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Abstract Grasses are amongst the most abundant

and environmentally damaging invasive weeds world-

wide. Biological control is frequently employed as a

sustainable and cost-effective management strategy

for many weeds. However, grasses have not been

actively pursued as targets for classical weed biolog-

ical control due to a perceived lack of sufficiently

specialised and damaging natural enemies to use as

biological control agents. There are also concerns that

the risk posed to economically important crop/pasture

species and closely-related native species is too great

to consider implementing biological control for inva-

sive grasses. In this paper, we review the literature and

demonstrate that grasses can possess suitably host-

specific and damaging natural enemies to warrant

consideration as potential biological control agents.

The risk of grass biological control is no greater than

for other weedy taxa if practitioners follow appropri-

ately rigorous risk assessments protocols.
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Introduction

Grasses (Poaceae) are one of the most successful

angiosperm families worldwide, consisting of

* 11,000 species (Linder et al. 2017). They occupy

a greater land area than any other vegetation type,

covering one-third of the globe and contribute approx-

imately 33% of global primary productivity (Tscharn-

tke and Greiler 1995). Grasses have been deliberately

translocated into many non-native regions across the

globe (Cook and Dias 2006), making some of them

amongst the most widespread and abundant weeds of

natural and agricultural habitats worldwide (Daehler

1998; Pyšek et al. 2012). This is particularly

notable for grasses of African origin that were

introduced into the Americas and Australia, amongst

other countries, in the 1900’s, to improve the quality of

pastures and forage for grazing livestock (Williams

and Baruch 2000; Cook and Dias 2006; van Klinken

and Friedel 2017). Approximately 2250 grass species

(* 22% of the world’s grass species pool) have been

introduced into Australia (Cook and Dias 2006; van

Klinken and Friedel 2017). Many grasses were planted

widely (providing ample propagule pressure), and in

many instances, multiple agronomic lines were intro-

duced during this period (increasing intra-specific

genetic diversity) (Firn 2009), both of which are strong

predictors of invasion success (Hui and Richardson

2017).

The Poaceae (4807 species) is second to only the

Asteraceae (5094 species) in terms of the total number

of weedy species per plant family worldwide (Randall

2017), including three of the world’s top 100 invasive

species, namely: Arundo donax L. (giant reed),

Imperata cylindrica (P.) Beauv. (cogongrass) and

Spartina anglica C.E. Hubbard (smooth cordgrass)

(Lowe et al. 2000). Grasses are not only over-

represented on inventories of invasive alien plants

(Daehler 1998; Pyšek et al. 2012), but have a

disproportionate impact on ecological functionality,

biogeochemical cycles and human-kind (Linder et al.

2017). Indeed, grass invasions are associated with

significant negative environmental and economic

consequences. The negative impacts associated with

invasive grasses have been thoroughly reviewed (e.g.

D’Antonio and Vitousek 1992; Williams and Baruch

2000; Godfree et al. 2017), and include, but are not

limited to: reducing native biodiversity, threatening

native plant and wildlife populations, reducing grazing

and agricultural productivity, altering fire regimes and

disrupting nutrient cycling and other ecological pro-

cesses (see Fig. 1 for examples).

High-impact weeds, such as many invasive grasses,

are traditionally the focus of management pro-

grammes, being targeted for active control interven-

tions, usually in the form of mechanical, chemical and/

or bioherbicidal control (Lake and Minteer 2018).

While these control methods can be effective, they

require follow-up applications, and thus, can be

exorbitantly expensive (Quirion et al. 2018). More-

over, the mechanical and/or chemical control of many

grasses is not feasible over the spatial scales required

for their effective management (Grice et al. 2012).

Due to the requirement of repeated herbicide-applica-

tions to provide control, many invasive grasses have

evolved herbicide-resistance, rendering this control

method ineffective (Powles and Yu 2010). Concerns

over the non-target impacts of herbicidal applications

and mechanical removal on native species also limits

their use (Crone et al. 2009; Ray et al. 2018).

Classical weed biological control (hereafter ‘bio-

logical control’) is a cost-effective and sustainable

management option for the control of many invasive

plants (McFadyen 1998; Zachariades et al. 2017). To

date, 468 biological control agent species have been

intentionally released against a diverse suite of

invasive plants and across an array of environmental

conditions, consisting of 175 weed entities from 48

different families, the majority of which belong to the

Asteraceae (44 species), Cactaceae (25 species) and

the Fabaceae (23 species) (Winston et al. 2014;

Schwarzländer et al. 2018). Globally, 115 target weed

species (65.7% of all weeds targeted) are under some

degree of control through the action of biological

control agents (Schwarzländer et al. 2018).

Historically, very few invasive grasses have been

targeted for biological control (Pemberton 1996;

Schwarzländer et al. 2018). This may stem from the

perception that grasses support an unspecialised and

insufficiently damaging natural enemy community to

exploit for potential biological control agents (Gill and

Blacklow 1984; Evans 1991; Pemberton 2002), while

the risk of non-target damage posed to economically

valuable crops and/or native biodiversity, by intro-

ducing grass biological control agents, is considered

too great to warrant implementing biological control

(Wapshere 1990). Surveys for natural enemies per-

formed on I. cylindrica and Sorghum halepense (L.)
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Pers. (Johnsongrass) in the 1970’s and 1980’s, which

did not yield any suitable agents, reinforced the

perception of grasses as poor targets for biological

control (see Witt and McConnachie 2004).

