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Abstract Predator non-consumptive effects (NCEs)

have been well studied in many ecosystems and NCEs

can alter the behavior, morphology and life history of

prey, producing strong trait-mediated indirect effects

(TMIEs) on host plants. However, studies involving

the application of NCEs to control pests in the field,

and instances of combined laboratory bioassay and

field practice are rare. Here, we examine the develop-

ment, reproduction and behavior of small brown

planthoppers, Laodelphax striatellus (Fallén), when

exposed to predator cues from caged preda-

tors (Paederus fuscipes Curtis), or predator body

extracts (in solvents with different polarities) in the

laboratory. Field foliage sprays of these extracts were

also used to test their effects on the L. striatellus pop-

ulation and rice plant biomass. Nymph development

and egg hatch rate in L. striatelluswere not influenced,

but adult longevity was shorter, and fecundity and

weight gain were lower, when nymphs were exposed

to the predator cues. Adults exposed to predator cues

also gained less weight and laid fewer eggs. The

poorer developmental and reproductive performances

might result from lower activity levels observed in

threatened L. striatellus. The field foliage sprays of

predator cues decreased L. striatellus abundance and

increased rice plant biomass, suggesting their possible

application for pest control. Predator cues extracted

using chloroform increased stronger NCEs and

TMIEs, indicating their non-polar characteristics.

Our studies advance the understanding of how NCEs

shape the life history and behavior of L. striatellus and

improve rice growth, laying new foundations for

future research on novel pest control materials and

methods.

Keywords Rice pest � Laodelphax striatellus �
Generalist predator � Paederus fuscipes � Predation
risks � Cascading effects

Introduction

Field releases of natural enemies of agricultural pests

for biological control and thus to mitigate plant

damage have been greatly applauded (van Driesche

and Heinz 2004). That natural enemies can not only

reduce herbivore abundance by direct consumptive

effects (CEs), but can also reduce herbivore fitness by

indirect non-consumptive effects (NCEs), has long

been of interest in pest management (Hermann and
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Landis 2017; Culshaw-Maurer et al. 2020). Most

studies have reported NCEs of natural enemies

altering the behavior (Freitas and Oliveira 1996;

Kersch-Becker and Thaler 2015), morphology (Weis-

ser et al. 1999; Dixon and Agarwala 1999), and life

history (Fischer et al. 2012; Wineland et al. 2015;

Xiong et al. 2015) of insect pests.

Predator-induced phenotypic plasticity often incurs

a cost to prey fitness (Peacor et al. 2013), and results in

substantially reduced prey populations (Sheriff et al.

2020; Culshaw-Maurer et al. 2020). In turn, NCEs can

lead to strong trait-mediated indirect effects (TMIEs)

on plants (Schmitz et al. 2004; Thaler and Griffin

2008; Bestion et al. 2015; Wineland et al. 2015). For

example, in an old-field system, chelicerae-glued

spiders shifted the feeding-time budgets of grasshop-

pers, slightly increasing their mortality, which cas-

caded to increase plant biomass (Schmitz et al. 1997).

The TMIEs, along with the NCEs, demonstrate the

influence of predators on their prey and on ecosystems

(Werner and Peacor 2003; Peckarsky et al. 2008),

providing a foundation for developing NCEs in

biological control programs (Culshaw-Maurer et al.

2020).

However, successful pest control practices with

NCEs require an understanding of the mechanisms by

which prey detect and respond to predation risk

(Hermann and Landis 2017). Many prior laboratory

experiments have been designed to clarify the medi-

ating mechanisms (Hoefler et al. 2012; Ninkovic et al.

