
The efficiency of current sedative�assisted treatment

methods essentially depends on the optimal dosage of

these drugs. As a rule, the optimal dose means the mini�

mum dose that ensures the safety and efficacy of treat�

ment. The requirement of the minimum dose is usually

due to two main points. On the one hand, it ensures

quicker emergence of a patient from anesthesia while

minimizing complications, and on the other hand, it

saves expensive drugs. The optimal dose can be estimated

in several ways, for example, by calculation taking into

account the analysis of the patient’s hemodynamics

(heart rate, blood pressure, oxygen consumption, etc.). A

well�known drawback of this approach is the fundamen�

tally ambiguous relationship between the hemodynamic

parameters of the patient and the depth of anesthesia.

Currently the most effective method of determining the

depth of anesthesia is direct evaluation of patient brain

activity by analysis of the EEG signal, which is typically

obtained with three electrodes fixed in the frontotempo�

ral region of the head (left or right). The patient brain

activity can be quantitatively indicated by a relative index

of brain activity, the activity index (AI), the values of

which vary from 0 to 100 [1]. A value of 0 corresponds to

complete electrical silence of the brain, i.e., actual

absence of any tangible (marked) electrical interaction

between neurons. A value of 100 corresponds to the active

wakefulness of the patient. A value of 50 characterizes the

middle of the operation stage. Calculation of the AI in the

range from 40 to 100 is of particular interest in view of the

large number of cases. Calculation of the AI by analysis of

the EEG signal [2] is a difficult and time�consuming task

that so far has no simple solutions. The reasons for this

are many; the major ones are as follows:

− the absence of a single model of functioning of the

brain or any of its major subsystems;

− the presence of interference in the EEG signal;

− the wide and quite rich spectrum of the EEG signal;

− an EEG signal has both a frequency and a spatial

structure;

− severe restrictions on the area of mounting and

number of electrodes;

− use of dissociative anesthetics;

− the EEG signal can show pronounced patient

characteristics, as well as patient state and diagnosis.

In the frequency domain in the EEG signal, as a rule,

a number of frequency ranges are identified, five of which

are of particular interest in the bispectral analysis of brain

activity in the band up to 40 Hz: the δ range (0.2�4 Hz),

θ range (4�8 Hz), α range (8�14 Hz), β1 range (lower beta

range, 14�25 Hz), and β2 range (upper beta range, 25�

40 Hz).
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The article reviews algorithms of bispectral analysis of the electroencephalogram (EEG) signal of a patient to

determine the level of brain activity during sedative�assisted treatment. The proposed algorithms are based on

construction of multiple convolutions of complex amplitudes of the EEG signal, combined into so�called bispec�

tra. Artificial neural networks (ANNs) are used to perform bispectral analysis and form a conclusion on the

degree of patient brain activity. The article also shows individual results of functioning of the algorithms on real

EEG signals and compares these results with expert judgments of doctors (anesthesiologists and neurophysiolo�

gists).
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To overcome the above�mentioned features (prob�

lems) that arise in EEG signal analysis, it is proposed to

use an algorithm based on bispectral analysis using artifi�

cial neural networks (ANNs) [3�5]. The choice in favor of

such an approach can be explained by two reasons. On the

one hand, application of bispectral conversion, which is a

set of signal convolutions, allows for integrated and statis�

tical evaluation of the spectral characteristics of the sig�

nal. Such an approach can be effective when dealing with

noise�like signals. On the other hand, the application of

ANNs for bispectral processing enables both clustering of

results and building of complex multidimensional depen�

dences enabling assessment of the specific AI value. The

proposed algorithms consistently process the EEG signal

coming from the electrodes to the input of the ADC mod�

ule for assessment of the depth of anesthesia.