Despite the largely negative stance on grass

biological control in the literature, several authors

have suggested that the aforementioned arguments

should not preclude the use of biological control for

invasive grasses (Witt and McConnachie 2004; Over-

holt et al. 2016). To date, 23 invasive grasses

worldwide have been investigated with regards to

the potential for biological control using herbivorous

arthropods and fungal pathogens (Table 1). Only A.

donax (three agents) and Spartina alterniflora Loisel.

(smooth cordgrass) (one agent) have had any biolog-

ical control agents released against them (Table 1).

Several of the remaining grasses, such as Andropogon

gayanus Kunth. (gamba grass) and Eragrostis curvula

(Schrad.) Nees. (African lovegrass), have not yet been

subjected to a full-scale biological control programme,

although preliminary surveys for potential agents are

underway (S. Raghu and A. McConnachie pers.

comm.).

Given the success of biological control for the

management of other plant-life forms (Schwarzländer

et al. 2018), and the relative unsuitability of traditional

weed control methods for invasive grass management

(e.g. mechanical and chemical control), practitioners

may be missing an opportunity to control invasive

grasses by avoiding biological control. A recent

publication by Casagrande et al. (2018) argued that

biological control of invasive grasses, and particularly

Phragmites australis (Cav.) Trin. ex Steudel (common

reed), is possible and that grass biological control

should be utilised more often.

In this paper, we assess the suitability of biological

control as a management option for invasive grasses.

To do this, we asked: (1) are there sufficiently

specialised, and (2) damaging natural enemies asso-

ciated with grasses, to warrant pursuing biological

control? Additionally, (3) are the risks of introducing

biological control agents any greater for grasses than

other weedy taxa? We then discuss which grasses may

be suitable targets for biological control, and which

natural enemies are most likely to satisfy the speci-

ficity and damage requirements imposed on candidate

control agents.

We reviewed the literature by searching Google

Scholar and CABI abstracts for examples of natural

enemies associated with grasses that were host-

specific and/or able to reduce host plant fitness (e.g.

growth rate, reproductive output, density). We used

various combinations of general keywords, such as

‘grass’ AND ‘natural enemy’, ‘herbivore’, ‘mite’,

‘fungal pathogen’; AND ‘host specific’, ‘host

Fig. 1 Impacts associated with alien grass invasions, including

examples from; 1Pennisetum setaceum (D’Urso et al. 2017);
2Brachiaria mutica (Ferdinands et al. 2005); 3Agropyron

cristatum (Heidinga and Wilson 2002); 4Arundo donax (Racelis

et al. 2012; Moran et al. 2017); 5Phragmites australis (Benoit

and Askins 1999); 6Bromus inermis (Williams and Crone 2007);
7Cenchrus ciliaris (Edwards et al. 2019); 8Spartina alterniflora

(Ayres et al. 2004); 9Andropogan gayanus (Setterfield et al.

2010); 10Melinis minutiflora (D’Antonio and Vitousek 1992);
11Schizachyrium condensatu (D’Antonio and Vitousek 1992);
12Bromus tectorum (D’Antonio and Vitousek 1992);
13Eragrostis curvula (Firn 2009); 14Sporobolus spp. (Witt and

McConnachie 2004)
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Table 1 Summary and status of current and past biological control projects (listed alphabetically) considered for invasive grasses

Target weed (common

name)

Country Candidate agent Key references

Identity Status Controla

Andropogon gayanus

Kunth. (gamba grass)

Australia – Preliminary surveys

underway

– S. Raghu (pers.

comm.)

Arundo donax L. (giant

reed)

USA Multiple potential candidates – – Tracy and DeLoach

(1998)

Tetramesa romana Walker

(Hymenoptera:

Eurytomidae)

Already present; new

genotypes of wasp

from origin of invasive

plant genotypes were

released

Yes Goolsby and Moran

(2009); Goolsby

et al. (2016);

Marshall et al.

(2018)

Rhizaspidiotus donacis

(Leonardi) (Hemiptera:

Diaspididae)

Established, 2011 ? Goolsby et al.

(2009a)

Lasioptera donacis Coutin

(Diptera: Cecidomyiidae)

Released, 2017 ? Goolsby et al. (2017)

South

Africa

Tetramesa romana Walker

(Hymenoptera:

Eurytomidae)

Already present ? Angela Bownes

(pers. comm.)

Rhizaspidiotus donacis

(Leonardi) (Hemiptera:

Diaspididae)

Under evaluation – Angela Bownes

(pers. comm.)

Avena fatua L. (wild oats) Australia Puccina coronata f.sp.

avenae Corda (Uredinales)

Additional testing

required

– Johnston et al. (2000)

Cortaderia jubata (Lem.)

Stapf (Purple Pampas

grass)

New

Zealand

Ustilago quitensis Lagerh.

(Ustilaginales)

Under evaluation – Hayes (2015)

Saccharosydne subandina

Remes Lenicov and Rossi

(Hemiptera: Delphacidae)

Under evaluation – Hayes (2015)

Cortaderia selloana

(Schult. & Schult.f.)

Asch. & Graebn.

(Pampas grass)

New

Zealand

Ustilago quitensis Lagerh.