2013; Hermann and Thaler 2014). For example, Khudr

et al. (2017) found the combination of visual and odor

risk cues (predator cadavers), or a combination of odor

and tactile cues (predator cues sprayed on foliage),

could hinder aphid reproductive success. Alongside

laboratory investigations, field applications of preda-

tor-associated cues have also been conducted (Silber-

bush et al. 2010; Aflitto and Thaler 2020). For

example, the application of an aggregation pheromone

to a potato field reduced the abundance of Colorado

potato beetle larvae and associated plant damage

(Aflitto and Thaler 2020). These existing works

demonstrate NCE application is possible and can

provide novel pest control strategies (Op de Beeck

et al. 2016). Nevertheless, few studies currently

examine the application of predator-associated cues

for biological control compared to the application of

natural enemies and pesticides due to the poor

understanding of the underlying mechanisms. Thus,

the exploitation of the cues mediating NCEs, and the

capacity of NCEs in pest control remain under-studied

(Hermann and Landis 2017; Culshaw-Maurer et al.

2020).

The small brown planthopper (SBPH), Laodelphax

striatellus (Fallén) (Hemiptera: Delphacidae), is a rice

pest of economic importance because of its sap-

feeding behavior and transmission of plant viruses

(Otuka et al. 2008, 2012; Zheng et al. 2017). Although

pesticides can control the SBPH, major problems arise

from the emergence of insecticide resistance (Ma et al.

2007), their adverse effects on the diversity of natural

enemies, and food safety. Environment-friendly meth-

ods to control the SBPH are needed urgently, and

biological control using natural enemies is one such

method.

The rove beetle Paederus fuscipes Curtis (Coleop-

tera: Staphylinidae) is one of the most abundant

natural enemies of SBPH. We found nymph SBPH

exposing to predation risks from P. fuscipes tend to

develop into winged adults (Wen and Ueno 2021).

Thus, we assumed SBPH should also alter its life

history or behavior. However, until now no such

phenomena in SBPH, or other rice planthoppers, has

been detected. Here, we combined laboratory and field

studies to reveal the NCEs of P. fuscipes on the

development, reproduction and behavior of SBPH,

and howNCEs may produce TMIEs on rice plants.We

highlight the NCEs of P. fuscipes on the life-history/

behavioral plasticity of SBPH, forming a basis for

understanding the mechanism underlying NCEs, and

pointing to new pest management methods.

Methods and materials

Insects

We used SBPH that wasl reared on rice seedlings

(Oryza sativa L. ssp. japonica) in a stock culture in a

transparent square cage (30 9 25 9 35 cm, with

meshed windows). The SBPH was obtained from rice

fields (Liji, West Ward, Fukuoka, Japan) in 2018. The

adult rove beetles (P. fuscipes), collected from rice

paddies (Kuwabara, West Ward, Fukuoka, Japan),

were reared in a transparent cylindrical cage

(d = 12 cm, h = 20 cm, with meshed windows). We

used wild-caught rove beetles in these experiments

because we could not maintain them over multiple
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generations in laboratory conditions. They were reared

on mixed diets with Heteromurus spp. (Collembola:

Entomobryidae) and the fungus gnat, Bradysia sp.

(Diptera: Sciaridae), for three weeks before being used

in our tests, in order to eliminate the possibility of

disturbances from alarm pheromone. Both SBPH and

rove beetles were maintained under a L:D 16:8

photoperiod at 25 �C and 60% RH (kept separately

in different incubators).

The development and reproduction of SBPH

when exposing nymphs to risk

Two 10-day-old rice seedlings were raised in the tube

(Supplementary Fig. S1) ten days before the tests

started on cotton soaked in 5 ml of an 800-times

diluted nutrition solution (HYPONeX, HYPONeX

Japan corp. Ltd., Osaka, Japan). A transparent bottle

was attached to the tube, separated by a mesh (mesh

hole\ 1 mm).

