
Introduction

Currently the main theories of the causes of atrial

fibrillation (AF) are presented to doctors to aid decision�

taking in clinical cases. Nonetheless, these recommenda�

tions are not based on mathematical analysis and inter�

pretation of signals. Thus, for example, the use of spectral

analysis to identify different forms of AF in terms of its

organization and formation, the contribution of ventricu�

lar components to the signal, and other characteristics

may improve the effectiveness of therapeutic tactics and

post�operative patient management [1].

As in recording of surface electrocardial signals

(ECS), recording of endocardial signals (EnCS) during

AF requires consideration of the presence of ventricular

activity as noise which must be removed from the signal.

Thus, correct analysis and interpretation of AF on

recording EnCS requires extraction or removal of signal

components associated with ventricular activity, i.e., V

spikes (apparent on the surface ECG as the QRS complex

and the T wave). Unfortunately, a number of factors

interfere with this operation [2]. Firstly, the amplitude of

the atrial spike in the EnCS is much smaller than the

amplitude of the ventricular spike. Secondly, these two

features have overlapping spectral distributions, making

the use of filters with linear characteristics ineffective.

Both simple algorithms based on the signal subtraction

principle [3] and adaptive methods based on multidimen�

sional signal processing [4] have been proposed as solu�

tions for these problems in recent years.

From the clinical point of view, assessment of the

dominant atrial frequency (DAF) is an important task in

the analysis of EnCS in AF. Comparison of ECS with

EnCS showed that assessment of ECS frequency in AF

can be used as an index of interatrial cycle length [5].

Analysis of recorded EnCS in paroxysms of AF with low

DAF suggests spontaneous termination of fibrillation

activity, while high DAF is associated with drug resistance

[6]. It must also be noted that the probability of success�

ful pharmacological cardioversion is greater when DAF is

<6 Hz [7]. Furthermore, for patients with DAF >6.5, the

risk of early recurrence of AF is greater [8], so when

selecting patients for cardioversion there is also value in

analyzing DAF. Considering the question from another

point of view suggests that quantitative determination of

the reproducibility of paroxysms is also important in the

treatment of AF, as this provides clinical information for

selecting subsequent therapeutic tactics (cardioversion or

radio�frequency ablation) [9�11].
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Atrial fibrillation (AF) is the commonest arrhythmia seen in clinical practice, though our understanding of the

mechanisms of its generation, propagation, and reinitiation remains incomplete. This is limiting not only from the

scientific point of view, but also from the practical, as regulatory documentation for the treatment of this patholo�

gy cannot be developed without an accepted theory. There has been a recent increase in interest in a theory based

on the observation that spiral waves, or rotors, with specific properties for each atrium, are the source of the trig�

ger for fibrillation and may therefore serve as targets for radio�frequency treatment in low�invasive endocardial

procedures. There is also an approach based in seeking areas of the atrium in which complex fractionated atrial

endograms (CFAE) can be recorded. We present here the basic concepts of analysis of atrial signals during atrial

fibrillation, reflecting both the technical and medical aspects.
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Features of the Recording of Endocardial Signals

Like the recording of the surface ECG, the analysis

and interpretation of the pathophysiological features of

endocardial signals allows effective treatment strategies to

be selected. This type of analysis can be used not simply

to select the most effective treatment methods for indi�

vidual cases, but also to develop new tactics based on the

use of radio�frequency ablation [12], antiarrhythmic

agents [13], and implanted cardioverter�defibrillators

[14]. In this context, the blind signal processing (BSP)

algorithm (Fig. 1) can be applied to EnCS to distinguish

the sinus rhythm from fibrillation [15], to analyze the

organization of AF [9] and its synchronization [16], and

to assess the effects of radio�frequency ablation on the

endocardium and its status after use of antiarrhythmic

agents [17].

It should be noted that use of the BSP algorithm

leads to incorrect interpretation of the EnCS when an

organized atrial rhythm is seen as AF (Fig. 2).