(Ustilaginales)

Under evaluation – Hayes (2015)

Saccharosydne subandina

Remes Lenicov and Rossi

(Hemiptera: Delphacidae)

Under evaluation – Hayes (2015)

Digitaria abyssinica (A.

Rich.) Stapf. (blue

couch grass)

East

Africa

Multiple potential candidates – – Sileshi (1997)

Echinochloa crus-galli

(L.) Beauv (barnyard

grass)

Asia Multiple potential candidates – – Tosiah et al. (2009)

Emmalocera leucotaeniella

(Ragonot) (Lepidoptera:

Pyralidae)

Additional testing

required

Tosiah et al. (2009)

Eragrostis curvula

(Schrad.) Nees. (African

lovegrass)

Australia – Preliminary surveys

underway

A. McConnachie

(pers. comm.)

Hymenachne

amplexicaulis (Rudge)

Nees (West Indian

marsh grass)

Australia Ischnodemus variegatus

(Signoret) (Hemiptera:

Blissidae)

Pending approval – Diaz et al. (2009)
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Table 1 continued

Target weed (common

name)

Country Candidate agent Key references

Identity Status Controla

Imperata cylindrica (P.)

Beauv. (cogongrass)

USA Multiple potential candidates – – van Loan et al.

(2002); Overholt

et al. (2016)

Acrapex azumai Sugi

(Lepidoptera: Noctuidae)

Additional testing

required

Takasu et al. (2014)

Orseolia javanica Kieffer &

van Leeuwen-Reijinvaan

(Diptera: Cecidomyiidae)

Additional testing

required

– Overholt et al.

(2016)

No suitable agents found – – Simmonds (1972)

Megathyrsus maximus

(= Panicum maximum)

(Jacq.) B. K. Simon &

S. W. L. Jacobs

(Guineagrass)

USA Multiple potential candidates Additional testing

required

– Mercadier et al.

(2009); M.

Cristofaro and J.A.

Goolsby (pers.

comm)

Microstegium vimineum

(Trin.) A. Camus

(Japanese stiltgrass)

USA – Too early to evaluate Nestory (2016)

Nassella neesiana (Trin.

& Rupr.) Barkworth

(Chilean needlegrass)

Australia Multiple potential candidates – – Briese and Evans

(1998)

Uromyces pencanus Arth. &

Holw. (Uredinales)

Additional testing

required

– Anderson et al.

(2017)

New

Zealand

Uromyces pencanus Arth. &

Holw. (Uredinales)

Approved (pending

export permits)

– Anderson et al.

(2017)

South

Africa

No suitable agents found – – Wells (1977)

Nassella trichotoma

(Nees) Hack. ex

Arechav. (serrated

tussock)

Australia Multiple potential candidates – – Briese and Evans

(1998)

No suitable agents found – – Anderson et al.

(2017)

South

Africa

No suitable agents found – – Wells (1977)

Panicum repens L.

(torpedograss)

USA Steneotarsonemus

(= Parasteneotarsonemus)

panici (Mohanasundaram)

(Acari: Tarsonemidae)

Additional testing

required

– Cuda et al. (2007)

Phragmites australis

(Cav.) Trin. ex Steudel

(common reed)

USA Multiple potential candidates – – Tewksbury et al.

(2002)

Archanara geminipuncta

(Haworth) (Lepidoptera:

Noctuidae)

Under evaluation – Blossey et al. (2018);

Kiviat et al. (2019)

Archanara neurica (Hübner)

(Lepidoptera: Noctuidae)

Under evaluation – Blossey et al. (2018);

Kiviat et al. (2019)

Platycephala platifrons

(Fabricius) (Diptera:

Chloropidae)

Shelved—’second tier

priority’

– Häfliger et al. (2005)
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Table 1 continued

Target weed (common

name)

Country Candidate agent Key references

Identity Status Controla

Rottboellia

cochinchinensis (Lour.)

W.D. Clayton

(itchgrass)

New

World

Sporisorium ophiuri (P.

Henn.) Vanky

(Ustilaginales)

Additional testing

required

– Ellison and Evans

(1995)

Sorghum halepense (L.)

Pers. (Johnsongrass)

USA No suitable agents found – – Domenichini et al.

(1989)

Multiple potential candidates – – Charudattan and

deLoach (1988)

Bipolaris spp. (Pleosporales) Additional testing

required

– Winder and van

Dyke (1990)

Sporisorium cruentum (J.G.

Kuhn) Vanky

Additional testing

required

– Gassó et al. (2017)

Spartina alterniflora

Loisel. (smooth

cordgrass)

USA Prokelisia marginata (van

Duzee) (Hemiptera:

Delphacidae)

Established ? Grevstad et al.

(2003)

Spartina anglica C.

E. Hubbard (English

cordgrass)

USA Prokelisia marginata (van

Duzee) (Hemiptera:

Delphacidae)

Additional testing

required

– Wu et al. (1999)

Sporobolus natalensis

(Steud.) Dur. & Schinz

(giant rat’s tail grass)

Australia Tetramesa sp. 1

(Hymenoptera:

Eurytomidae)

Under evaluation – Witt and

McConnachie

(2004); G.F. Sutton

(unpublished data)

Tetramesa sp. 2

(Hymenoptera:

Eurytomidae)

Under evaluation – G.F. Sutton

(unpublished data)

prob. Bruchophagus sp.

(Hymenoptera:

Eurytomidae)

Under evaluation – G.F. Sutton

(unpublished data)

Ustilago sporoboli-indici L.