For the caged rove beetle treatments, one pair of

rove beetles (1$ ? 1#) was used as the visual and

odor risk cues. For the rove beetle-associated cues

treatments, rove beetle body extracts in solvents with

different polarities were used as the odor risk cues. We

assumed these extracts might differ in the quantity

and/or quality of rove beetle cues and lead to different

levels of SBPH responses. One pair of rove beetles

were frozen at - 24 �C for 10 min, and submerged in

100 ll chloroform/100 ll ethanol/20 ml distilled

water. The time for chloroform and ethanol extraction

was 10 min, whereas that for water extraction was

24 h, because, in preliminary tests, extracts with

extraction time shorter than 12 h in water elicited a

weak SBPH response (Supplementary Fig. S2). After

extraction, the rove beetles were removed, and the

extract volume was adjusted to 20 ml by adding

distilled water. All extracts were stored at 4 �C.
One first instar nymph was introduced into the tube

(Supplementary Fig. S1). The nymph was allowed to

acclimate within the tube for 5 min. The paired rove

beetles, or cotton soaked onto 1 ml chloroform extract

(CE)/ethanol extract (EE)/water extract (WE), were

put into the bottle to produce risk cues. We supplied

the rove beetles with water (wet cotton). The bottle

along with rove beetles and wet cotton, or ‘‘risk

cotton’’, was replaced every two days. In the control

treatments, cotton soaked with distilled water (WC) or

diluted chloroform solution (CC, 100 ll/20 ml) or

diluted ethanol solution (EC, 100 ll/20 ml) was used.

Sixty replicates were set for each treatment.

In all treatments, we replaced the rice seedlings every

five days. After the nymphs developed into adults, the

winged adults were randomly numbered and paired

(wingless adults were rare), and reared in their respective

experimental conditions until death. During this period,

we removed the rice seedlings bearing eggs to a new tube

without rove beetles every three days, and supplied two

new rice seedlings to paired adults for laying eggs

continually. The nymph duration, adult longevity,

fecundity per female, adult weight gain, and egg hatch

rate were measured. Fecundity per female was measured

by noting the number of hatched eggs (newly-hatched

first instar nymphs) and unhatched eggs (rice seedlings

that did not yield newly hatched nymph after three days

were dissected under a microscope (HOZAN, Tool Ind.

Cd. Ltd., Osaka, Japan) to count the unhatched eggs).

The weight gain of adults (female and male) was

calculated using the formula:weight gain ¼ body

weight at death-body weight at molt. Where

body weight at molt was measured by weighing the

newly molted adult, and the body weight at death was

measured by weighing the naturally dead adult (death

time\ 6 h).

The development and reproduction of SBPH

when exposing adults to risk

We reared one pair of newly molted adults per tube

(Supplementary Fig. S1). We aimed to determine if

SBPH had different life-history traits when they did

not experience predation risks or predation in the

nymph stages. The treatments and the measured

variables (except nymph duration) were similar to

those described above. Sixty replicates were set for

each treatment.

Behavioral plasticity when exposing SBPH to risk

We assume the poor development and reproduction of

SBPH were caused by the behavioral changes when

exposed to predation risks. A behavioral bioassay was

conducted to examine this hypothesis. The paired rove

beetles or ‘‘risk cotton’’ (see above) were put in the

bottle (Supplementary Fig. S1). Then one 4th or 5th

instar nymph SBPH, or one female or male SBPH

(nymphs and adults were starved for 12 h) was

introduced into the tube. The SBPH was allowed to
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acclimate within the tube for 1 min. We recorded the

time SBPH spent feeding, walking, non-feeding

quiescence, or was on plants within 16 h (light period)

using a video camera (Panasonic, HC-VX992M-T,

Osaka, Japan). The video was analyzed to count the

time spent for each behavior. Ten replicates were set

for each treatment. We did not use 1st, 2nd, or 3rd instar

nymphs because they were too small (\ 1.5 mm) to

observe their feeding behavior.

Foliage sprays of predator cues in the field

We sprayed rove beetle body extracts on rice plants in

field mesh cages, to test their efficiencies in control-

ling SBPH. Field experiments were conducted in the

organic arable rice paddies at Kuwabara, West Ward,

Fukuoka, Japan from 12 May to 1 August 2021.

Pesticides have not been applied in these paddies in

recent decades, eliminating the possibility of distur-

bances from pesticides on the test SBPH.

