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parasitism by distance or tree species. However, sig-
nificantly more EAB eggs were parasitized in the 
longer deployment compared to the shorter deploy-
ment. These findings suggest that sentinel EAB 
eggs may be deployed on ash or white fringe trees to 
effectively monitor the establishment and spread of 
O. agrili. Future studies using sentinel host eggs in 
natural ash stands may yield further insights into the 
spread rate of O. agrili post-release and its effective-
ness in suppressing the targeted pest populations over 
time.

Keywords  Biological control · Dispersal · Invasive 
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Introduction

Factors affecting insect establishment and disper-
sal after deliberate and unintentional introduction to 
new areas have been perennial topics of investigation. 
Failure to establish and spread can be caused fully or 
in part by many biotic and abiotic variables, includ-
ing but not limited to: phenological mismatch (Rams-
field et al. 2016), insufficient propagule size and num-
ber (Lockwood et  al. 2005), unavailability of hosts 
(Dang et  al. 2021), extreme weather events (Tobin 
et al. 2017; Macquarrie et al. 2019), stochasticity and 
Allee effects (Williams et  al. 2021), lack of habitat 
connectivity (Lustig et  al. 2017), and dispersal abil-
ity (Fagan et al. 2002; Fahrner and Aukema 2018). In 
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the context of classical biological control, determin-
ing the dispersal capacity of introduced insects is an 
essential aspect of selecting agents and predicting 
their subsequent establishment and spread. A bal-
ance between high and low dispersal ability must be 
sought in order to avoid the potential pitfalls of slow 
spread, inbreeding, and Allee effects (Heimpel and 
Asplen 2011). Due to the myriad factors potentially 
affecting dispersal and establishment, each insect of 
interest must be studied on a case-by-case basis.

Agrilus planipennis Fairmaire (Coleoptera: 
Buprestidae), or emerald ash borer (EAB), is among 
the most damaging invasive species in North America 
(Herms and McCullough 2014). The larval stage of 
EAB feeds on the phloem of ash trees (Fraxinus spp.), 
resulting in tree decline and eventual death (MacFar-
lane and Meyer 2005). Since its accidental introduc-
tion in Michigan, USA in 2002, it has invaded 35 US 
states and five Canadian provinces, causing severe 
economic losses and degradation of forest ecosys-
tem functions and services (Kovacs et  al. 2010; 
McCullough 2019). Besides utilizing Fraxinus spp. 
trees as food plants in both native and newly invaded 
ranges, this beetle has recently been discovered suc-
cessfully attacking the white fringe tree, Chionanthus 
virginicus, native to the southern USA (Peterson and 
Cipollini, 2017; Olson and Rieske 2019).

Classical biological control is among the most 
promising long-term, low-cost methods through 
which to regulate invasive EAB populations (Bauer 
et  al. 2015; Duan et  al. 2018). To this end several 
parasitoid species from EAB’s native range were col-
lected, tested, and selected for introduction to North 
America. One of these parasitoids was Oobius agrili 
Zhang and Huang (Hymenoptera: Encyrtidae). In its 
native range, O. agrili is responsible for 12–62% EAB 
egg mortality in infested ash trees (Liu et  al. 2007). 
As an egg parasitoid, O. agrili prevents damage to ash 
trees by attacking EAB before they hatch and begin 
feeding on the trees (Liu et al. 2007). Since its release 
in North America, O. agrili attack rate on EAB infest-
ing ash trees have been low and variable, but they 
have been observed to parasitize up to 21.8% of eggs 
(Abell et al. 2014; Duan et al. 2015). Currently, it is 
not known if O. agrili attacks host eggs laid on white 
fringe trees. Thus, there is a need for further study of 
factors affecting O. agrili performance.

The uncertainties around O. agrili parasitism rates 
are due in part to the difficulty in sampling this minute 

insect. Visual surveys for EAB eggs are possible, but 
observer effects are a concern (Abell et al. 2014; Jen-
nings et  al. 2018). Many studies of O. agrili utilize 
bark sifting, in which the bark of ash trees is removed 
and EAB eggs sifted out and examined for evidence 
of parasitization (Abell et  al. 2014; Jennings et  al. 
2018; Petrice et al. 2021). This method is considered 
to be among the most effective (Petrice et al. 2021). 
Yellow pan traps are another commonly used method, 
and while the success rate is mixed, yellow pan traps 
do successfully capture O. agrili (Parisio et al. 2017; 
Petrice et al. 2021). A fourth sampling method, senti-
nel eggs, is effective, but requires laboratory produc-
tion of EAB eggs in sufficient numbers and continued 
monitoring of the eggs after deployment (Duan et al. 
2011, 2012; Jennings et al. 2014; Petrice et al. 2021). 
However, sentinel eggs have the benefit of providing 
quantitative measures of parasitoid activity and effi-
cacy (% parasitism), as opposed to the other methods, 
which either: (1) focus on the detection of adults in 
the case of yellow pan traps, or (2) estimate biocon-
trol activity based on the number of eggs sampled 
via bark scraping or peeling where initial number of 
eggs present in a given year is unknown, making it 
difficult to accurately calculate annual percent para-
sitism (Duan et al. 2012). As such, developing a bet-
ter understanding of the efficacy of sentinel eggs as a 
sample method, as well as potential ways to improve 
this method, are needed.

