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Abstract  Kernels of sweet maize are directly con-
sumed by humans. This high value crop is grown 
in arid and semi-arid regions of western Jilin Prov-
ince, China where trickle irrigation is widely used 
and larvae of the corn borer, Ostrinia furnacalis 
Guenée (Lepidoptera: Crambidae), can cause signifi-
cant kernel damage. Low humidity in arid regions is 
less conducive to the efficacy of the biological con-
trol agent, Beauveria bassiana (Balsamo) Vuillemin 
(Hypocreales: Cordycipitaceae). Simulated semi-arid 
conditions in greenhouse experiments were con-
ducted comparing B. bassiana application on a gran-
ule carrier or in aqueous suspension to sweet maize. 
Applications of B. bassiana adhered to granules and 
in suspension reduced O. furnacalis leaf feeding 
damage, number of boreholes and tunneling length. 

Treatments with a granular carrier showed the most 
significant reductions in maize damage when applied 
once at whorl stage and in combination with a sec-
ond application at the ear. The greatest reductions in 
boring and tunneling attributed to these treatments 
occurred at internodes around the ear. Although 
reduced damage was greatest following granular com-
pared to aqueous applications, the latter also provided 
significant reductions in feeding damage compared 
to controls. This study demonstrates the utility of B. 
bassiana as a biological control agent for the reduc-
tion in damage caused by second-generation corn 
borer to sweet maize and existing irrigation equip-
ment could be adapted for efficacious aqueous treat-
ments by growers.
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Introduction

Sweet maize is a high value vegetable crop where 
fresh kernels are eaten by humans. Consumer pref-
erences demand little to no insect feeding damage to 
kernels of sweet maize, but meeting these demands 
often involves intensive insect control methods with 
multiple chemical insecticide applications. However, 
these control methods pose risks to non-target and 
beneficial organisms (Musser and Shelton 2003) and 
to human health through consumption of insecticide 
residues (Lu et al. 2018).

Entomopathogenic fungi are extensively used in 
biological control tactics aimed to control pest feeding 
damage to crop plants. These practices can increase 
pest mortality and crop yield while being cost-effec-
tive, and less harmful to non-target beneficial organ-
isms and humans compared to chemical insecticides 
(Charnley and Collins 2007; Zimmermann 2007; 
Mantzoukas and Eliopoulos 2020). Entomopatho-
genic fungi in endophytic associations tend to have 
greater persistence due to shelter from environmental 
factors that would otherwise decrease spore viability 
and rates of pest insect infestation (Kim et al. 2014; 
Maina et  al. 2018). Regardless of their relatively 
prevalent use as biological agents, there is a dearth 
of studies reporting the efficacy of entomopathogenic 
fungi for control of insect pest damage compared 
to studies of chemical insecticides (Bing and Lewis 
1991; Russo et  al. 2019; Daud et  al. 2020). This is 
especially true for the control of insect damage to 
sweet maize. Applications of the entomopathogenic 
biological control agent, Beauveria bassiana (Bal-
samo) Vuillemin (Hypocreales: Cordycipitaceae), 
adhered to dry granular carrier materials are widely 
used (Lewis et al. 2002; Kim et al. 2014), but feasibil-
ity of this method in large-scale field studies or com-
mercial setting remains limited (Chen and Xue 2016; 
Lian et  al. 2011; Maniania 1993; Wang et  al. 1992; 
Zhang et al. 1990).

Larval Asian corn borer (ACB), Ostrinia furnaca-
lis Guenée (Lepidoptera: Crambidae), causes serious 
injury to cultivated maize throughout eastern Asia 
(Huang et al. 2020; Nafus and Schreiner 1991). This 
pest inflicts severe yield losses through physiologi-
cal plant damage that can cause ear droppage prior 
to mechanical harvest. An univoltine O. furnacalis 
biotype undergo obligatory diapause and produce 
one mating generation per year, whereas facultative 

diapause among O. furnacalis in multivoltine popula-
tions produce one to many annual mating generations 
(Lu et al. 1995; Wang et al. 2021). Populations with 
two generations per year predominate across most of 
the dry regions of Jilin Province in northeast China 
where irrigated sweet maize is grown.