Ling (Ustilaginales)

Rejected; already present ? Witt and

McConnachie

(2004); Yobo et al.

(2009); Vitelli

et al. (2017)

Sporobolus pyramidalis P.

Beauv. (giant rat’s tail

grass)

Australia Tetramesa sp. 1

(Hymenoptera:

Eurytomidae)

Under evaluation – Witt and

McConnachie

(2004); G.F. Sutton

(unpublished data)

Tetramesa sp. 2

(Hymenoptera:

Eurytomidae)

Under evaluation – G.F. Sutton

(unpublished data)

prob. Bruchophagus sp.

(Hymenoptera:

Eurytomidae)

Under evaluation – G.F. Sutton

(unpublished data)

Ustilago sporoboli-indici L.

Ling (Ustilaginales)

Rejected; already present ? Witt and

McConnachie

(2004); Yobo et al.

(2009); Vitelli

et al. (2017)

123

610 G. F. Sutton et al.



specificity’, ‘monophagous’, ‘host range’, to search

for relevant literature. We also used all the available

literature on grass biological control projects to date

that the authors have acquired over the years to extract

examples directly from grasses that are either current

or prior targets for biological control. Moreover, we

searched for grey literature by using the above

keyword combinations in a general Google search.

We then manually checked the references of all

seemingly relevant papers for additional material, and

checked articles that cited each relevant paper for

additional examples using the ‘cited by’ function in

Google Scholar.

Grasses as suitable targets for biological control

Specificity of natural enemies

Most grasses lack the diversity and quantity of

secondary chemical compounds (i.e. feeding deter-

rents, toxins, stimulants) typically found in dicotyle-

dons, which are considered the primary drivers of

herbivore specialisation (Ehrlich and Raven 1964;

McNaughton et al. 1985; Moore and Johnson 2017;

but see Kellogg 2015). Fewer than 0.2% of grasses

produce alkaloids, while many other important sec-

ondary chemicals are almost entirely absent from

grasses (McNaughton et al. 1985). Hence, grasses are

expected to harbour relatively unspecialised herbivore

assemblages (Gill and Blacklow 1984; Wapshere

1990; Pemberton 2002). Biological control pro-

grammes require that at least one natural enemy

demonstrates a sufficiently narrow host range to not

pose any significant risk to economic crops and/or

native biodiversity in the region of intended control. If

grass-associated natural enemy assemblages are

unspecialised, then it is expected that very few grasses

may possess natural enemies that could serve as

biological control agents.

Several invasive grass species that have been

considered as possible targets for biological control

possess at least one phytophagous insect, mite and/or

fungal pathogen that could, or already has been,

screened as a potential biological control agent

(Table 1). Indeed, all 20 of the 23 invasive grasses

listed in Table 1 that have been thoroughly surveyed

for natural enemies in their native range have yielded

candidate agents (i.e. not including A. gayanus, E.

curvula and Microstegium vimineum (Trin.) A. Camus

(Japanese stiltgrass); because only preliminary sur-

veys for potential agents have been performed). The

finding of candidate biological control agents on I.

cylindrica and S. halepense is noteworthy as the lack

of suitably host-specific herbivores recorded on these

species during surveys in the early 1970’s and 1980’s

was a significant contributing factor to the perception

Table 1 continued

Target weed (common

name)

Country Candidate agent Key references

Identity Status Controla

Taeniatherum caput-

medusae (L.) Nevski

(medusahead)

USA Multiple potential candidates Additional testing

required

– Widmer and Sforza

(2004)

Fusarium arthrosporioides

Sherb. (Hypocreales)

Rejected – Widmer and Sforza

(2004)

Aculodes altamurgiensis de

Lillo & Vidović (Acari:

Eriophyidae)

Under evaluation – De Lillo et al. (2018)

Eurytoma sp. (Hymenoptera:

Eurytomidae)

Under evaluation – M. Cristofaro (pers.

comm)

aControl: Yes—effective biological control, ?—Too early to evaluate or unknown
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that grasses are poor targets for biological control (see

Witt and McConnachie 2004).

The finding of potentially host-specific natural

enemies on grasses is in contrast to the prevailing

opinion in the literature. This contradiction may arise

due to the overemphasized role secondary chemicals

play in promoting insect specialisation (Bernays and

Graham 1988). Numerous alternative mechanisms

have been proposed to explain insect host-range

patterns, most notably: the acquisition of enemy-free

space (Bernays and Graham 1988), host-plant life

histories (Strong et al. 1984), and structural defences

(e.g. trichomes and silica deposits) (Vicari and Bazely

1993). Structural defences are believed to play a

significant role in promoting diversification and spe-

cialisation of grass-associated herbivores (McNaugh-

ton et al. 1985; Vicari and Bazely 1993; Moore and

Johnson 2017).

Of the 171 herbivores found on P. australis, 66

(38.6%) are considered to be monophagous, while

preliminary field surveys and ongoing host-specificity

assessments, indicate that at least nine species show

promise as biological control agents (Tewksbury et al.

2002; Häfliger et al. 2005, 2006; Blossey et al. 2018;

Canavan et al. 2018). Three herbivores, the Arundo

wasp Tetramesa romana Walker (Hymenoptera:

Eurytomidae), the Arundo scale Rhizaspidiotus dona-

cis (Leonardi) (Homoptera: Diaspididae), and the

Arundo leaf sheath-miner Lasioptera donacis Coutin

& Faivre-Amiot (Diptera: Cecidomyiidae) (Goolsby

and Moran 2009; Goolsby et al. 2009a; 2017), have

been identified as suitably host-specific and have been

released as biological control agents on A. donax in the

USA.