An important aspect of developing an effective 
classical biological control program is to determine 
the rate of establishment and spread of the released 
agent. This helps ensure sufficient propagule pressure 
for establishment, essential aspects of biological con-
trol (Wittmann et  al. 2014). However, detecting the 
presence of an introduced species can prove challeng-
ing depending upon the species in question and the 
methods implemented (Caton et al. 2022). Compared 
to other EAB biocontrol agents, there are few stud-
ies of O. agrili establishment, efficacy, and dispersal 
in the field. Abell et  al. (2014) collected relatively 
few O. agrili-parasitized eggs via bark sifting, but 
observed greater parasitization at release sites com-
pared to control sites where releases had not taken 
place (18.9–21.8% vs. 3.3–4.3%, respectively), with 
most release and control sites located approximately 
1 km apart and first detections occurring three years 
post-release in control sites. In a study of O. agrili 
establishment in Maryland, USA O. agrili was only 
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recovered from three out of nine release sites sam-
pled after several years of repeated releases in those 
areas, suggesting poor establishment or detection 
(Jennings et  al. 2018). There have been even fewer 
studies examining O. agrili rate of spread at finer 
scale. In one such study, Parisio et al. (2014) recov-
ered O. agrili in yellow pan traps located up to 20 m 
away from the release point in a wooded area during a 
five week period of sampling. In New York, USA no 
O. agrili were captured in yellow pan traps deployed 
at 250  m intervals along a river leading away from 
release sites (Jones et  al. 2019). To maximize O. 
agrili establishment and spread, we must determine 
factors affecting the dispersal and parasitism rate of 
O. agrili when released into the field. To this end, the 
present study determined the short-term dispersal of 
newly released adult O. agrili using sentinel host eggs 
deployed on different host trees at various distances 
from the release point.

Materials and methods

Study site and trees

This study took place in a large, mowed grass field 
located at the USDA-ARS Beneficial Insects Intro-
duction Unit in Newark, DE, USA (39.66812° N, 
75.74087° W) from June through July 2021 on sunny, 

calm days (precipitation = 0–0.36  cm, maximum 
wind = 0–28.97 km h−1, temperature = 11.11–35.6 °C). 
The grass field (~ 2  ha) is also neighboring several 
small urban forests (0.5–1 ha) consisting of primarily 
maple (Acer spp), birch (Betula spp), and ash (Fraxi-
nus spp.). A total of 21 green ash (Fraxinus pensyl-
vanica) and 21 white fringe tree (Chionanthus vir-
ginicus) saplings were used in this study (diameter at 
breast height 3–5 cm). Of these trees, four green ash 
and three white fringe trees were planted at the edge 
of unmanaged wooded areas, while the rest were pot-
ted. All trees were deployed in pairs (one green ash 
and one white fringe tree). Figure 1 depicts our plot 
design. At the center of the study area, a pair of trees 
was designated as the release trees, where parasitoid 
releases would occur (Fig. 1a). Tree pairs were placed 
at various distances (9–45  m) away from the pair of 
central release trees in modified concentric circles as 
follows: 9.6 ± 0.4 m (n = 4), 20.0 ± 1.2 m (n = 6), and 
34.6 ± 2.5 m (n = 10). Trees within the same pair were 
approximately 0.5–1.0 m apart (Fig. 1b).

Insects

All insects were reared at the USDA-ARS Benefi-
cial Insects Introduction Unit in Newark, DE, USA. 
EAB eggs were produced as described in Duan et al. 
(2013). Host eggs used in this experiment were 
0–4 days old, well within the window of susceptibility 

Fig. 1   a Overview of the study design. At the center of the 
study area, a pair of trees was designated as the release trees, 
where parasitoid releases would occur. Sentinel eggs were 
not deployed at the release trees. Tree pairs on which sentinel 
egg pouches were deployed were placed at various distances 
(9–45 m) away from the pair of central release trees (red pin) 
in modified concentric circles. Trees in group A (green pins) 

were 9.6 ± 0.4 m from the release point (n = 4), trees in group 
B (yellow pins) were 20.0 ± 1.2  m (n = 6) from the release 
point, and trees in group C (blue pins) were 34.6 ± 2.5  m 
(n = 10) from the release point. b A view of the release trees 
and several of the trees on which sentinel eggs were deployed. 
Trees within the same pair were approximately 0.5–1.0 m apart
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and acceptability for O. agrili (Duan et  al. 2014). 
Oobius agrili used in this experiment were from 
a continuously reared culture of field-collected O. 
agrili that were originally collected in Northeast 
China between 2008 and 2010 (Duan et al. 2014).