On 12 May 2021, 40 meshed cages

(70 9 50 9 50 cm, with meshed windows) were

placed on an unused rice paddy. All cages were

placed 1 m apart in a rectangular pattern. Previous

studies conducted in our laboratory showed that cages

0.5 m apart did not influence each other when treated

with foliar sprays of rove beetle extracts (in chloro-

form). One thousand rice seedlings raised from seeds

in the laboratory for ten days were planted in each

cage. The rice seedlings were allowed to develop for

ten days, and 30 pairs of winged SBPH (50% females)

were introduced into the cage. Foliar sprays or

predator release occurred 2 h after SBPH introduction.

We prepared the body extracts (CE, EE and WE) by

taking 90 rove beetles (50% female), previously starved

for 24 h, and freezing them at – 24 �C for 10 min, and

dividing them equally into three groups of treatments

(50% female in each group). These beetles were

submerged in 10 ml of chloroform, ethanol or distilled

water. The extraction time was 8 min, 8 min and 24 h,

respectively. After extraction, we adjusted the volume

of the extracts to 10 ml by adding their respective

solvents, followed by diluting them at a rate of 1:1000

by adding distilled water. Hence, we obtained 10 l of

body extracts for each group of rove beetles. Each

extract was divided into five volumes of 2 l extracts

(one for each of five replicates). We used diluted

chloroform (CC) or ethanol (EC) (1:1000 by adding

distilled water), or distilled water (WC) as the control.

The 40 cages were randomly numbered and evenly

divided into eight groups. Four groups were treated

with the foliage sprays of CE, EE, WE and rove beetle

releases (RB, five paired), respectively. The remaining

groups were treated with three control solutions (CC,

EC, WC) and RC (without any foliar sprays), respec-

tively. Each 2 l body extract or control solution was

sprayed evenly on the rice plants using an 800 ml

spray can. Because it rained heavily in the evening of

23 May, we sprayed again in the morning of 24 May

(the number of rove beetles in the cages were checked,

but it did not change). The rice plants were watered

every two days. We did not set up experiments with

caged predators because foliage sprays of predator-

associated cues should be more practical in any ‘‘real

world’’ application than the release of caged predators.

We recorded the number of 1st-3rd instar nymphs

(young nymphs), 4th-5th instar nymphs (elder

nymphs), and adult SBPH after 70 days. The SBPH

were collected and placed in an oven (ETTAS,

ASONE, Osaka, Japan) set to 50 �C for 24 h, cooled

and weighed on a scale (Mettler-Toledo International

Inc., Tokyo, Japan). Five hundred live rice plants were

removed from the soil, washed and blotted. We then

separated the roots from the shoots and dried them in

an oven at 40 �C for 48 h. Dry plants were cooled and

weighed.

Data analysis

All data analyses were conducted with R 4.0.3

software (R Core Team 2020). The nymph and adult

development periods, female fecundity, weight gain,

time SBPH spent feeding, non-feeding quiescence,

walking on plants, and the activity index (time

allocated to walking divided by time spent on non-

feeding quiescence walking) were compared by using

Kruskal–Wallis tests, followed by Tukey’s tests for

multiple comparisons. The generalized linear models

(GLM, predictor variable: risk treatments) with the

family of Poisson distribution (number of SBPH, log

link function) or Binomial distribution (proportion of

young/elder SBPH nymphs/adult SBPH, logit link

function) or Gamma distribution (dry weight of SBPH/

above-ground dry weight of rice plants, inverse link

function) were used to analyze the differences among

treatments, followed by Tukey’s post-hoc analysis.

Because on 9 July 2021 six cages (one CE, one CC,
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two RC, two EC) were destroyed by heavy rain, these

cages were excluded from the data analysis.