In Jilin Province first-generation multivoltine O. 
furnacalis females lay eggs in mid- and late-June 
when maize is in whorl stage, and the subsequent 
second  generation lay eggs in early- to mid-August 
on maize in ear stage (Lu et  al. 2015a, b). Yield 
loss results from leaf feeding damage and stalk tun-
neling by larvae of the first-generation, especially by 
3rd instars that feed on the mesophyll of whorl stage 
leaves, which is a period when chemical insecticide 
applications are most effective (Nafus and Schreiner 
1987). In contrast, 1st instars in the second  genera-
tion mainly feed on the tassel, and sometimes beneath 
the husks or between the ear and stalk. Third instars 
in the second generation bore into and feed on stalks 
(Areekul et al. 1964; Patanakamjorn 1975; Nafus and 
Schreiner 1987). The short duration that second-gen-
eration larvae are exposed prior to boring into stalks 
leads to a correspondingly narrow time during which 
applications of contact chemical insecticides are 
effective. Therefore, few control measures are imple-
mented to control damage by second-generation lar-
vae (Lewis et al. 1996; Nafus and Schreiner 1991).

Biological control agents, including the 
entomopathogenic fungus B. bassiana, offer sustaina-
ble season-long control of O. furnacalis feeding dam-
age (Feng et al. 2017; Feng et al. 2017; Batool et al. 
2020; Daud et al. 2020). Despite this, the efficacy of 
endophytic entomopathogenic fungi as a pest control 
agent remains vague, with prior reports over durations 
from only days to weeks ( Bing and Lewis 1991; Pilz 
et al. 2011). In the arid and sem-iarid maize growing 
regions in the western Jilin Province, China, trickle 
irrigation systems are extensively used to apply pes-
ticides. Prior studies indicate that low humidity field 
conditions decrease the efficacy of broadcast applied 
B. bassiana in aqueous suspensions against O. furna-
calis at field locations where this insect has two gen-
erations per year (Luz and Fargues 1997; Lin et  al. 
1998; Shipp et al. 2003; Cui et al. 2012). In this study, 
we simulated dry to semi-arid conditions in green-
house experiments to compare the effect of different 
B. bassiana application methods (granules vs. aque-
ous suspensions) for the control of feeding damage by 
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second-generation O. furnacalis. This study is impor-
tant for optimizing biological control tactics with 
a larger goal to reduce environmental impacts and 
human exposures to toxic insecticidal agents.

Method and materials

Ostrinia furnacalis egg mass collection

Ostrinia furnacalis egg masses were obtained from a 
laboratory colony maintained at the Institute of Plant 
Protection, Jilin Academy of Agricultural Sciences, 
Jilin, China (JAAS). Colony larvae were fed artificial 
diet and incubated at 26 ± 1  °C, 60–70% RH with a 
L:D 18:8 photoperiod) as described previously (Song 
et al. 1999). Moths were kept at constant temperature 
26 °C with RH of 60–80% RH and a L:D 14:10 pho-
toperiod, and egg masses laid on wax paper. Egg 
masses used in this study were laid by females the 
first day after caging. Furthermore, only egg masses 
with 60 eggs each were selected, allowed to develop 
to blackhead stage, and transported to the green-
house in 2.0  ml air-permeable centrifuge tubes for 
infestations.

Preparation of B. bassiana suspensions and granules

The B. bassiana strain GZ01 (preservation number 
12471; China General Microbiological Culture Col-
lection Center, Beijing, China) was maintained by 
JAAS as described in Online Resource (Supplemen-
tary material 1a). GZ01 was previously applied to 
control O. furnacalis on a large scale in maize pro-
duction fields (Li 2015). Strain GZ01 was prepared as 
(1) pore suspensions at 1 × 108 conidia ml−1 (Online 
Resource Supplementary material 1b) or (2) conidia 
on ground maize stover granules at 1 × 108 conidia 
g−1 (Online Resource Supplementary material 1c).
(2019).

Endophytic colonization of maize plants by B. 
bassiana and control of O. furnacalis

Sweet maize seeds were sown in 30  cm diam-
eter × 37  cm high pots with 20  kg of a  1:1 mix of 
local nutrient soil and placed in a greenhouse at 
JAAS (25 °C ± 2 °C during the day, 20 °C ± 2 °C dur-
ing the night, RH 50–60%, L:D 12:12 photoperiod). 