Attention should be drawn to the fact that the flutter

rhythm in Fig. 2a has a well organized structure and is

discriminated from the ventricular component. This

EnCS shows the ventricular component on depolariza�

tion, while the other three signals are identified using an

algorithm for extracting atrial activity from the mixed sig�

nal after ventricular contraction. We note that the BSP

algorithm can alter the shape of segments of the atrial sig�

nals, which is apparent on further analysis and interpreta�

tion. For unorganized AF (Fig. 2b), the BSP algorithm

provides better extraction of atrial activity, decreasing the

ventricular component because of the irregularity of atri�

al activity.

These problems with the use of the BSP algorithm

led to the development of new algorithms [18]. First, a

method of adaptive removal of the ventricular component

(ARVC) can be used to address these tasks, this being

based on the use of adaptive filtration to process the sig�

nal from the reference channel to assess noise which is

then subtracted from the investigation channel [19]. In

this case, the investigation channel recording the EnCS

contains atrial and ventricular components. On the other

hand, the reference channel can be lead II in a standard

surface ECG. This channel is selected because a greater

amplitude of the ventricular component and identical

refractory periods are seen on the ECS and EnCS [20].

The last approach is generally used to extract the atrial

signal from the EnCS in the BSP algorithm, because the

atrial and ventricular activity signals are regarded as inde�

pendent and uncorrelated processes, though they are

mixed when the EnCS is recorded with an endocardial

electrode. Thus, correct analysis of the EnCS in par�

oxysms of atrial fibrillation requires selection of a refer�

ence signal on the surface ECG (lead I or II). The dimen�

sionality of the features will thus be 2 × 2 (2 surface and 2

endocardial leads) which also provides for analysis of dis�

sociation. A fast independent components analysis (ICA)

algorithm is preferred in this situation because of the

Fig. 1. Block diagram of blind signal processing algorithm.
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rapid convergence and correct working characteristics

[21]. Comparison of the results of using different algo�

rithms and methods has demonstrated the effectiveness of

using ICA (Fig. 2).

Analysis of Spectral Power

Most studies determine spectra by discrete Fourier

transformation (DFT) of the autocorrelation function of

the signal. In this case, the atrial component of the EnCS

is divided into shorter overlapping segments, which are

then analyzed using a window transformation, such as the

Welch transformation [22, 23]. The final stage in this

approach consists of averaging the power spectra of the

corresponding segments to obtain the overall spectrum of

the whole EnCS.

There are two means of calculating the spectral power

density of a discrete signal: 1) assessment of its autocorre�

lation function followed by application of DFT; 2) appli�

cation of DFT to EnCS followed by calculation of the

square of the value to obtain the periodogram. As shown

by the evaluation of similar studies, the second method is

used more often because of the efficiency of DFT, which

has been demonstrated in many areas [24, 25]. Spectral

analysis of signal power has to start with a plot of the

results. Thus, Fig. 3, a and b, present examples of EnCS

and their spectra processed and visualized using LabView.

We will consider the results presented. Thus, Fig. 3a

shows an EnCS recorded on the distal electrodes of an

ablation catheter at the mouth of the right superior pul�

monary vein. Figure 3b shows the spectrum of the record�

ed signal, which allows extraction of the dominant fre�

quencies typical of EnCS in this area of the left atrium.

Before determining the spectral characteristics of the sig�

nal, some cases require window filtration, for example

using a Hamming window [25]. It should be noted that on

this plot (Fig. 3b), frequency on the abscissa is designated

in Hz, while some clinicians find it more convenient to

analyze results in beats per minute (bpm). Spectral analy�

sis of the EnCS recorded can also differentiate signals

typical of the right and left atria.