Surveys on several other important invasive grasses

have yielded candidate biological control agents,

albeit not yet approved for release, including herbiv-

orous insects on Cortaderia jubata (Lem.) Stapf

(Purple Pampas grass), Cortaderia selloana (Schult.

& Schult.f.) Asch. & Graebn.,Digitaria abyssinica (A.

Rich.) Stapf. (blue couch grass), Echinochloa crus-

galli (L.) Beauv (barnyard grass), Hymenachne

amplexicaulis (Rudge) Nees (West Indian marsh

grass), I. cylindrica, Megathyrsus maximus (= Pan-

icum maximum) (Jacq.) B.K. Simon & S.W.L. Jacobs

(Guineagrass), S. alterniflora, S. anglica, Sporobolus

pyramidalis P. Beauv. (giant rat’s tail grass), Sporobo-

lus natalensis (Steud.) Dur. & Schinz (giant rat’s tail

grass) and Taeniatherum caput-medusae (L.) Nevski

(medusahead). Moreover, several candidate biological

control agents are phytophagous mites on Panicum

repens L. (Torpedograss) and T. caput-medusae, and

fungal pathogens on Avena fatua L. (wild oats), C.

jubata, C. selloana, E. crus-galli, Nassella trichotoma

(Nees) Hack. ex Arechav. (serrated tussock), Nassella

neesiana (Trin. & Rupr.) Barkworth (Chilean needle-

grass), Rottboellia cochinchinensis (Lour.) W.D.

Clayton (itchgrass) and S. halepense (see Table 1

and references therein).

Several other grass species that have not been

considered as biological control targets, but have been

surveyed for natural enemies in their native range,

possess an assemblage of phytophagous insects, mites

and/or fungal pathogens, containing at least one

potentially host-specific natural enemy. For example,

Aristida longiseta Steud. (Fendler threeawn), Calam-

agrostis epigejos (L.) Roth (wood small-reed),

Ehrharta calycina Sm. (perennial veldtgrass), Leymus

(= Elymus) cinereus (Scribn. & Merr.) A. Löve (Great

Basin wildrye), Sporobolus cryptandrus (Torr.) A.

Gray (sand dropseed), Sitanion hystrix (Nutt.) J.G.

(Smith bottlebrush squirreltail) and Hesperostipa

(= Stipa) comata (Trin. and Rupr.) Barkworth (needle

and thread) are all attacked by at least one natural

enemy that could be tested as potential biological

control agents (Spears and Barr 1985; Youtie et al.

1987; Dubbert et al. 1998; Piątek et al. 2015).

Damaging natural enemies

Only candidate agents that demonstrate the capacity to

regulate host-plant populations should be considered

for biological control (McEvoy and Coombs 1999;

McClay and Balciunas 2005). Releasing control

agents that do not inflict sufficient damage to nega-

tively impact weed populations represents a signifi-

cant waste of resources (McEvoy and Coombs 1999),

and may increase the risk of indirect non-target

impacts occurring by subsidising and disrupting native

food webs (e.g. Pearson and Callaway 2003).

However, grasses are believed to be relatively

tolerant to herbivory since they have evolved in the

presence of grazing by large mammals and harvesting

(Tscharntke and Greiler 1995). This tolerance is

ascribed to the rapid regrowth potential of grasses

from basal meristems and underground storage

organs, and their extensive tillering ability (Cough-

enour 1985). Herbivores targeting above-ground
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biomass, therefore, may not be able to cause enough

damage to regulate grass populations.

Grasses also typically have a low essential nutrient

content (Bernays and Barbehenn 1987), and the

presence and abundance of such nutrients are typically

positively correlated with insect performance and host

choice (Scheirs et al. 2003). Moreover, grasses

produce an array of structural defences that may deter

herbivores and/or reduce palatability and digestibility

(Bernays and Barbehenn 1987; Vicari and Bazely

1993), with silica being a particularly important grass

anti-herbivore defence (McNaughton et al. 1985).

However, there are a number of host-specific pests

that cause serious economic damage to grasses. For

example, Eragrostis tef (Zucc.) Trotter., an introduced

crop species in North America, suffered yield losses of

over 70% due to the action of the stem-boring wasp

Eurytomocharis eragrostidis (Howard) (Hy-

menoptera: Eurytomidae) (McDaniel and Boe 1990).

Tetramesa spp. infestations caused significant reduc-

tions in seed weight, germination percentage and

germination rate for four different grass species in

Idaho, USA (Spears and Barr 1985). Furthermore,

yield losses in cereal crops due to host-specific genetic

entities of the herbivorous mite, Aceria tosichella

Keifer (Wheat curl mite), can reach up to 30% (Harvey

et al. 2002).

Laboratory-based impact assessments conducted

for candidate grass biological control agents provide

support for the damaging nature of grass-feeding

insects. Two of the biological control agents released

against A. donax in the USA, T. romana and R.

donacis, were found to be damaging to the host plant

under laboratory conditions (Goolsby et al. 2009b).