Blastospore suspensions at 1 × 108 conidia  ml−1 
were prepared as described in Online Resource 
Supplementary material 1d. Fourteen plants were 
assigned to each inoculation of 20  ml of B. bassi-
ana aerial conidia suspensions at 1 × 108 conidia 
ml−1 (I1); 20 ml of B. bassiana blastospore suspen-
sions at 1 × 108 conidia ml−1 (I2); or 10 ml of aerial 
conidia suspensions and 10 ml of blastospore suspen-
sions (I3). A 20  ml application of 0.05% Tween 80 
was used as a control. For each treatment group, B. 
bassiana was applied to soil as seeds that were sown, 
and then poured onto soil every three days until the 
ear stage. Leaves were collected at Bundesanstalt, 
Bundessortenamt und Chemical Industrie (BBCH) 
defined growth stage 15 (five leaves unfolded) (Blei-
holder et  al. 2001) and surface sterilized, and trans-
ferred into potato dextrose agar (PDA) medium 
containing streptomycin sulphate (100  mg−1) and 
incubated at 26  °C in the dark for seven  days. Fun-
gal growth was recorded daily for 15  days (Online 
Resource Supplementary material 1e). At BBCH 
growth stage 15 two 2nd instar O. furnacalis larvae 
were placed into the whorl leaves of each plant across 
all treatment groups using feather-tipped forceps. The 
leaf feeding ratings were recorded seven days after 
infestation.

Maize inoculation with Beauveria conidia on a 
granular carrier

Sweet maize seeds were germinated (Online Resource 
Supplementary material 1f) and sown in pots as 
described above. Eighty plants were distributed 
across 20 groups with four plants in each group, and 
a distance of 30  cm was maintained between plants 
within groups such that the leaves did not contact 
adjacent plants. Plants were grown in a greenhouse 
at JAAS (25 ℃ ± 2 ℃ during the day, 20 °C  ± 2 °C 
during the night, RH 50–60%, and a L:D 12:12 pho-
toperiod). To avoid cross-contamination by splashing 
of soil during watering, an automatic dripping irriga-
tion system was used for 1 h once every two days to 
replicate dry area conditions.

Each of the plants within groups was subjected to 
a different B. bassiana application and O. furnacalis 
infestation regime. Infestations consisted of pinning 
two black headed O. furnacalis egg masses on wax 
paper substrate to each plant, at one or two sepa-
rate times to simulate O. furnacalis first-generation 



52	 M. Feng et al.

1 3
Vol:. (1234567890)

oviposition by placing the two egg masses into 
whorls, and second-generation oviposition by stick-
ing the two eggs on the back side of leaves above 
the ears. Two treatments with five grams of B. bassi-
ana granules with 1 × 108 conidia  g−1 were applied 
five days post-O. furnacalis infestation: Treatment 1 
(T1) a single application to the whorl of each plant at 
BBCH growth stage 15 (after first-generation O. furn-
acalis infestation); or Treatment 2 (T2) to whorls and 
on the ear at BBCH growth stages 15 and 65, respec-
tively. Uninoculated controls infested at whorl (C1) 
or ear stage (C2) were included. Leaf feeding was 
rated seven days after egg infestation on whorl stage 
maize according to a Chinese national grading stand-
ard NY/T 1248.5–2006 (Supplementary Table  S1; 
Wang et al. 2006). In the autumn, the entire stalk of 
the sweet maize from all treatments were dissected, 
stem internodes marked, then the number of living 
O. furnacalis larvae, the number of damaged plants, 
quantity location of corn borer entry holes per plant, 
and the length of tunneling were recorded.

Root irrigation with Beauveria conidia in aqueous 
suspension

Maize was grown in a greenhouse in the same rep-
licated design as described above, except that five 
plants were included per group across 20 groups. 
Also, 20  ml of B. bassiana conidial suspension at 
1 × 108 conidia ml−1 was poured onto soil at time of 
sowing, followed by three additional inoculations to 
plants at 3rd leaf stage, early whorl stage and early 
ear stage as described previously (Li 2015), and cor-
responding to BBCH growth stages 13, 39, and 65, 
respectively. Plants were infested with O. furnaca-
lis egg masses at whorl and ear stages (Treatment 
3; T3), whorl stage (Treatment 4; T4) or ear stage 
(Treatment 5; T5). Controls C1 and C2 were included 
as described above. Plants were infested with egg 
masses and rating of O. furnacalis damage was 
recorded as described in our methods above.