Results

The development and fecundity of SBPH

under predation risks

Predation risks significantly affected adult longevity,

fecundity and weight gain of SBPH, and these effects

were also influenced by when they were exposed to

predation risk. When nymphs were exposed to preda-

tion risks, their nymph duration were not affected

(df = 6, v2 = 5.08, p = 0.533; Table 1), but the adult

longevity were significantly decreased when exposed

to caged rove beetles (female: df = 6, v2 = 17.47,

p = 0.008; male: df = 6, v2 = 21.03, p = 0.002;

Table 1). We noted that the body weight at molt in

all treatments was not significantly different (female:

df = 6, v2 = 7.26, p = 0.297; male: df = 6, v2 = 1.52,

p = 0.959), but the weight of females at death differed

significantly (female: df = 6, v2 = 36.58, p\ 0.001;

male: df = 6, v2 = 3.86, p = 0.695). Thus, their

weight gain was measured. Female weight gain and

fecundity were affected (weight gain: df = 6,

v2 = 25.60, p\ 0.001; fecundity: df = 6,

v2 = 28.47, p\ 0.001; Fig. 1a, Table 1). The caged

rove beetles, chloroform extract, ethanol extract and

water extract treatments significantly reduced female

fecundity and weight gain, whereas male weight gains

were not affected (df = 6, v2 = 1.40, p = 0.966;

Fig. 1b). The egg hatch rates were not influenced

(df = 6, v2 = 1.83, p = 0.934; Table 1).

When SBPH adults were exposed to predation

risks, adult longevity did not differ among treatments

(female: df = 6, v2 = 3.19, p = 0.785; male: df = 6,

v2 = 6.67, p = 0.352; Table 2). However, female

fecundity and weight gain were significantly lower

when exposed to caged rove beetles or chloroform

extract (fecundity: df = 6, v2 = 20.55, p = 0.002;

weight gain: df = 6, v2 = 26.71, p\ 0.001; Table 2;

Fig. 1c). Male weight gain and egg hatch rate were not

affected (weight gain: df = 6, v2 = 3.23, p = 0.779;

egg hatch rate: df = 6, v2 = 1.51, p = 0.959; Table 2;

Fig. 2d).

Table 1 Development durations, fecundity and egg hatch rate when nymph SBPH (first instar) were exposed to predation risks

(mean ± SE, N = total number of SBPH monitored)

Treatments Nymph duration

(days)

Female longevity

(days)

Male longevity

(days)

Fecundity (eggs) Hatch rate (%)

Caged rove beetles 13.59 ± 0.22a

(N = 41)

16.27 ± 0.59b

(N = 21)

11.84 ± 0.62b

(N = 19)

125.37 ± 6.41b

(N = 19)

90.52 ± 0.02a

(N = 19)

Chloroform extract 13.61 ± 0.20a

(N = 44)

17.16 ± 0.89ab

(N = 24)

15.16 ± 0.96ab

(N = 19)

127.79 ± 5.67b

(N = 19)

92.69 ± 0.01a

(N = 19)

Ethanol extract 13.28 ± 0.23a

(N = 46)

18.08 ± 1.13ab

(N = 22)

14.76 ± 0.78ab

(N = 21)

126.33 ± 7.14b

(N = 21)

91.44 ± 0.02a

(N = 21)

Water extract 13.73 ± 0.24a

(N = 45)

17.71 ± 0.83ab

(N = 23)

15.00 ± 0.86ab

(N = 21)

128.76 ± 6.82b

(N = 21)

90.92 ± 0.02a

(N = 21)

Chloroform control 13.19 ± 0.16a

(N = 47)

20.07 ± 0.89a

(N = 26)

16.20 ± 0.79a

(N = 20)

163.05 ± 10.25a

(N = 20)

91.12 ± 0.02a

(N = 20)

Ethanol control 13.24 ± 0.20a

(N = 45)

20.14 ± 1.19a

(N = 21)

15.25 ± 0.74ab

(N = 21)

158.05 ± 7.41a

(N = 21)

93.18 ± 0.02a

(N = 21)

Water control 13.15 ± 0.24a

(N = 46)

19.91 ± 0.91a

(N = 23)

16.35 ± 0.60a

(N = 20)

164.70 ± 7.73a

(N = 20)

92.23 ± 0.02a

(N = 20)

The chloroform extract, ethanol extract and water extract indicate the rove beetle body extracts in chloroform, ethanol and water,

respectively. The chloroform control, ethanol control and water control indicate the control solutions without predator cues. Different

lowercase letters within the same column denote significant differences among treatments (Tukey’s test, p\ 0.05)
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The behavior of SBPH under predation risk