Preprocessing of the EEG uses filters to suppress var�

ious kinds of interference related to the electromagnetic

environment expected during operation. One of the most

widespread examples of interference is interference gen�

erated by an electrical network with a fundamental fre�

quency of 50 Hz. To eliminate the influence of noise on

the useful part of the signal spectrum, a rejection filter

with a Q factor of 50 is used. After signal filtering a dis�

crete Fourier transform on a sliding time interval is per�

formed; the length of the interval is ca. 7 s. If necessary,

the spectrum is adjusted at the upper limit of the useful

range of 40 Hz. Complex amplitudes Cn[k] (where k is the

window index and n is the harmonic index) obtained by

the Fourier transform are used to construct bispectra

based on discrete convolutions of the form

where Nk is the size of the convolution window (number

of FFT windows), i and j are harmonic indices, and Fb is

a function of two complex variables that determines the

method of bispectrum construction. Convolutions are

calculated for all pairs of values i, j of a predetermined

frequency band. Fb are functions enabling assessment of

the correlation between the different phases and ampli�

tudes of harmonics within the signal spectrum. This

selection of functions Fb is associated with the assumption

that correlation between the harmonics of the signal may

indicate the existence of links between different systems

of the brain with their own characteristic frequencies. The

absence of correlations can be seen as evidence of break�

age of connections between individual brain subsystems,

as well as the actual suppression of these subsystems. The

expressions for Fb are as follows:

Figure 1 shows examples of bispectra B p( fi, fj ) and

B a( fi, fj ) of the EEG signal after normalization at a con�

volution of all FFT windows using the functions Fb
p and

Fb
a respectively. The convolution window size for the con�

struction of a bispectrum is ca. 20�80 s. The exact value

depends on the need to identify fast changes in brain

states. The bispectra in Fig. 1 show a two�dimensional

dependence of the correlation coefficient between the

respective harmonics. The result of the bispectral conver�

sion is a large array of information, which, according to

the assumption, suggests the presence of functioning of

and interaction between the brain systems.

The total bispectrum cannot be used for further

analysis of the patient’s anesthetic depth for two main

reasons: on the one hand, due to the high requirements

for computational resources necessary for its complete

processing, and, on the other hand, due to the necessity

of averaging the assessment of activity and interactions of

the brain subsystems operating in the given frequency

ranges (δ, θ, α, β1, and β2). Therefore, further processing

was aimed at reducing the amount of data by averaging

the correlation coefficients of the frequency ranges. As a

result of this averaging, histograms were obtained, which

are shown in Fig. 2. The obtained histograms respective�

ly represent two 15�dimensional vectors P and A, which

are used for calculation of the AI. The total data dimen�

sion is 30 items. In fact, already on the basis of these two

vectors it is possible to obtain specific AI values using a

certain ANN�implemented multidimensional function.

However, studies show that there are several different

two�vector sets that characterize patient states identical

or similar in terms of the brain activity. In this regard,

according to available EEG records, it is necessary to

preidentify sets corresponding to the same state as that

defined by the doctor expert, i.e., it is necessary to solve

the problem of clustering in a 30�dimensional space. It is

proposed to solve this problem using modified ANN

structures of the winner�take�all (WTA) type. In a modi�

fied structure, in contrast to the classical, instead of a sin�
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gle neuron responsible for one cluster having 30 inputs, a

block of three neurons is used, as shown in Fig. 3a.

Polarizer inputs of all neurons are considered to be

zero. The block in Fig. 3a shows three outputs: the first

(μΣ) characterizes the degree of membership of input vec�

tors P and A in a current cluster; the second (μP) shows

the magnitude of the projection of the vector P on the

vector of weights w(1)
1, l–15, and the third (μA), of the vector

A on the vector of weights w(1)
2, l–15. An ANN designed to

solve the problem of clustering is shown in Fig. 3b and

consists of N parallel�connected blocks shown in Fig. 3a.