Importantly, the damaging nature of T. romana has

been corroborated by evidence from field sites along

the Rio Grande River (Texas, USA) (Goolsby et al.

2016; Moran et al. 2017). The reduction in A. donax

above-ground biomass along the Rio Grande River,

associated with T. romana damage, is estimated to be

saving up to 7400 megalitres of water per annum

(valued at approximately US$ 4.4 million) (Goolsby

et al. 2016). However, Showler and Osbrink (2018)

found that T. romana had minimal impact on A. donax

in Kerr County (Texas), which is outside the Lower

Rio Grande Basin. This contrasting report on the

efficacy of T. romana may be explained by region-

specific variation in heat unit accumulation (Marshall

et al. 2018) and resulting fitness parameters of T.

romana between the Rio Grande Basin and other

regions including Kerr County. Annual heat units for

T. romana in Kerrville, Texas (Kerr County) for 2017

were 3671 as compared to 5513 in Brownsville, Texas

(Rio Grande Basin). The field impact of R. donacis

was evaluated in its native distribution. Arundo donax

rhizomes infested with R. donacis weighed 46% less

than rhizomes that were not attacked by the scale

(Cortés et al. 2011). Seven years since R. donacis was

released in the Lower Rio Grande Basin of Texas,

USA in 2012, the scale has reduced above-ground

shoot biomass by an additional 55% as compared to

field plots with populations of only T. romana

(Goolsby and Moran, pers. comm.).

Several natural enemies that have been screened as

candidate agents for other grass invaders can have

significant negative impacts on their respective host

plants. Häfliger et al. (2006) demonstrated that the

stem-boring moth Archanara geminipuncta (Ha-

worth) (Lepidoptera: Noctuidae), a candidate agent

for P. australis, reduced stem biomass by up to 65%

under field conditions, and stem height (40%), stem

biomass (50%) and the percentage of flowering stems

(90%) in a common experimental garden. The impact

of A. geminipuncta on P. australis in the USA is

expected to reduce the competitive ability of the target

weed, thus allowing the recovery of native wetland

species (Häfliger et al. 2006). The shoot-galling fly,

Platycephala planifrons (Fabricius) (Diptera:

Chloropidae), which is a second choice candidate for

the P. australis biological programme in the USA,

reduces stem biomass by up to 70% (Häfliger et al.

2005).

The planthopper, Prokelisia marginata (van

Duzee) (Hemiptera: Delphacidae) reduced S. alterni-

flora biomass by approximately 49% and plant height

by approximately 15% in only three months using a

field-cage experimental design (Grevstad et al. 2003).

However, Daehler and Strong (1995), who suppressed

similar densities of P. marginata using insecticide

exclusion methods, found no appreciable impact of P.

marginata on S. alterniflora productivity. We are not

aware of any quantitative post-release evaluation of

the S. alterniflora biological control programme.

The current lack of control agents that have been

released for grasses and scarcity of adequate post-

release evaluations limits the conclusions that can be

drawn regarding the efficacy of grass-associated

natural enemies as biological control agents.

123

Grasses as suitable targets for classical weed biological control 613



However, the examples provided above demonstrate

that not only can natural enemies of grasses be highly

damaging, but they can also mitigate the negative

environmental impacts associated with invasive

grasses, which is the ultimate aim of biological

control.

Risk of targeting grasses versus other weed taxa

for biological control

An argument has been made that the risk posed to

native biodiversity, valued ornamentals, and eco-

nomic crops, by introducing grass biological control

agents, is too great to consider implementation

(Wapshere 1990; Pemberton 2002). While many

programmes have successfully used oligophagous

natural enemies to control a target weed, partly due

to a lack of economically important close-relatives and

native congeners in the weeds’ introduced range (e.g.

Paterson et al. 2011), the majority of biological control

agents for invasive grasses will likely need to be

strictly monophagous, or in extreme cases, demon-

strate sub-specific affinities (Casagrande et al. 2018).

This requirement will likely be imposed on many grass

biological control programmes due to the close

phylogenetic relationships between invasive grasses

and economically important crops (cereals) and pas-

ture/fodder species. For example, Wapshere (1990)

regarded the potential for the biological control of

invasive grasses in Australia (specifically N. tri-

chotoma) to be limited due to the presence of

closely-related valued pasture species (i.e. multiple

native Stipa species).

Biological control programmes have been initiated

against weeds that possess native congeners and/or

closely-related economic crop species in their adven-

tive range (e.g. Senecio spp. in Australia, McFadyen

and Morin 2012), and in the case of the biological

control programmes against Solanum spp. in South

Africa, multiple sufficiently host-specific natural ene-

mies have been released despite a high diversity of

native congeners (Cowie et al. 2017). Practitioners

conduct host-specificity testing to carefully evaluate

the risk posed by candidate biological control agents to

native biodiversity and economic crops in the area of

intended introduction (Paynter et al. 2015; Hinz et al.

2019). Over the last 30 years, practitioners have

developed the theory and practical applications of

host-specificity testing to the point where the host

range of a candidate agent is reliably predictable from

host-specificity testing (Paynter et al. 2015; Hinz et al.

2019). Host-range testing, and our ability to assess the

safety of a potential biological control agent, should be

no different for a candidate being screened against an

invasive grass compared to other weed taxa. As such,

targeting grasses with native congeners and/or eco-

nomic crops in the adventive range should also be no

different than that for biological control of other weed

taxa with similar constraints.