The feeding time and time spent on plants did not

differ significantly among treatments (feeding: df = 6,

v2 = 3.40, p = 0.757; on plants: df = 6, v2 = 11.08,

p = 0.086). However, significant differences were

found in the time SBPH spent on non-feeding

quiescence and walking (non-feeding quiescence:

df = 6, v2 = 43.41, p\ 0.001; walking: df = 6,

v2 = 39.74, p\ 0.001). The activity indexes of 4th

and 5th instar nymphs were not affected (4th: df = 6,

v2 = 6.79, p = 0.341; 5th: df = 6, v2 = 2.50,

p = 0.868; Fig. 2a, b), but those of females and males

were significantly lower in the caged rove beetle,

chloroform extract, ethanol extract and water extract

treatments (female: df = 6, v2 = 40.32, p\ 0.001;

male: df = 6, v2 = 36.22, p\ 0.001; Fig. 2c, d).

The efficacy of rove beetle-body extracts

in controlling SBPH

The body extracts or rove beetles significantly influ-

enced the numbers (Supplementary Table S1, Fig. 3a)

and dry weights (Supplementary Table S1, Fig. 3b) of

SBPH, and the above-ground dry weight of rice plants

(Supplementary Table S1, Fig. 3c). The proportions of

Fig. 1 The weight gains of adults (mean ± SE) when SBPH

nymphs (a, b) or adults (c, d) were exposed to predation risks.

Risk treatments: RB (rove beetles), CE (chloroform extract), EE

(ethanol extract) and WE (water extract). Control treatments:

CC (chloroform control), EC (ethanol control) and WC (water

control). Different lowercase letters above the bars denote

significant differences among treatments (Tukey’s test,

p\ 0.05)
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elder nymphs and adult SBPH were also affected

(Supplementary Table S1, Fig. 3a). Rice plants treated

with rove beetles or chloroform extract had signifi-

cantly lower numbers of SBPHs, but had a higher

proportion of adults (Fig. 3a), and higher above-

ground dry weights (Fig. 3c). Surprisingly, the dry

weight of surviving SBPH in rove beetle and chloro-

form extract treatments were higher than in other

treatments (Fig. 3b).

Discussion

Exposure to predation risks greatly suppressed SBPH

development and reproduction. The poorer perfor-

mances may result from development/predation risk

tradeoffs (Rawlings 1994; Nelson 2007; Elliott et al.

2015). Increased anti-predation resource or energy

investment may detract from growth and reproduction

(Lima and Dill 1990; Werner and Anholt 1993;

McPeek et al. 2001). Exposing nymphs, but not adults,

to the risk cues reduced adult longevity, suggesting the

timing of risk exposure can affect the expression of

life-history plasticity (Wirsing et al. 2021).

Egg production number is strongly dependent upon

female body size (Kozlowski 1992). The smaller

female SBPH (less weight gain) had lower fecundity,

reflecting severe reproductive costs. The average

longevity of female SBPH in caged rove beetle

treatments was less than 17 days, but the oviposition

duration of SBPH was 17–19 days at 25 �C in the

laboratory. The shorter oviposition duration may also

cause lower fecundity. Also, prey may retain eggs

inside their ovaries until reaching safe oviposition

sites (Montserrat et al. 2007), resulting in a lower egg

output.

The reduction of activity levels in SBPH is

probably an anti-predator behavior. Staying inactive

reduces the encounter rate with predators and

increases survival success (Beleznai et al. 2015;

Hermann and Landis 2017). However, the quality

and/or quantity of food intake suffers, as inactive

SBPH only feed in a small area of rice plants

(inactive), leading to heavier developmental and

reproductive costs as discussed above.

