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Abstract The population density of Eucallipterus

tiliae (L.) (Hemiptera: Aphididae) required for initi-

ating oviposition in Harmonia axyridis (Pallas)

(Coleoptera: Coccinellidae) was established in Tilia

cordata Mill. (Dicotyledoneae: Tiliaceae) stands

sampled weekly throughout the vegetative seasons of

2017–2019. The number of aphids per leaf area and

oviposition in H. axyridis females were determined at

each sampling session. Seasonal changes in aphid

abundance and the presence of ovipositing females in

natural populations varied across years but in all years

H. axyridis started oviposition as soon as the aphid

density increased above 10.2 aphids per ten sweeps,

which equals 1.04 aphids per 100 cm2 leaf area. These

values exceed the threshold aphid density for starting

oviposition in Coccinella septempunctata L. (Coleop-

tera: Coccinellidae), which is 0.40 aphids per 100 cm2

leaf area. This difference is in line with H. axyridis

preference for trees, host plants with complex archi-

tecture and hard to search, and preference of C.

septempunctata for spatially simple herbs.

Keywords Coleoptera � Coccinellidae � Harmonia
axyridis � Coccinella septempunctata � Hemiptera �
Aphididae � Eucallipterus tiliae � Dicotyledonae �
Tiliaceae � Tilia cordata � Abundance

Introduction

Harmonia axyridis (Pallas) (Coleoptera: Coccinelli-

dae), the Harlequin ladybird, is a species native to east

Palearctic and Oriental regions (Kovar 2007) recently

spread into all continents except Antarctica (Cama-

cho-Cervantes et al. 2017). In its native range

(Kuznetsov 1975) as well as in recently colonized

areas (Riddick 2017), this species is an efficient

natural enemy of aphids and other insect pests (Hodek

and Honek 2009). Following the unintended introduc-

tions H. axyridis became also an unwelcome com-

petitor and predator of other members of

aphidophagous guild (Brown et al. 2015; Kenis et al.

2017; Masetti et al. 2018; Zaviezo et al. 2019).

Negative effects on communities of native aphi-

dophagous species have caused an enormous interest

in biology of H. axyridis (Roy et al. 2016). However,

despite the vast amount of research work on H. ayridis

biology, some aspects of species’ life cycle remain

little studied. These include the factors of timing of

species reproduction in the wild.

The oviposition activity of aphidophagous coc-

cinellids is limited to a period (window) limited by two
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terms: It begins when the prey abundance reaches the

level necessary for the females to start laying eggs and

ends when the females are discouraged from further

reproduction by an oviposition-deterring pheromone

(Ruzicka 1997). Under laboratory conditions, the

closing of the oviposition window has been studied

in several coccinellid species (Oliver et al. 2006),

including H. axyridis (Almohamad et al. 2010;

Verheggen et al. 2017). Even in the wild oviposition

likely terminates at the moment when the concentra-

tion of pheromone is high enough for the females to

stop laying eggs. In contrast, the conditions necessary

for the start of oviposition were studied less frequently

(e.g., Honek 1978, 1980; Wright and Laing 1980).

This is because coccinellids in the wild land soon after

aphid arrival and begin to lay eggs quickly. Conse-

quently, observing this ephemeral event is difficult.

Knowledge of prey abundance required to start laying

eggs for particular species of predators is necessary for

assessing the timeliness and efficiency of biocontrol.

Laboratory studies have revealed that coccinellid

species require a minimum amount of food to start egg

maturation and oviposition (e.g., Ibrahim 1955; Ives

1981; Ferran et al. 1984; Stewart et. al. 1991;

Agarwala et al. 2001). In the wild, the concurrent

growth of aphid abundance and intensity of ladybird

oviposition has been observed frequently (Hemptinne

et al. 1993; Agarwala and Bardhanroy 1999; Schell-

horn and Andow 2005). However, difficulties arise

when we have to determine the threshold aphid

population density necessary to start coccinellid

oviposition. This is because the population density

of both coccinellids and aphids is usually very low at

that time (Wright and Laing 1980; Honek 1980). This

difficulty especially applies to H. axyridis, which, in

its native area in Japan, starts reproduction very soon

after the beginning of the development of aphid

populations, on herbs (Takahashi and Naito 1984;

Takahashi 1987; Nakata 1995) as well as on trees

(Hironori and Katsuhiro 1997). However, even in this

case, the aphid abundance threshold has not been

determined. Determining the threshold aphid abun-

dance in Europe is even more difficult for several

reasons: H. axyridis lives mainly on trees where the

timing of the presence of aphids through the vegetative

season varies from year to year. Therefore, it is not

possible to set fixed sampling plans in advance. In lime

trees, T. cordata Mill. (Dicotyledonae, Tiliaceae), the

population peak of Eucallipterus tiliae (L.)