Data analysis

Differences in the efficacy of B. bassiana treatments 
were made independently within and between gran-
ule and suspension experiments for all measures: leaf 
feeding ratings, number boreholes, tunnel length, and 
number of dead and surviving O. furnacalis larvae. 

Significance in variation was assessed by one-way 
ANOVA. Due to uneven variance of empirical data, 
a square root transformation was used before ANOVA 
for tunnel length and average number of boreholes 
in respective plant nodes among the granule treat-
ments. Post-hoc Tukey’s Honest Significant Differ-
ence (HSD) tests were then performed on leaf feeding 
ratings, number boreholes, tunnel length, and number 
of dead and surviving O. furnacalis larvae within and 
between granule and suspension experiments. All sta-
tistical analyses used the multcomp package (http://​
multc​omp.r-​forge.r-​proje​ct.​org; Bretz et al. 2011) in R 
4.4.2 (R Core Team 2022) via the integrated develop-
ment environment, Rstudio 2022. 07.2 + 576 (RStu-
dio Team, 2019).

Results

Endophytic colonization of maize plants by B. 
bassiana and control of O. furnacalis

We detected B. bassiana in maize leaves treated 
with B. bassiana spore suspensions (Fig. S1), with 
colonization rates for blastospores and aerial conidia 
treatment (50%), blastospores treatment (50%) and 
aerial conidia suspensions treatment (57.14%). No 
B. bassiana colonies were formed by samples from 
un-inoculated controls (Supplementary Fig. S1). The 
leaf feeding ratings for first-generation of O. fur-
nacalis damage (Table 1) were significantly different 
(F3,52 = 5.141, p = 0.0035), with subsequent Tukey’s 
HSD tests showing significance only between control 
(C) and aerial conidia & blastospore treatment (I3; 
p = 0.0019; Table 1).

Beauveria granule inoculation effects on control of 
second‑generation of O. furnacalis (ear stage of corn)

Number of surviving larvae and measures of damage 
to maize among controls (C1 and C2) and treatments 
(T1 and T2: Table 2) showed that O. furnacalis can be 
controlled when B. bassiana granules were applied to 
maize whorl based on measurements taken seven days 
after O. furnacalis infestation. Specifically, signifi-
cant variation was detected among C1, C2, T1 and 
T2 for all measures (F3,76 ≥ 3.873, p ≤ 0.0124, Sup-
plementary Table S2a). Significantly lower levels of 
O. furnacalis damage in maize treated with granules 

http://multcomp.r-forge.r-project.org
http://multcomp.r-forge.r-project.org
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at whorl stage and those infested at whorl and ear 
stages (T1) compared to controls infested at whorl 
stage (C1), as detected by Tukey’s HSD tests for 
leaf feeding ratings (Qk=4,v=76 = 11.260, p = 0.0010, 
Supplementary Table  S2a), and borehole number 
(Q4,76 = 4.174, p = 0.0215, Supplementary Table S2b). 
Significant differences were also detected between T1 
and C2 (infested at ear stage) for leaf feeding rating 
(Q4,76 = 6.878, p = 0.0010, Supplementary Table S2a), 
the borehole number (Q4,76 = 6.061, p = 0.0010, 
Supplementary Table  S2b), the tunnel lengths 
(Q4,76 = 4.977, p = 0.0040, Supplementary Table S2c) 
and the number of surviving larvae (Q4,76 = 4.276, 
p = 0.0193, Supplementary Table  S2d), wherein all 
rating were lower for treatments compared to control 
groups. Compared to uninoculated C1 (infested at 
whorl stage), T2 (granular B. bassiana applications 
and O. furnacalis infestations at both whorl and ear 
stages) showed significantly lower leaf feeding ratings 
(Q4,76 = 7.987, p = 0.0010, Supplementary Table S2a), 