Sentinel egg deployment and parasitoid release

EAB eggs oviposited on coffee filter paper were used 
as sentinel host eggs in this experiment. The filter 
paper was cut into strips containing 10–20 eggs, or 
several smaller strips adding up to that number of 
eggs, with the same number of eggs per pouch used in 
a given trial The eggs were then placed in 8 × 10 cm 
mesh (1 mm aperture size) pouches. One sentinel egg 
pouch was attached to each tree via garden wire at 
approximately breast height. Sentinel eggs were not 
deployed on the central release trees. Approximately 
200–320 adults of O. agrili were released at the cen-
tral release trees by opening the vials in which they 
were contained, placing the vials at the base of the 
release trees, and allowing the parasitoids to leave 
the vials of their own volition. Sentinel host eggs 
remained in the field for either 48 h (n = 3) or 120 h 
(n = 2) post O. agrili releases. At the end deploy-
ment, sentinel host eggs were retrieved from the field 
and then maintained in the laboratory under normal 
rearing conditions (25  °C, 65% RH, L:D 16:8) for 
approximately four weeks to evaluate parasitism. The 
number of remaining undamaged, parasitized, and 
predated eggs was recorded according to methods 
described in Liu et al. (2007) and Duan et al. (2012). 
Egg parasitism was scored based on successful devel-
opment of parasitoid larvae, which were associated 
with darkening host eggs. Eggs were considered pre-
dated if visible evidence of the egg being consumed 
was present (i.e., egg was visibly pierced or chewed 
or fragments of chorion present). Trials were sepa-
rated by at least one week.

Statistical analysis

All data were analyzed using SAS JMP Pro 15.1.0 
(SAS Corporation, Cary, NC, USA). The proportion 
of eggs parasitized per pouch were analyzed via like-
lihood ratio χ2 test based on generalized linear (bino-
mial logit link) model, with distance from release 
tree, tree species, and deployment time as covariables.

Results

Overall, 22.6 ± 2.0% of sentinel eggs deployed were 
parasitized by O. agrili. Parasitism was observed 
throughout the deployment distances sampled, 
including the farthest distance, 44.8  m from the 
release point in both the 48 and 120 h trials. No sig-
nificant effect of distance from release point on pro-
portion of sentinel host eggs parasitized by O. agrili 
was observed (χ2 = 1.89, df = 1, P = 0.17) (Fig.  2). 
There was no significant difference in the rate of para-
sitism between eggs deployed on green ash and white 
fringe trees (χ2 = 0.05, df = 1, P = 0.83) (Fig.  3a). 
However, parasitization was significantly greater in 
EAB eggs that were deployed for 120 h compared to 
those that were only deployed for 48  h (χ2 = 10.91, 
df = 1, P = 0.001). Parasitism after 120 h deployment 
(mean = 29.4 ± 3.0%) was nearly double that of the 
parasitism observed after 48  h (mean = 16.0 ± 2.4%) 
(Fig. 3b). We also observed losses of deployed eggs 
due to undetermined predators throughout the study. 
However, the rate of predation was relatively low, 
with ~ 15.8 ± 1.6% of eggs predated.

Discussion

Our study found that while tree species and distance 
from the release point did not affect parasitism, O. 
agrili can travel as far as 45  m in as little as 48  h 
after release to parasitize eggs. This suggests that the 
potential rate of spread after release is much greater 
than previously thought (e.g. Abell et  al. 2014) and 
not necessarily constrained by tree species or linear 
distance. These findings potentially allow for greater 

Fig. 2   Proportion of eggs parasitized by O. agrili by distance 
(m) away from the release point. No significant difference in 
parasitization among distances was observed (P > 0.05)
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flexibility in the design of sampling schemes using 
sentinel host eggs. Future studies should continue to 
expand the radius of the study area and allow at least 
120  h field exposure of deployed sentinel host eggs 
after the parasitoids are released to determine the 
maximum distance (or capacity) of the parasitoid dis-
persal and establishment.