(Hemiptera: Aphididae) may occur from spring to

late summer. When the aphid abundance peaks in the

spring, H. axyridis oviposition starts quickly after

aphid arrival. When the aphid abundance peaks in late

summer, H. axyridis adults stay on lime trees, long

before aphid outbreak, feed on substitute prey, and

start oviposition only after aphid arrival (Honek et al.

2019c). At the beginning of H. axyridis reproduction

period, the number of batches laid is small and finding

the batches scattered in the rich foliage of linden trees

is impracticable. The onset of oviposition can be

identified by sampling and detecting the presence of

ovipositing females, which, after being caught,

quickly deposit eggs (Honek et al. 2008).

In our study, we combined this method of detecting

oviposition and the parallel determination of aphid

abundance at the site of collection. A three-year study

of the relationship between the occurrence of oviposit-

ing females and aphid abundance made it possible to

determine the threshold population density that the

aphids had to reach for H. axyridis females to start

laying eggs.

Material and Methods

Sampling

Harmonia axyridis and aphids were sampled in the

western part of the Czech Republic at nine sites

situated within a 5.0 9 1.5 km area (centred at

50.0860 �N, 14.2954 �E), at an altitude of

290–340 m. The sites selected as clusters of 5–25

lime trees (Tilia cordata) that were at least 200 m

apart from each other. The beetles were swept at

particular sites from the lower canopy, from heights up

to 3 m (measured from the ground). Sampling was

performed by the same person (AH) using a standard

sweep net (35 cm in diameter, 140 cm handle) on

sunny and calm days between 08h00 and 18h00. Each

sampling session lasted 15–30 min depending on the

number of trees. Sampling at each site was performed

in 10-day (2017) or weekly (2018–2019) intervals,

starting from foliage expansion in the spring until leaf

shedding in the autumn. In total, there were 359

sampling sessions (defined as samplings at individ-

ual), with a mean of 81.0 ± 1.4 sweeps per session

(range 40–190 sweeps; the number of sweeps taken at

particular sites varied depending on the number of
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trees). Harmonia axyridis adults were sexed using the

criteria of McCornack et al. (2007). Males were

released, and females were collected for checking for

oviposition. E. tiliae (L.) was the only aphid species

found during the study. All the aphids swept during a

sampling session were counted, and the number of

aphids caught per unit effort (ten sweeps) was

calculated. Pilot experiments revealed that aphid

numbers were estimated with * 10% precision

(Honek et al. 2018).

Calibrating aphid abundance

The relationship between aphid numbers in the swept

material and the abundance of aphids (number of

aphids per unit leaf area) was established in a short-

term sampling study performed on the 3 and 4

September 2019, at a time when the aphid abundance

at individual sites was very diverse. Aphids (E. tiliae)

were sampled, at 14 sites, the lime tree groups growing

within the above-mentioned area where H. axyridis

was sampled and the recorder (AH) and method of

sweeping were the same as above. At each site, 5 9 10

sweeps were made, and aphids were precisely counted

in each of the ten sweep samples. Aphids were then

counted on 250 randomly selected leaves, and 150

randomly selected leaves were cut and brought to the

laboratory where their area was measured using a Li-

3000 Portable Area Meter (Li-COR Biosciences,

Lincoln, Nebraska, USA). Using these data, the aphid

population density (number of aphids per 100 cm2

area) was calculated. The regression model of the ln

aphid number per 100 cm2 leaf area vs. the ln aphid

number per 10 sweeps was calculated (Fig. 1) and

used to determine the threshold aphid population

density necessary to start H. axyridis oviposition.

Detecting oviposition

At each sampling session, H. axyridis females were

put singly into Eppendorf tubes (55 mm long, 16 mm

diameter) with a perforated lid and an inserted piece of

filter paper facilitating oviposition and climbing. The

numbers of samples of females collected at particular

sampling sessions were 80 in 2017, 92 in 2018 and 80

in 2019. Females were not caught in each sampling

session. Therefore, the number of samples examined

was lower than the total number of sampling sessions.

The females were immediately transferred into a room

with a natural photoperiod and maintained at a

constant temperature of 25 �C. Due to variations in

H. axyridis abundance and sex ratios, the sample size

(the number of females per sample) varied largely

(mean size 6.00 ± 0.36 females per sample; range,

1–26 females). The females were held in Eppendorf

tubes for 48 h, and during this period the presence of

batches and the number of deposited eggs were

recorded in 2–6 h intervals. Most batches ([ 90%)

were deposited within 12 h after capture.