and borehole number (Q4,76 = 4.968, p < 0.0041, 
Supplementary Table  S2b). Analogously, T2  was 
significantly lower than C2 plants in the number of 
boreholes (Q4,76 = 6.856, p = 0.0010, Supplementary 
Table S2b), tunnel lengths (Q4,76 = 4.602, p = 0.0090, 
Supplementary Table  S2c), and the number of alive 
larvae (Q4,76 = 3.842, p = 0.0399, Supplementary 
Table S2d). C1 and C2 showed significant differences 
only in leaf feeding ratings (Q4,76 = 4.282, p = 0.0142, 
Supplementary Table  S2; Fig.  1a). No differences 
in levels of damage were observed between T1 and 
T2. These results revealed the relative equivalence of 
B. bassiana granule treatments at whorl stage and at 
both whorl and ear stages for reducing O. furnaca-
lis leaf feeding ratings (Fig.  1a, Table  2) as well as 
decreasing borehole number, tunnel length, and num-
ber of surviving larvae (Fig. 1b, Table 2).

The spatial distribution of O. furnacalis dam-
age was biased towards the middle part of the plant 
at internodes around the ear. Within treatments and 

Table 1   Effect of inoculation with Beauveria bassiana strain GZ01 spore suspensions on leaf feeding damage by first-generation 
Ostrinia furnacalis to sweet maize at growth stage 15 (5 leaves unfolded) (Bleiholder et al. 2001)

The percent colonization (%col) was calculated from 14 leaf samples with B. bassiana growth after 15 d on potato dextrose agar 
(PDA) medium. Results for leaf feeding rating (LFR) shown as mean values (± SE). Following significant one-way ANOVA, subse-
quent Tukey’s Honest Significant Difference (HSD) test results are indicated (p-values less than 0.05 are highlighted)

LFR Tukey’s HSD (Q-statistic\p-value)

ID Treatment description % col Mean ± SE C I1 I2 I3

C Control: 0.05% Tween 80 0.00 4.21 ± 0.58 – 0.1250 0.5032 0.0019
I1 Aerial conidia suspensions 57.14 2.50 ± 0.49 3.1735 – 0.8140 0.3946
I2 Blastospore suspensions 50.00 3.14 ± 0.65 1.9835 1.1901 – 0.0838
I3 Aerial conidia & blastospore 50.00 1.29 ± 0.41 5.4214 2.2479 3.4380 –

Table 2   Effect of Beauveria bassiana granular applications on Ostrinia furnacalis damage to sweet maize

Results are shown for leaf feeding rating, borehole number, tunnel length, surviving larvae number and number of dead O. furnacalis 
larvae from treatment and control maize plants (NA indicates no application; control). Values (± SE) with same letter within the col-
umn are not significantly different based on Tukey’s Honest Significant Difference (HSD) test at p < 0.05
1 Chinese national grading standard NY/T 1248.5–2006 (Wang et al. 2006; Supplementary Table S1)

Treatment (ID) B. bassiana 
inoculation

O. furnacalis 
infestation

Leaf feeding 
rating1

Boreholes Tunnel length 
(cm)

Surviving 
larvae

Dead larvae

Control 1 (C1) NA Whorl 5.10 ± 0.39a 4.65 ± 0.41a 10.70 ± 1.49ab 1.25 ± 0.26ab 0.20 ± 0.12a
Control 2 (C2) NA Ear 3.78 ± 0.34b 5.60 ± 0.79a 14.99 ± 3.39a 1.70 ± 0.36a 0.20 ± 0.09a
Treatment 1 

(T1)
Whorl Whorl & ear 1.72 ± 0.17c 2.55 ± 0.39b 5.17 ± 1.05b 0.60 ± 0.21b 0.10 ± 0.07a

Treatment 2 
(T2)

Whorl & ear Whorl & ear 2.70 ± 0.26bc 2.15 ± 0.26b 5.91 ± 0.86b 0.70 ± 0.18b 0.50 ± 0.17a
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controls there were significant differences in the num-
ber of boreholes and tunnel length between upper, 
middle and lower internodes (Fig. 2; p < 0.05; remain-
ing data not shown).