A longer sampling window would allow the para-
sitoids more time to search for and attack host eggs, 
but would limit the precise determination of rate of 
spread for several reasons. More time in the field may 
allow for greater opportunity for predation (Jennings 
et al. 2014), reducing the accuracy of the estimate for 
in-field parasitism. Predation rates of wild EAB eggs 
can be as high as 37–52% in the field (Duan et  al. 
2011). Jennings et al. (2014) found that predation can 
be reduced by almost 40% compared to unprotected 
controls through using 1 mm aperture mesh pouches 
with no significant reduction in parasitism. Similar 
pouches were used to protect sentinel eggs from field 
predation in our study, but still resulted in ~ 15.8% 
sentinel eggs preyed upon by identified predators. 
Further investigation into factors that may affect 
predation, such as pouch deployment method, tree 
species, and local variation is underway (Quinn and 
Duan unpublished).

In addition to loss of sentinel eggs due to pre-
dation during field exposure, host suitability also 
decreases over time, with eggs older than two weeks 
being unsuitable for parasitization (Duan et al. 2014), 
further limiting the benefits of longer deployment. 
Reducing the sampling duration (i.e., the amount of 
time sentinel eggs exposed to the field conditions) 
may help determine the rate of O. agrili spread after 
release. In laboratory studies, an individual O. agrili 
will attack an average of 19–24 eggs in the first 
week after emergence at 25  °C, but the attack rate 

sharply reduces to less than five eggs after the third 
week (Hoban et al. 2016). The number of parasitoids 
released (200–320) relative to the host eggs deployed 
in each replicate (420–840) was approximately 1:3. 
This suggests that the reduced parasitism observed in 
the shorter duration trial is not due to the parasitoid 
ovipositional limit, but rather host finding or disper-
sal limits. Another consideration when applying our 
findings to field populations is that a natural, forested 
environment is more heterogeneous than our study 
design, which may complicate host finding on a local 
scale (Bukovinszky et al. 2007), but improve biologi-
cal control at a landscape level (Cohen and Crowder 
2017; Bosem Baillod et al. 2017). Cues, semiochemi-
cal or otherwise, used by O. agrili to locate A. pla-
nipennis eggs are currently unknown, although the 
volatile profiles of A. planipennis tree hosts have been 
documented (Pureswaran and Poland 2009; Peterson 
et al. 2020) and may be attractive to natural enemies 
of the emerald ash borer. Further study of O. agrili 
behavior in both laboratory and natural settings could 
provide a better understanding of factors affecting O. 
agrili host finding.

Ever since the documentation of successful use 
of C. virginicus as an alternate host (Cipollini 2015; 
Peterson et al. 2020), there have been concerns about 
the potential of C. virginicus to serve as an enemy 
free space for A. planipennis (Olson and Rieske 
2019). Our study found no difference in parasitiza-
tion between eggs deployed on F. pennsylvanica and 
C. virginicus. While investigations into tritrophic 
interactions of A. planipennis, its parasitoids, and 
its host trees (both new and old) are still warranted, 
our study may provide some measure of reassurance 
that, at least in the case of O. agrili, biological control 
activity may not be compromised should A. planipen-
nis oviposit on C. virginicus. However, this remains 

Fig. 3   Mean ± SE propor-
tion of eggs parasitized 
by O. agrili: a by tree 
species on which the eggs 
were deployed (green ash 
or white fringe tree), and 
b deployment time (48 
or 120 h). Significance 
(P < 0.05) within subfig-
ures is indicated by letters. 
Absence of letters indicates 
P > 0.05
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to be verified in the field for the larval parasitoids, S. 
galinae and T. planipennisi. Recent laboratory stud-
ies suggest that both S. agrili, S. galinae (Ragozzino 
et al. 2021), and T. planipennisi (Hoban et al. 2018) 
performance is only moderately affected by host 
plant, further suggesting that host plant effects on bio-
logical control may be limited.

It is important to note that abiotic factors such 
as wind and rain can strongly impact parasitoid dis-
persal and activity (Weisser et  al. 1997; Kristensen 
et  al. 2013). However, given that throughout each 
trial maximum observed windspeed remained at 18 
km h−1 or less, precipitation was minimal (< 1  cm), 
and temperatures were within historical norms for 
the time of year, it is unlikely that abiotic conditions 
adversely affected parasitoid foraging or dispersal in 
this study. Future studies examining the impact of 
environmental conditions on parasitoid performance 
will be key, especially given the potential impacts of 
climate change on biological control agents and our 
ecosystems (Furlong and Zalucki 2017).

Overall, our study has demonstrated the efficacy of 
sentinel host eggs in determining the spread and real-
ized parasitism rates of O. agrili immediately after 
environmental release. Continued studies of parasit-
ism, in conjunction with other sources of EAB mor-
tality such as predation, throughout their introduced 
range over time will be needed to determine long-
term biological control contribution. Future studies 
should seek to determine the efficacy and activity of 
O. agrili at finer distance resolution through intensive 
studies on foraging behavior and chemical ecology. 
This will improve our understanding of factors affect-
ing this important biological control agent’s impact 
on A. planipennis.
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