Data analysis

The seasonal variations in the presence/absence of H.

axyridis oviposition and aphid abundance were exam-

ined separately in each vegetative season of

2017–2019. The presence of ovipositing females in a

sample was classified alternatively as absent (no

ovipositing female, class 0) or present (C 1 oviposit-

ing females, class 1). Aphid abundance, D, in each

sample (number of aphids per ten sweeps) was

calculated as D = (10 N)/S, where N is the total

number of aphids caught per sampling session and S is

the number of sweeps made during this sampling

session. The seasonal change in the density of aphids

in each season was modelled using a semi-parametric

regression within the generalised additive models

(GAM) framework from the mgcv package in the R
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Fig. 1 Relationship between the log-transformed number of

aphids per ten sweeps and the log-transformed number of aphids

per 100 cm2. The estimated linear regression model (ln(y) =

- 3.498 ? 1.5249ln(x)) is shown
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environment (Wood 2006) because the relationship

was strongly non-linear. Thin-plate spline of the time

predictor and Gaussian distribution of errors were

used. To meet the assumption of homoscedasticity and

normality of errors logarithmic transformations were

applied to the densities prior to analysis.

The threshold aphid density for starting oviposition

was calculated using the data on H. axyridis oviposi-

tion and aphid abundance established in samples from

all sites and years. Since the frequency of ovipositing

females at the start of oviposition period could have

been low, the calculations were done using the data

from samples where C 4 females of H. axyridis were

found. Samples consisting of 1–3 females were

considered only if at least one female was ovipositing.

In the calculations, the segments of the data from the

sampling sessions immediately preceding and imme-

diately following the start of oviposition (the first date

in the season on which a female was found to oviposit)

were included. For each year and site, three samples

from class 0 from the period immediately preceding

the start of oviposition and B 3 of the earliest samples

from class 1 following the start of oviposition were

included (i.e., a maximum of six consecutive samples,

or less when the number of class 1 samples was

smaller). When no oviposition was detected in the

given year and site, three consecutive samples from

class 0 collected at the period when the aphid

abundance was highest were included in the analysis.

The outlier data caused by the accidental arrival of

ovipositing females from neighbouring trees to lime

trees with zero aphid abundance were excluded from

analysis. The relationship between the presence/

absence of H. axyridis oviposition and aphid abun-

dance was studied using logistic regression within the

generalised linear model framework (Pekár and

Brabec 2016) with a binomial error structure and a

logit link function. All analyses were performed in the

R environment (R Core Team 2017).

In an earlier work (Honek 1980) we determined

threshold aphid population density for starting ovipo-

sition in C. septempunctata L. (Coleoptera: Coccinel-

lidae). This data was used to compare the difference

between the threshold aphid density (set as corre-

sponding to 50% presence of reproductive activity

among the predators) necessary for starting oviposi-

tion in H. axyridis and the threshold aphid density

necessary for starting oviposition of C.

septempunctata. The difference was tested using

Dixon’s Q test for outlier values (Anonymous 2019).

Results

Oviposition activity

Seasonal distribution of H. axyridis oviposition and

aphid abundance varied among sites and years (Fig. 2).

In 2017, there was an overall low population density of

aphids. The density had a significantly non-linear

unimodal trend (GAM, effective degrees of freedom

(EDF) = 7.1, P\ 0.0001) with a peak early in the

vegetative season (Fig. 2a). In 2018, there was an

overall high population density with a significantly

non-linear unimodal trend (GAM, EDF = 7.3,

P\ 0.0001) and a wide peak in the mid-season

(Fig. 2b). In 2019, the aphid population density was

lower with a significantly non-linear unimodal trend

(GAM, EDF = 3.7, P = 0.004) and a peak that

occurred very late in the season (Fig. 2c). Correspond-

ingly, the timing of H. axyridis oviposition activity

also differed. In 2017, oviposition was recorded in

spring and only at some sites, and no oviposition was

detected for the rest of the vegetative season (Fig. 2a).

Altogether it was recorded in seven samplings. In 2018

oviposition occurred from early to mid season (on

33 samplings) (Fig. 2b). In 2019, H. axyridis ovipo-

sition occurred only in 13 samplings, from early to late

season (Fig. 2c). Oviposition always began with

occurrence of aphids and terminated soon after the

peak of aphid abundance.

Threshold aphid abundance necessary for H.

axyridis oviposition.