Table 2 Development durations, fecundity and egg hatch rate of SBPH when adult SBPH were exposed to predation risks

(mean ± SE, N = total number of SBPH monitored)

Treatments Female

longevity (days)

Male

longevity (days)

Fecundity

(eggs)

Hatch rate

(%)

Caged rove beetles 17.54 ± 1.06a

(N = 13)

14.21 ± 0.59a

(N = 14)

116.08 ± 8.83b

(N = 13)

91.68 ± 0.02a

(N = 13)

Chloroform

extract

17.40 ± 0.87a

(N = 15)

14.60 ± 0.91a

(N = 15)

120.40 ± 9.92b

(N = 15)

90.24 ± 0.02a

(N = 15)

Ethanol extract 18.67 ± 1.16a

(N = 12)

14.23 ± 0.71a

(N = 13)

136.67 ± 10.91ab

(N = 12)

92.24 ± 0.02a

(N = 12)

Water

extract

17.71 ± 0.83a

(N = 14)

15.46 ± 0.81a

(N = 13)

137.84 ± 11.02ab

(N = 13)

92.39 ± 0.02a

(N = 13)

Chloroform

control

19.77 ± 1.40a

(N = 13)

15.93 ± 1.32a

(N = 14)

162.23 ± 9.70a

(N = 13)

92.03 ± 0.02a

(N = 13)

Ethanol control 18.79 ± 1.00a

(N = 14)

16.07 ± 0.68a

(N = 14)

157.07 ± 7.30a

(N = 14)

92.80 ± 0.03a

(N = 14)

Water

control

19.21 ± 1.11a

(N = 14)

15.40 ± 0.65a

(N = 14)

157.71 ± 7.62a

(N = 14)

91.93 ± 0.03a

(N = 14)

The chloroform extract, ethanol extract and water extract indicate the rove beetle body extracts in chloroform, ethanol and water,

respectively. The chloroform control, ethanol control and water control indicate the control solutions without predator cues. Different

lowercase letters within the same column denote significant differences among treatments (Tukey’s test, p\ 0.05)

123

Application of predator-associated cues to control small brown planthoppers: non-consumptive… 819



However, lower activity levels do not always lead

to reduced development and fecundity in SBPH. For

example, females SBPH were inactive in most of the

treatments, but adult lower fecundity and weight gain

were only found in caged rove beetle and chloroform

extract treatments. It is possible SBPHmay not exhibit

continued anti-predator behavior after it noticed that

the ethanol and water extracts were less risky (the risk

levels of body extracts are discussed later). It is widely

reported that prey can adjust their behavior to match

the risk levels of predator cues, and optimize their

development (Beauchamp and Ruxton 2011).

SBPH nymphs were less affected by predation

risks, possibly due to their immature sensory system

(Zacharuk and Shields 1991), and the lag phases

between predator perception and the expression of

plasticity (Weiss and Tollrian 2018; Graeve et al.

2021). The lag explanation was supported by the fact

that when nymphs (not adults) were exposed to

predation risks, their adult longevities were shortened.

Further, the weight gain of male SBPH was not

affected by predation risk, differing from that of

female SBPH. Females SBPH suffer greater physio-

logical costs than males under predation risk (Lima

and Dill 1990; Post and Götmark 2006), as they need

to stay and deposit eggs in the bare rice stem,

increasing the time window for exposure to predators.

The field release of rove beetles, or foliage sprays of

their body extracts, reduces SBPH abundance, demon-

strating the capability of rove beetles or predator cues

as a SBPH control. For the rove beetle treatment, the

reduced SBPH abundance may be largely because of

the CEs, but for body extract treatments, it may be due

to the numerous negative effects caused by NCEs, for

example, weaker immunity (Ramirez and Snyder

2009; Duffy et al. 2011), physiological stress (Werner

and Peacor 2003) or production of the less-fecund

winged forms (Wen and Ueno 2021).

