μmol/L, n = 875, 
un-paired t test, P < 0.001). b 
Serum Hcy levels were signifi-
cantly lower in female controls 
(10.51 ± 4.36 μmol/L, n = 93) 
compared with female patients 
(16.39 ± 6.21 μmol/L, n = 77, 
un-paired t test, P < 0.001). 
The same relationship was 
also detected in male EOCAD 
patients (19.21 ± 6.67 μmol/L, 
n = 798) and male controls 
(13.95 ± 5.96 μmol/L, n = 863, 
un-paired t test, P < 0.001)
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MTHFR gene affected the serum Hcy concentrations in controls. (3) Elevated serum 
Hcy levels were an independent risk factor for EOCAD, and were associated with 
disease severity.

The MTHFR gene has been located on 1p36.3 (Goyette et al. 1994). The MTHFR 
enzyme, which is expressed by the gene, catalyzes 5,10-methylenetetrahydrofolate 
reduction to 5-methylte trahydrofolate, and the latter serves as a methyl donor for 
the remethylation of Hcy to methionine. Thus, MTHFR has been considered the key 
enzyme of Hcy metabolism.

The conversion of amino acid Ala-to-Val at position 226 of the MTHFR 
protein is caused by the common C677T variant (rs1801133) in exon 4 of the 
MTHFR gene. The variant causes a half reduction of enzyme activity and leads 
directly to increased Hcy concentrations, and a decrease in folic acid concentra-
tion in human blood. The other common polymorphism (A1298C, rs1801131) 
is located on exon 7 within the presumptive regulatory domain and results in a 
Glu-to-Ala change, which also decreases activity of the enzyme (Ueland et  al. 
2001; Moll and Varga (2015). Animal experiments have demonstrated that Hcy 
plays important roles in atherosclerosis and thrombosis. (Lentz 2005). Several 
retrospective and prospective studies have investigated the effects of Hcy in car-
diovascular diseases, and the results indicated a significant relationship between 
elevated Hcy levels and increased risk of cardiovascular events (Knekt et  al. 
2001; Albert et al. 2002; Hu et al. 2015). In mechanisms, several potential sites 

Fig. 3   Serum Hcy concentra-
tions associated with severity 
of the disease. a Serum Hcy 
levels were 17.55 ± 6.41 μmol/L 
(n = 476), 18.21 ± 6.83 μmol/L 
(n = 279), and 
20.11 ± 7.21 μmol/L (n = 120) 
in EOCAD patients with single, 
double and triple-vessel disease. 
Significant difference in the 
three groups was detected 
(one-way ANOVA, P < 0.01). 
b Serum Hcy levels in the MI 
group (22.53 ± 7.41 μmol/L, 
n = 285) was significantly higher 
than that in the non-MI group 
(17.23 ± 6.34 μmol/L, n = 590, 
un-paired t test, P < 0.001)
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where hyperhomocysteinemia may induce vascular lesions, including connective 
tissue and smooth-muscle cells, platelets, endothelial cells, vessel wall, blood 
lipids, coagulation factors, and nitric oxide have been identified (Olszewski and 
McCully 1993; Nishinaga et al. 1993; Majors et al. 1997). In 1976, Wilcken et al. 
published the first report on the association between CAD patients and abnor-
mal Hcy metabolism (Wilcken and Wilcken 1976). In 1988, Kang and coworkers 
were the first to detect a mutation of the MTHFR. They found that the mutation 
was associated with decreased enzyme activity, and increased Hcy concentrations 
(Kang et  al. 1988). The mutation was first identified as C677T of the MTHFR 
gene by Frosst and co-workers in 1995 (Frosst et al. 1995), and has so far been 
the most common and best studied MTHFR variant. The second important muta-
tion of the MTHFR gene (A1298C) was first described in 1998 (van der Put et al. 
1998). Subsequently, its effect on Hcy, the folate metabolism, and its potential 
role as a risk factor for cardiovascular disease was investigated. In the following 
decades, many studies focused on the relation between common mutations of the 
MTHFR gene, Hcy levels, and diverse disease, including cardiovascular diseases 
(Lewis et al. 2005; Luo et al. 2018).

According to our knowledge, only few studies have been described on common 
MTHFR gene variants, serum homocysteine levels, and EOCAD risk in the Chinese 
population. Late-onset CAD and EOCAD may have some differences in pathogen-
esis (Benfante et al. 1989; Christiansen et al. 2017). Our findings also indicated that 
an abnormal lipid metabolism and genetic factors may play more important roles in 
the pathogenesis of EOCAD (Xuan et al. 2011, 2018). In addition, according to the 
principle of genetic diversity, differences in genes and phenotypes between different 
races are due to evolutionary and environmental differences. Therefore, it is critical 
to study these associations in the Chinese population.

In the current study, we included 875 EOCAD patients and 956 controls, and 
evaluated the association between the two common variants of the MTHFR gene 
(rs1801131, rs1801133), serum Hcy concentrations, and risk of EOCAD, and 
observed a positive result. We believed that the MTHFR-677C/T variant was sig-
nificantly related with an increased risk of EOCAD, and individuals carrying allele 
T have a significant increased risk of EOCAD disease (ORadjust 1.182, 95% CI 
1.035–1.396). The genotype of the MTHFR gene-677C/T also affected the serum 
concentrations of Hcy. The Hcy concentrations significantly decreased in the 
homozygous mutant, heterozygous mutant, and wild type. In addition, we demon-
strated an independent risk relationship between elevated serum Hcy concentrations 
and EOCAD. The elevated serum Hcy levels also positively associated with disease 
severity.

Our study has some limitations. First, although we selected gender—and age-
matched individuals without signs or symptoms of CAD as the control group—it 
should be noted that the controls did not undergo angiography. Second, a cohort 
design with the capability of tracking Hcy changes would better show the impact of 
Hcy on the process of atherosclerosis and EOCAD development. However, we only 
measured serum Hcy levels in patients prior to angiography. Third, geographic vari-
ations in the prevalence of MTHFR variants in the Chinese population may bias the 
results of the single-center case–control studies.
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In conclusion, we observed that the common C677T variant in the MTHFR 
gene was significantly associated with the risk of EOCAD. Moreover, its geno-
type was closely related to serum concentrations of Hcy in the Chinese popula-
tion. In addition, elevated serum Hcy levels are an independent risk factor for 
EOCAD and associated with disease severity.
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