The transition from non-oviposition (presence of

females not laying eggs) to oviposition (presence of

active ovipositing females in the population) was

associated with a significant increase in the aphid

population density (GLM, v2
1 = 15.3, P\ 0.0001,

Fig. 3). A 50% probability of the switch from non-

oviposition to oviposition was estimated to be at 10.2

(CI95 = 8.6, 11.8) aphids per ten sweeps. This abun-

dance corresponded to an aphid population density of

1.04 aphids per 100 cm2 leaf area (Fig. 1), which is the

threshold aphid abundance required to achieve H.

axyridis oviposition.
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Discussion

The aphid abundance threshold necessary for the onset

of oviposition in aphidophagous coccinellids is an

essential mechanism in their breeding cycle. Estab-

lishing this threshold under natural conditions is

methodologically difficult. Therefore, these results

are still scarce, and obtaining new results is of great

importance.

The threshold aphid density necessary to start H.

axyridis oviposition (set as corresponding to 50%

presence of reproductive activity among the predators)

found in this study is low: 10.2 aphids per ten sweeps

(i.e., 1.04 aphids per 100 cm2 leaf area). Nevertheless,

these values are still higher than those observed earlier

for C. septempunctata (Honek 1980). Using average

data from four stands of beans (V. faba L.), sugar beets

(B. vulgaris L., two stands), cereals (T. aestivum L., H.
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vulgare L., six stands) and alfalfa (M. sativa L., six

stands) collected in 1978 and 1979, the aphid popu-

lation density (leaf area per aphid) at the time of

ovariole maturation was calculated at

240.0 ± 21.4 cm2 per aphid, which equals

0.43 ± 0.033 aphids per 100 cm2 leaf area. The

threshold for C. septempunctata was significantly

lower (Dixon’s Q test: n = 7, Q = 0.706, P\ 0.01)

than the threshold established in this study for H.

axyridis.

There are two possible causes of the difference. The

first is that we used a different method for establishing

the ability to lay eggs, i.e., the dissection of C.

septempunctata females and actual oviposition under

standardised conditions inH. axyridis. The presence of

mature eggs in ovaries does not automatically mean

that they will be deposited in natural conditions. Some

H. axyridis females may not oviposit within two days

after capture even when they have mature eggs.

Nevertheless, we believe that the risk of this type of

bias in our study is low because we established the

presence/absence of oviposition in a sample of H.

axyridis females and, in each of the samples used to

determine the threshold aphid abundance, there were

C 4 females. The second reason for the difference

between the requirements of both species, in our

opinion, is that there is a real difference between the

aphid abundance threshold in both species. Coccinella

septempunctata may actually start ovipositing at a

lower aphid population density than H. axyridis. We

assume that this difference is due to the different

ecological requirements of both species. While inva-

sive non-native populations of H. axyridis are typical

inhabitants of trees in Europe (Roy et al. 2016), C.

septempunctata is a typical inhabitant of herbaceous

stands and crops (Honek et al. 2019b). Trees and herbs

differ in their whole plant size and structure (spatial

complexity of branching, richness and area of foliage),

which is definitely greater in trees than in herbs and

crops (Skuhrovec et al. 2016). Since body size and

food consumption are nearly identical in both species

(Honek et al. 2017), C. septempunctata colonising

spatially simple herb and crop host plants may start

ovipositing at a lower population density than H.

axyridis populating spatially complicated tree host

plants. This difference might thus reflect that search-

ing and finding prey is easier in herbs and crops than in

trees.

Between both coccinellid species, a difference in

the timing of oviposition under natural conditions was

already found. In a particular stand, where both

species developed together and the aphid population

density gradually increased, C. septempunctata started

oviposition earlier, that is, at a lower aphid population

density, than H. axyridis (Hironori and Katsuhiro

1997; Honek et al. 2019a).

Comparison with the results of other authors is

difficult due to differences in the methods used, aphid

species and host plants included in the studies. Wright

and Laing (1980) established for C. maculata

(DeGeer) (Coleoptera: Coccinellidae) and H. tredec-

impunctata (L.) (Coleoptera: Coccinellidae) that the

threshold value is likely B 1 aphid per young maize

plant (approximately 10 cm high, leaf area not estab-

lished), which is also a similar, rather low value as in

our study. In other studies, a rapid onset of coccinellid

oviposition was found as soon as the number of aphids

began to increase rapidly (Hemptinne et al. 1993;

Agarwala and Bardhanroy 1999; Schellhorn and

Andow 2005). However, an estimate of the aphid

threshold abundance cannot be made using data from

these studies.

The results likely revealed variability among coc-

cinellid species in the threshold density of the aphid

population necessary for starting reproduction. This

variability is an important phenomenon since it affects

the timing of reproduction, which is vital for the life

histories of the species (e.g., ability to compete with

other aphidophagans, possibility to complete devel-

opment before the onset of unfavourable conditions,

etc.). The study of this variability should continue,

taking into account other coccinellid species and all

factors that might affect threshold prey densities

necessary for reproduction.
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