Plant biomass increased both in treatments with

rove beetles and chloroform extract. The TMIEs of

rove beetles were driven by direct consumption of

victim SBPH (CEs), and by inducing chronic stress on

Fig. 2 The activity index (mean ± SE) of SBPH when 4th

(a) and 5th (b) instar nymph, and female (c) and male (d) SBPH

were exposed to predation risks. Risk treatments: RB (rove

beetles), CE (chloroform extract), EE (ethanol extract) and WE

(water extract). Control treatments: CC (chloroform control),

EC (ethanol control) and WC (water control). Different

lowercase letters above the bars denote significant differences

among treatments (Tukey’s test, p\ 0.05)
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the surviving SBPH (NCEs). Those of chloroform

extracts, however, were produced only by NCEs. We

noticed the NCEs accounted for almost 60% of the

CEs ? NCEs on the plant biomass, suggesting

stronger NCEs than CEs (Beckerman et al. 1997;

Werner and Peacor 2003). Further, plant biomass was

negatively correlated with SBPH abundance, and

positively correlated with SBPH biomass. The

reduced biomass of rice plants, due to the greater

abundance of SBPH, adversely affects SBPH weight

gain (less food), explaining why the higher SBPH

biomass unexpectedly occurs in these well-controlled

treatments.

Higher proportions of adult SBPH occurred in rove

beetle and chloroform extract treatments. For the

former treatment, the size-selective rove beetles prefer

to consume 2nd-4th instar SBPH nymphs, leaving

SBPH adults surviving in the cage. For the later

treatments, the development of SBPH accelerated in

the field cages (Supplementary Table S2). The first

occurrence of SBPH adults (F3 generation) in this

treatment was 2–3 days earlier than those in other

treatments, resulting in more adults at the end of the

experiments, probably due to the lower intraspecific

competition and predation risks.

The non-polar solvent (chloroform) extract elicited

NCEs on SBPH, and TMIEs on rice plants more

efficiently than using polar solvents (ethanol and

water). We assumed the non-polar solvent may extract

more quality or/and quantity of predator cues. Many

arthropod natural enemies have been shown to be

more responsive to compounds extracted by non-polar

solvents than polar solvents (Würf et al 2020; Peschke

and Metzler 1987; Wen et al. 2017; Lo Pinto et al.

2013).

Rove beetles usually communicate via chemical

cues (Dettner and Liepert 1994; Laurent et al. 2005).

Extracts of female cuticular hydrocarbons (Aleochara

Fig. 3 Effects of predator release and foliage sprays of predator

cues on the number of SBPH (a, mean ± SE, the white, grey and

black colors in the bar indicate the proportion of young nymphs,

elder nymphs and adults, respectively), the dry weight of SBPH

(b, mean ± SE) and the above-ground dry weight of rice plants

(c, mean ± SE) after 70 days. Risk treatments: RB (rove

beetles); CE (chloroform extract), EE (ethanol extract) and WE

(water extract). Control treatments: CC (chloroform control),

EC (ethanol control), WC (water control) and RC (without rove

beetle or foliage spray). Different lowercase letters above the

bars denote significant differences among treatments (Tukey’s

test, p\ 0.05)
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curtula (Goeze)) can induce a strong male grasping

response (Peschke and Metzler 1987), serving as a sex

pheromone. Their abdominal gland secretions func-

tion as both sex pheromones and defensive compounds

(Peschke and Metzler 1982; Peschke 1983), serving as

intraspecific communications, but can serve addition-

ally as interspecific cues (Stökl and Steiger 2017;

Hemptinne et al. 2001; Nakashima et al. 2006). Thus,

the predator cues mediating NCEs on SBPH (kair-

omone) may also have a secondly pheromonal func-

tion. Accordingly, stronger positive effects on the P.

fuscipes population and stronger CEs and NCEs on the

SBPH population, can be expected, because an

additional function as a pheromone (for example,

sex-pheromone) will benefit the development of P.

fuscipes, and will, in turn, adversely affect SBPH

population growth. Furthermore, spraying body

extracts before the introduction of SBPH, will impede

settlement of SBPH on the plants because SBPH

tended to avoid P. fuscipes body extracts (Supple-

mentary Fig. S1), resulting in stronger NCEs and

TMIEs.

In summary, studies presented here, combining

laboratory and field experiments, confirm the impact

of NCEs of rove beetles and their cues on the

development, reproduction and behavior of SBPH,

and demonstrate the effect of TMIEs on plant biomass.

These studies also suggest a novel method to control

SBPH without the application of natural enemies or

pesticides.
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