Control of O. furnacalis on sweet maize using 
Beauveria conidial suspensions

The second B. bassiana application method used 
suspensions that were sprayed on soil and vegetative 
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tissues to simulate repeated overhead field irrigations. 
These resulted in significant differences in 7-day post-
infestation damage ratings between all treatments 
and control plants across all measures (F4,95 ≥ 3.290, 
p ≤ 0.0143; Supplementary Table  S2a). Specifically, 
for infestations at whorl stage the ratings were sig-
nificant lower in T4 compared to C1 for leaf feeding 
(Q5,96 = 6.081, p = 0.0010, Supplementary Table S2a), 
and borehole number (Q5,96 = 5.183, p = 0.0037, 
Table S2b). Plants treated with Beauveria in aqueous 
suspension and infested in ear stage in T5 showed sig-
nificantly lower number of boreholes (Q5,96 = 6.201, 
p = 0.0010, Supplementary Table S2b), tunnel lengths 
(Q5,96 = 4.707, p = 0.0107, Supplementary Table S2c) 
and the number of surviving larvae (Q5,96 = 4.010, 
p = 0.0434, Supplementary Table  S2d) compared to 
its corresponding C2. In contrast, borehole number 
and tunnel lengths of plants infested in whorl and ear 
stages (T3) did not differ significantly from either 
of the two controls, C1 or C2. These measures were 
significantly higher in T3 compared to T4 (infesta-
tion at whorl stage) (Q5,96 = 7.556, p < 0.0010, Sup-
plementary Table  S2b; Q5,96 = 4.935, p = 0.0065, 
Supplementary Table  S2c). Only borehole number 
was different between T3 and T5 (infestation at ear 
stage) (Q5,96 = 6.612, p < 0.0001, Supplementary 
Table S2b). The number of dead larvae was not sig-
nificantly different among the treatments or when 
compared to their controls (Fig. 1d).

Boreholes on maize treated with B. bassiana sus-
pension were predominantly documented in the inter-
nodes around the ear node, whereas internodes above 
the ear had fewer than those below the ear. This was 
similarly shown for tunnel length. There were signifi-
cant differences among the upper, middle and lower 
internodes of stalks in the same treatment for bore-
hole number and the tunnel length (Fig. 2; p < 0.05; 
remaining data not shown).

Significant variation was detected among a combi-
nation of granular and suspension treatments for leaf 
feeding ratings (F4,95 = 2.779, p = 0.0312), borehole 
number (F4,95 = 9.407, p < 0.0001), and tunnel lengths 
(F4,95 = 3.642, p = 0.0083) (Supplementary Table S2), 
but not for number of surviving larvae (F4,95 = 1.493, 
p = 0.2105). Results of subsequent Tukey’s HSD tests 
for leaf feeding ratings, borehole number, and tun-
nel length data indicated a total of four significant 
differences between treatments from granular (T1 
and T2) and suspension treatments (T3, T4, and T5). 

Specifically, three of these significance estimates 
were a consequence of higher readings for T3 com-
pared to T1 (Q5,96 ≥ 4.089, p ≤ 0.0374) (Supplemen-
tary Table S2).

Discussion

Beauveria bassiana is a naturally occurring fungus 
that resides in soil and forms an endophytic relation-
ship with maize (Bing and Lewis 1992; Lewis 2001; 
Russo et al. 2019) and other crop plants (Vega 2008). 
In accordance with prior observations, this study 
detected endophytic growth of B. bassiana strain 
GZ01in maize plants which resulted in a significant 
decrease in O. furnacalis leaf feeding damage com-
pared to control (non-endophyte containing) plants 
(Table  1). Leaf feeding ratings in this study were 
highest among plants infested at whorl stage (C1), 
thus showing that first-generation O. furnacalis larvae 
mainly feed on leaves. In contrast, borehole number, 
tunnel length, and number of surviving larvae were 
highest in C2 that were infested at ear stage (Table 2), 
agreeing with prior results that second-generation O. 
furnacalis larvae mainly bore into stalks (Nafus and 
Schreiner 1987). Findings of this study further dem-
onstrated that B. bassiana can effectively control 
damage to sweet maize by first- and second-genera-
tion O. furnacalis, when either adhered to granules or 
in aqueous suspension. These findings are in accord-
ance with prior results that showed analogous control 
of damage by European corn borer, O. nubilalis, fol-
lowing application of B. bassiana granules to maize 
leaves (Berry et  al. 1980; Bing and Lewis 1992). 
Granular applications also resulted in reduced dam-
age by stem boring and leaf feeding by other insects 
(Ramos et al. 2020; Renuka et al. 2016; Russo et al. 
2019). Our study is the first to investigate the efficacy 
of B. bassiana-based biological control programs  in 
arid regions.