The weights of the second layer of each block are con�

stants and do not change during the learning process. The

weights of the first layer of each of the blocks change in

accordance with the rules of WTA training, while the out�

put μΣ of each of the blocks is used for identifying the

winning neuron for the next iteration. During training the

ANN it is also necessary to determine the number of

blocks, which must be such that all available EEG signal

recordings are classified and the number N is as small as

fj, Hz fj, Hz
fi, Hz fi, Hz

Fig. 1. Examples of bispectra Bp( fi, fj ) and Ba( fi, fj ) of the EEG signal.

Fig. 2. Histograms obtained by bispectrum averaging in the appropriate ranges.



Bispectral Analysis of Electroencephalogram 383

possible. To speed up the training, recordings with close,

according to experts, states are preliminarily grouped

together. The training set consisted of more than 1,500

5�min fragments of EEG signal recordings. As a result of

training the network, five basic brain states were identi�

fied, each of which corresponds to three to six sets of two

vectors, which will be called basis vectors:

1) wakefulness – six pairs of basis vectors;

2) superficial sedation (first stage) – four pairs of

basis vectors;

Degree
of membership

in the state

Projection to
basis vectors

Block 1

Block 2

Block N

Fig. 3. Structure of ANN for clustering of brain states: (a) structure of a standard block; (b) structure of a WTA network.

Fig. 4. Results of the algorithm.

Planned awakening during the operation

t, s
Sedation t, s

t, st, s

Calculated AI
Reference AI

Calculated AI
Reference AI

Calculated AI
Reference AI

Calculated AI
Reference AI

Prolonged awakening after operation



384 Lavrov et al.

3) deep sedation (second stage) – three pairs of basis

vectors;

4) operating stage (third stage) – six pairs of basis

vectors;

5) operating stage (third stage) using ketamine –

three pairs of basis vectors.

After the training the coordinates of the basis vectors

are determined by the weights of neurons of the first layer

of each of the blocks: w(1)
1, l–15 for vectors P and w(1)

2, l–15 for

vectors A. As a result, the total number of training units in

the network is 22. Thus, supplying the network with the

input vectors P and A, at the output a set of 22 values μΣ,

μP, and μA is obtained.

To calculate the AI the ANN is used as a universal

approximator of complex multidimensional relation�

ships. Prior to the construction of the network, a proce�

dure of reducing the dimension of the input data is per�

formed, similar to the procedure of accumulation used

for fuzzy inference. As the basis of the ANN a three�layer

network with a direct signal propagation is adopted. The

first layer contains 30 neurons with smooth activation

functions, Gaussian or hyperbolic tangent. The third

layer is comprised of one neuron with a linear activation

function. Training of the ANN to calculate the AI was

conducted separately from the ANN performing cluster�

ing of brain states. The volume of the training sample was

about 60 full intraoperative records, containing typical

and characteristic states of the patient. ANN training was

conducted by the Levenberg–Marquardt method. As a

result of training the MSE was about 0.4%. A check with

all records (over 150 records) showed good generalization

ability of the ANN.

Figure 4 presents the results of the proposed algo�

rithm for calculating the AI with an indication of the ref�

erence AI values formed by the experts. The results shown

in Fig. 4 indicate generally good agreement of the refer�

ence AI values with the calculated values. The advantages

also include a sufficiently small reaction time to change in

the state of the patient. An obvious drawback is a rather

high lability of indications, which most likely can be

explained by the higher sensitivity of the algorithm, i.e.,

lack of resistance with respect to interference and charac�

teristics of the particular patient.

The proposed algorithm is being tested as part of the

Triton MGA�06 depth of anesthesia monitor, which

would allow identifying complex situations that have not

been taken into account in the ANN training and

expanding the set of basis vectors to cover most of the

possible cases in actual practice.

It is also worth noting that the obtained results can be

used to confirm the connection of the correlation picture

of the interaction of individual brain subsystems observed

in the bispectrum with the activity of the patient’s brain.

The proposed method of synthesis of EEG signal

analysis algorithms enables effective use of, on the one

hand, the possibility of submission of bispectral signals

using correlation analysis and, on the other hand, the

capabilities of ANNs in terms of learning, clustering,

approximating and generalizing the results.
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