Frequency−−Time Analysis

As noted previously, spectral analysis of signal power

provides for evaluation of signal behavior during the time
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Fig. 2. Visualization of incorrect operation of BSP algorithm: a) organized AF; b) disorganized AF [18].
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interval being analyzed and for recognition of the domi�

nant frequency of atrial fibrillation (DFAF), which is a

special aim from the point of view of clinical electrophys�

iology. Analysis of the area of interest suggests that waves

of fibrillation have time�dependent properties and carry

with them the main information required [26]. Results

from many studies [27�33] have demonstrated the effects

of the sympathetic and parasympathetic systems on the

circadian rhythm, along with the frequency characteris�

tics of the signal in these interactions. The most widely

used approach to analysis of these signals is use of Fourier

transformation for each segment of a EnCS during parox�

ysms of AF. This method is termed transient Fourier

transformation (TFT). Use of this method allows for

adaptive selection of a time window for analysis of the

signal segment. The result is a two�dimensional function

in which time and frequency resolution is selected on the

basis of two criteria. As in the case of periodograms, the

spectrogram of the signal can be obtained by calculating

the square of the amplitude for presentation of the signal

in the frequency−time space. Resolution using this

method is limited by the length of the time window.

The ambiguous and controversial requirements for

time and frequency resolution using the TFT method

demonstrate the need to use other methods in practical

electrophysiology. The TFT method is based on a linear

relationship of the signal, while newer methods [29] use a

square relationship, which provides higher resolution.

One of these methods, effective for analysis of frequency

relationships in paroxysmal AF, is the Wigner−Ville cross�

distribution. This method is one of the most widely

employed in practice, because it uses a time segment

which is relatively long compared with the time window

and is able to analyze variation in DFAF [30].

Assessment of Spectral Profile

The spectral analysis methods presented above have

limitations associated with the fact that they consider

only the central peak of spectral activity, harmonic analy�

sis not being considered. However, it should be noted that

assessment of the harmonics of EnCS is of clinical inter�

est [31]. The essence of this method is the distribution of
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Fig. 3. Example of spectral analysis: a) Bipolar EnCS of distal catheter electrodes; b) spectrum of bipolar EnCS of distal catheter electrodes.
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sequential short segments of atrial activity in time.

Spectra and parameters describing changes in DFAF are

then analyzed, and fibrillation waves are removed from

the signal (assessment based on morphology). Thus, the

spectrum of each segment is modeled as a whole�signal

spectrum displaced in frequency and amplitude.

Transformation in the frequency area is by DFT using a

logarithmic frequency scale. This specific scale allows two

or more spectra to be aligned by shifting them, even if

they have different frequencies and associated harmonics

[32]. The spectral profile is dynamically updated from

preceding spectra, with comparison with each new spec�

trum using the weighted least squares method.

Displacement in frequency is needed to obtain optimum

concordance, which then gives a measure of the deviation

in the rate of increase in the amplitude of atrial EnCS

activity with and without fibrillation. An important fea�

ture of this approach is its improved visualization of peaks

in the spectral profile. This makes the spectral profile

more convenient for analysis of harmonics, whose ampli�

tudes provide better visualization of waves of AF parox�

ysms.

The drawbacks of this assessment method include

the fact that atrial and ventricular activity cannot be

clearly separated. This requires implicit use of a Markov

chain for greater accuracy on assessing DFAF [33].

Markov chains consist of a finite number of states in a

defined set of probabilities for the transition between

adjacent states. Analysis of these data leads to the conclu�

sion that an optimum solution can be obtained using the

Viterbi algorithm for assessment of DFAF because of the

existence of a matrix of transition states and an optimal

signal:noise ratio.

Conclusions

Recent advances in signal analysis and processing

have now provided effective solutions for processing

endocardial signals for analysis of processes occurring

during atrial fibrillation. These points give value to stud�

ies of EnCS processing with the aim of removing ventric�

ular activity from the signal for subsequent analysis of

specifically atrial activity. Development of methods and

means in this area has supported approaches to the analy�

sis of fibrillation waves. Thus, the methods, algorithms,

and signal processing models addressed in this article

were analyzed by the authors for subsequent use in devel�

oping methods for low�invasion mapping of microrotors

in the left atrium on the basis of mathematical processing

and analysis of the distribution of action potentials in the

endocardial area for subsequent radio�frequency treat�

ment in patients with the paroxysmal and persistent types

of atrial fibrillation.

This study was supported by the Russian Foundation

for Basic Research (Grant No. 16�37�60012).
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