Prior studies indicate that the efficacy of B. bassi-
ana control is negatively impacted by increasing 
temperature (Kryukov et  al. 2012), ultraviolet radia-
tion exposures (Acheampong et  al. 2020), and low 
humidity conditions (Shipp et  al. 2003). However, 
formulations including suspensions in oils are used to 
increase viability when exposed to UV (Inglis et  al. 
1995; Kaiser et  al. 2019) and show utility in arid 
regions (Hoddle and Driesche 2009). Our greenhouse 
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study showed significant reductions in all O. furna-
calis maize damage ratings and measurements for all 
treatments compared to one or both controls, espe-
cially borehole number. These effects were observed 
despite no light or UV protection provided to gran-
ules outside of application within the whorl, where 
these exposures may have been minimized.

Ostrinia furnacalis larvae cause feeding damage to 
maize, which varies across instar and growth stages 
of the infested plant (Nafus and Schreiner 1987). The 
location of corn borer oviposition on maize shifts 
across the growing season, with first-generation 
female egg laying biased against the upper leaves 
(Shelton et al. 1986; Spangler and Calvin 2001) and 
second-generation preference for near the ear (Soren-
son et  al. 1993; Windels and Chiang 1975). Corre-
spondingly, feeding damage from early instars occurs 
on centrally located leaves. Due to larval movements, 
damage also occurs on upper leaves in both gen-
erations and to tassel tissue in the second generation 
(Huber et  al. 1928). Later instars of second-genera-
tion are concentrated around ears and silks (Zoerb 
et al. 2003), and bore into the pith tissue of stalks in 
final instars (Huber et al. 1928; Nafus and Schreiner 
1987). Our study suggests that a single application 
of B. bassiana granules at whorl stage could provide 
significant season-long control for both generations 
of O. furnacalis, and dual application provided no 
significant comparative increase in efficacy (Table 2)  
except a reduction in leaf feeding (Fig. 2). This latter 
finding suggested that a “booster” inoculation at ear 

stage may provide additional control of leaf damage, 
but economic feasibility of additional application will 
need to be evaluated in future studies.

Beauveria bassiana applications via an initial root 
drench followed by repeated overhead applications 
simulating in-field treatments of maize using irriga-
tion equipment also resulted in significantly reduced 
O. furnacalis damages. Interestingly, despite T4 and 
T5 being significantly different from one or both 
controls across leaf feeding rating, borehole num-
ber, tunnel length, and number of surviving larvae, 
T3 (infestation at whorl and ear) only showed a sig-
nificant  effect in borehole number (Supplementary 
Table S2; Table 3). Although not investigated further, 
these differences may be influenced by an increasing 
amount of larval feeding in T3 that received two O. 
furnacalis infestations compared to the single O. furn-
acalis infestation of T5. Additionally, between exper-
iments, the borehole number for T3 (5.05 ± 2.50) was 
significantly higher compared to  T1 (2.55 ± 1.76) or 
T2 (2.15 ± 1.18; Supplementary Table  S2b). Similar 
results were shown for T3 compared to T1 for bore-
hole number and tunnel length measures. These lines 
of evidence might suggest that aerial irrigation may 
not provide season-long control of first- and second-
generation O. furnacalis. This contrasted with T1 and 
T2 which received granular treatments at whorl and 
both whorl and ear stages, respectively. Overall, this 
study indicated that although B. bassiana applications 
of aqueous suspensions may reduce damage from a 
single infestation, corresponding reductions may not 

Table 3   Effect of Beauveria bassiana applications in aqueous suspensions on Ostrinia furnacalis damage to sweet maize

Results are shown for leaf feeding rating, borehole number, tunnel length, surviving larvae number and number of dead O. furnacalis 
larvae from treatment and control plants (NA indicates no application; control). Values (± SE) with same letter within the column are 
not significantly different based on Tukey’s Honest Significant Difference (HSD) test at p < 0.05
1 Chinese national grading standard NY/T 1248.5–2006 (Wang et al. 2015)