Which natural enemies will be good candidate

biological control agents?

The major constraint imposed on a new biological

control programme is the availability of candidate

biological control agents, which is ultimately deter-

mined by the host specificity and potential efficacy

(i.e. estimated impact on target weed) of the natural

enemy assemblage. Consumers that have a strong

physiological dependency on the host plant are

expected to demonstrate a greater degree of host

specificity than less physiologically dependent con-

sumers (Hardy and Cook 2010). This pattern emerges

as the more strongly dependent the consumer is on the

host plant, the more likely the consumer is to develop

mechanisms to counter host plant defences and/or to

be protected from predation and parasitism, thus

selecting for greater host specificity (Raman 1993;

Hardy and Cook 2010). For example, gall-inducing

arthropods have a strong physiological interaction

with their host plant, and thus are typically more

specialised than their ectophagous counterparts (Cor-

nell 1989). Moreover, gall-inducers feed on actively

growing plant tissue where they usually initiate the

formation of a nutrient sink and are typically highly

damaging to the host plant (Raman 1993). For this

reason, gall-formers are frequently sought as biolog-

ical control agents, and are usually relatively effective

at controlling the target weed (Muniappan and

McFadyen 2005). Plant fungal pathogens too may be

particularly well suited as biological control agents of

grasses as they often have a strong physiological

dependency on the host plant (Cummins 1971). In the

following section we discuss taxa of likely potential

biological control agents for grasses, in terms of their

predicted specificity and mode of damage. These are

certainly not the only agents available, but based on
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past experience and literature on host-specificity and

potential efficacy, these taxa are likely to be the best

potential natural enemies.

Stem-galling wasps—Tetramesa (Hymenoptera:

Eurytomidae)

Tetramesa Walker (Hymenoptera: Eurytomidae) is a

cosmopolitan genus of 204 described species (Al-

Barrak 2006), and numerous presently undescribed

species (Canavan et al. 2018; G.F. Sutton, unpublished

data). The larvae of Tetramesa are phytophagous,

endophagous borers of cereals and other grasses

(Poaceae) (Claridge 1961). Most Tetramesa have a

narrow host range, with most species being recorded

from a single genus of host plants (Claridge 1961).

Tetramesa romana has already been demonstrated

to be sufficiently host-specific to gain approval for

release for the biological control of A. donax in the

USA (Goolsby and Moran 2009). Three undescribed

species of Tetramesa are also being considered as

candidate agents for the biological control of S.

pyramidalis and S. natalensis in Australia, and M.

maximus in the USA, due to their narrow field host

range from phytophagous surveys conducted in their

respective native ranges (G.F. Sutton and M. Cristo-

faro, unpublished data). Moreover, unidentified Te-

tramesa spp. are apparently monospecific to

Phragmites mauritianus Kunth. (Canavan et al.

2018), and A. longiseta, S. cryptandrus, S. hystrix

and S. comata (Spears and Baar 1985), although host-

specificity testing is required to confirm this. The

relative paucity of surveys of grass-feeding insects to

date, and a lack of any taxonomic resolution for

associated taxa, suggests that there are likely to be

numerous undescribed Tetramesa spp. associated with

grasses that could be investigated for their potential as

biological control agents.

Tetramesa spp. can also have significant impacts on

plant productivity, with several species being consid-

ered to be important cereal crop pests (Spears and Barr

1985). The biological control agent T. romana is

proving to be a highly damaging and successful

biological control agent of A. donax along the Rio

Grande River, USA (Goolsby et al. 2016; Moran et al.

2017).

Eriophyid mites (Acari: Eriophyoidea)

Eriophyid mites are obligate herbivores (De Lillo et al.

2018). There are several genera that appear to have

radiated amongst the Poaceae, including Abacarus

(Laska et al. 2018) and Aculodes (De Lillo et al. 2018).

Eriophyids have frequently been prioritised for the

biological control of weeds due to their often restricted

host ranges and damage caused to their host plants

(Skoracka et al. 2010; Smith et al. 2010). Indeed, 14

species of eriophyids have been deployed as weed

biological control agents to date (Winston et al. 2014).

Approximately 80% of phytophagous eriophyid

mites are monophagous (Skoracka et al. 2010).

Several of these monophagous species have been

recorded on grass hosts. For example, an apparently

host-specific mite, Abacarus plumiger Laska, Majer,

Szydlo & Skoracka has been reported on Bromus

inermis Leyss (smooth brome) (Laska et al. 2018),

while the apparently monophagous mite, A. alta-

murgiensis, demonstrates potential as a biological

control of T. caput-medusae (De Lillo et al. 2018). A

currently unidentified eriophyid mite is likely to be

host-specific to P. mauriatianus Kunth in South Africa

(Canavan et al. 2018). While these examples would

require formal host range testing to be conducted to

confirm their host specificity, there are undoubtedly

phytophagous eriophyid mites that could serve as

biological control agents of grasses.

Eriophyid mites can cause substantial damage to

their host plants, by stunting vegetative growth and

limiting plant reproductive output. Some eriophyid

mites are important economic crop pests worldwide.