Treatment (ID) B. bassiana 
irrigation

O. furnacalis 
infestation

Leaf feeding 
rating1

Boreholes Tunnel length 
(cm)

Surviving 
larvae

Dead larvae

Control 1 (C1) NA Whorl 5.10 ± 0.37a 4.65 ± 0.41a 10.70 ± 1.49ab 1.25 ± 0.26ab 0.20 ± 0.12a
Control 2 (C2) NA Ear 3.78 ± 0.32ab 5.60 ± 0.79a 14.99 ± 3.39a 1.70 ± 0.36a 0.20 ± 0.09a
Treatment 3 

(T3)
Seeding to ear Whorl & ear 3.03 ± 0.30b 5.05 ± 0.56a 10.56 ± 1.85ac 1.20 ± 0.34ab 0.15 ± 0.08a

Treatment 4 
(T4)

Seeding to ear Whorl 2.88 ± 0.36b 1.85 ± 0.37b 4.06 ± 1.02b 0.50 ± 0.18b 0.25 ± 0.10a

Treatment 5 
(T5)

Seeding to ear Ear 2.82 ± 0.37b 2.25 ± 0.47b 5.45 ± 1.53bc 0.60 ± 0.17b 0.15 ± 0.15a
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be provided following dual infestations. Protection 
from such cumulative larval damage is needed in 
growing regions with two O. furnacalis generations 
(Lu et al. 2015a, b; Wang et al. 2021). Thus, granular 
applications may provide the greatest level of season-
long control, which is especially important in areas of 
bivoltine O. furnacalis populations.

Since our methods did not use any protectants 
within aqueous suspensions (only in 0.05% Tween), 
the viability of B. bassiana and corresponding effi-
cacy may be increased in aerial irrigations when 
mixed with oils that protect from UV damage. This 
warrants further study. Application of B. bassiana 
in aqueous suspensions through established irriga-
tion equipment might prove to be more economically 
feasible compared to granular application that require 
specialized equipment (Bateman et al. 2007).

Experiments have used living plants to study the 
effect of endophytic fungi on the control of larval 
feeding damage (Li 2015; Abed and Saleh 2017; Qin 
et  al. 2021), as opposed to detached leaves (Gurul-
ingappa et al. 2010; Russo et al. 2019; Ramos et al. 
2020). We encountered confounding factors in on 
planta experiments under greenhouse conditions. 
For instance, our study showed leaf feeding damage 
on C2 and T5, which were not infested with O. fur-
nacalis egg masses in whorl stage. This may have 
occurred due to larval movement, which was previ-
ously shown to occur on and between maize plants 
(Goldstein et  al. 2010). Regardless, the leaf feed-
ing ratings in C2 (3.78) and T5 (2.82; Table 3) were 
lower than in C1 (Q5,96 = 3.612, p = 0.0875). Thus, 
this damage putatively due to larval movement had 
negligible impact on our results. One outlier meas-
urement which resulted in significantly greater tunnel 
length in the middle compared to lower internodes in 
C2, was contained to one replication which had much 
higher measures compared to the others. This caused 
increased heterogeneity and overall variance.

In conclusion, our data from greenhouse experi-
ments indicate that applications of B. bassiana on 
granules or in aqueous suspensions reduced dam-
age to sweet maize compared to untreated controls 
in simulated arid conditions. These data show that 
B. bassiana can be an effective biocontrol agent in 
arid regions, but B. bassiana granular applications 
provided greater reduction of damage caused by O. 
furnacalis compared to aqueous suspension. Regard-
less, since there is no effective mechanized method to 

precisely apply granules into whorls in commercial-
scale fields, the overall feasibility of this method 
remains in question. Our results suggest that B. bassi-
ana in aqueous suspension provides a potential alter-
native for effective control of first- and second- gener-
ation O. furnacalis damage to sweet maize. Although 
not tested directly in our study, B. bassiana aqueous 
suspensions are likely amenable to field applications 
using existing grower-owned drip irrigation equip-
ment. However, temperature, humidity, light and 
UV exposures are likely to be different in field com-
pared to our simulated greenhouse conditions. Thus, 
future replicated field trials using oil-based UV pro-
tectants within aqueous suspension are warranted to 
demonstrate impact on efficacy effects under natural 
conditions.
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