For example, the wheat curl mite Aceria tosichella

Keifer, is a significant pest of cereal crops, causing

yield losses of up to 30% (Harvey et al. 2002). The

damage caused by eriophyid mites has resulted in

biological control practitioners giving mites high

priority when prospecting for candidate biological

control agents (Smith et al. 2010). Three phy-

tophagous mites released as biological control agents

that have had post-release evaluations studies con-

ducted on them, albeit none on invasive grasses, have

had a measurable impact on their host plant (Smith

et al. 2010).
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Shoot-galling flies (Diptera: Chloropidae)

Shoot-galling flies (Diptera: Chloropidae) are a

largely phytophagous taxon that appears to have

radiated within the Poaceae (Nartshuk 2014). Larvae

of this group typically attack the vegetative parts of

grasses. However, many species are associated with

seeds, while several species are gall-formers on

undifferentiated tissues (Nartshuk 2014). Species

richness of shoot-galling flies can be relatively high

on grasses, with at least ten species, being recorded on

P. australis (Häfliger et al. 2005).

Shoot-galling flies often demonstrate a sufficiently

narrow host range to warrant consideration as candi-

date biological control agents. For example, at least

three shoot-flies are apparently host specific to D.

abyssinica (Sileshi 1997). Shoot-galling flies can have

a detrimental impact on the productivity of their host

grasses, with several species being important eco-

nomic crop pests (Nartshuk 2014). In a biological

control context, Häfliger et al. (2005) demonstrated

that P. platifrons had a significant impact on P.

australis productivity, whereby attacked stems pre-

maturely wilted and shoot biomass was 60–70% lower

than for control stems. Moreover, shoots of D.

abyssinica damaged by a complex of shoot-galling

flies typically did not produce any seed, prompting

Sileshi (1997) to propose that these species have

promise as candidate biological control agents.

Fungal pathogens

The abundance and diversity of fungal pathogens on

grasses and their typically strong physiological depen-

dency on their host plant suggests that pathogens have

potential as biological control agents of grasses.

However, we are not aware of any fungal pathogens

that have been released as control agents on grasses to

date (Winston et al. 2014). Many fungal pathogens on

grasses, especially smuts (Ustilaginales) and rusts

(Uredinales), are known to exhibit a typically narrow

host range (Vánky 2003; Le Gac et al. 2007). The rust

fungus, Uromyces pencanus Arth. & Holw., has been

approved for release against N. neesiana in New

Zealand, and is awaiting release permits from

Argentina (Anderson et al. 2017). Additional testing

has been requested before U. pencanus will be

considered for release in Australia, due to the fungus

sporulating on two native Australian species during

host-specificity inoculation trials (Anderson et al.

2017). Several other fungal pathogens show promise

with regards to displaying a narrow host range on

invasive grasses, and that could potentially serve as

biological control agents for E. calycina, E. crus-galli,

R. cochinchinensis and S. halepense (Charudattan and

deLoach 1988; Ellison and Evans 1995; Tosiah et al.

2009; Piątek et al. 2015).

Fungal pathogens can be particularly damaging to

their host grasses. The head smut, Sporisorium ophiuri

(P. Henn.) Vánky (Ustilaginales), a candidate biolog-

ical control agent for R. cochinchinensis in Costa Rica,

can reduce plant densities by 90% (Smith et al. 1997).

The stem-rust fungus Puccinia graminis Pers. (Puc-

ciniaceae) causes extensive damage to wheat crops

across the globe, with yield reductions sometimes

exceeding 50% (Leonard and Szabo 2005). Infection

by Ustilago cynodontis (Pass.) Henn. stops seed

production by the rhizomatous grass Cynodon dacty-

lon (L.) Pers., while reducing plant growth rates,

biomass accumulation and survival (Garcı́a-Guzmán

and Burdon 1997). These examples demonstrate that

many fungal pathogens may be suitably damaging to

grasses to warrant their consideration as biological

control agents.

Discussion

Invasive grasses have traditionally been considered

poor targets for biological control, due to a perceived

lack of suitability host-specific and damaging natural

enemies (Wapshere 1990; Evans 1991; Pemberton

1996). Moreover, an argument has been made that the

risk posed by introduced biological control agents of

weedy grasses to economically viable crop species

(i.e. cereals) and closely related native species is too

great to consider implementing this management

option (Wapshere 1990). We reviewed the literature

and demonstrated that not only do grasses possess

specialised natural enemies that could serve as

biological control agents, but that these candidate

agents may be sufficiently damaging to provide

effective control of a target weed. Host-specificity

testing provides a scientifically rigorous and reliable

assessment of the risk posed to important economic

crops, ornamentals, and native plant species. As such,

the risks associated with grass biological control are

no greater than for other weedy taxa, given that
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practitioners follow appropriately rigorous methods

when assessing the specificity of candidate biological

control agents.

We encourage biological control practitioners to

consider grasses as suitable targets for biological

control. As is the case for any taxonomic group of

plants, biological control will not necessarily be a

silver-bullet nor a one-size-fits-all option for manage-

ment of invasive grasses. It is likely that many

invasive grasses will not be suitable targets for

biological control, owing to a lack of suitably host-

specific and/or sufficiently damaging natural enemies.

However, the likelihood of finding a suitably host-

specific natural enemy may be similar for grasses, as

for non-grass biological control targets. We advocate

that biological control of grasses be considered on a

case-by-case basis until any generalities emerge based

on the evaluation of such programmes. Biological

control could play an important role in the manage-

ment of invasive grasses, but a greater ecological and

evolutionary understanding of grass-consumer inter-

actions is required to harness the full potential of this

weed control strategy.
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