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Abstract Plant pollen is considered a food of high

nutritional quality for several natural enemies, such as

predatory insects and mites. In periods of prey absence

or scarcity, omnivorous predators often exploit plant

pollen as an alternative food. In the case of predators

feeding on mixed diets, pollen may be consumed

supplementary to the main prey. However, genetic

variation may translate into quality differences in

pollen derived from distinct plant species. We herein

assessed the nutritional suitability of the pollen of four

anemophilous plant species [cattail—Typha latifolia

(L.), pine, corn, and olive] for the predatory mite

Amblydromalus limonicus (Garman & McGregor)

(Acari: Phytoseiidae), a phytoseiid mite with great

potential for controlling thrips and whiteflies in

greenhouse crops. Juvenile development and survival

were not affected by the different pollens. Neverthe-

less, significant differences in adult performance

(longevity and egg production) resulted in consider-

able effects of pollen species on the calculated

intrinsic rates of increase (rm) for this predator. Cattail

followed by olive pollen resulted in the highest rm

values (0.2340 and 0.2001 day-1, respectively), while

the lowest values were recorded for corn and pine

pollen. Our results show that all pollens tested may be

used as alternative food for sustaining the population

of A. limonicus in the field. Recorded differences

among pollens highlight the need for a careful

consideration of the quality of pollen used in labora-

tory rearings and in field applications.

Keywords Alternative food � Amblydromalus
limonicus � Life history � Phytoseiidae � Pollen

Introduction

Trophic interactions among plants and beneficial

arthropods rely on the provision of plant resources to

omnivorous predators which in return protect plants

from herbivores (Sabelis et al. 2005). In this context,

plant resources, such as pollen and nectar are food

sources that ensure the maintenance of generalist

predators at low prey densities (Coll and Guershon

2002; Wäckers 2005). In the presence of prey, the

performance of omnivorous predators has been shown

in many cases to be positively affected by plant pollen

in mixed diets with animal prey (Eubanks and Styrsky

2005; Schmidt et al. 2013; van Rijn et al. 2002).

The reliance of generalist predators on more than

one trophic level for the acquisition of essential

nutrients is considered as one of their main advantages
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contrary to true carnivores that only need to feed on

prey (Coll and Guershon 2002; Denno and Fagan

2003). Considering conservation biological control in

agroecosystems, such predators should be easier to

maintain in the crop by simply providing food of plant

origin and/or artificial (other than target prey) food in

periods of prey scarcity or decline (Messelink et al.

2014; Wäckers 2005), especially in crops lacking

alternative food sources, such as pollen or extrafloral

nectar. Pure pollen application on the crop (Nomikou

et al. 2002; van Rijn et al. 2002) or pollen provision

through the use of banker plants (Huang et al. 2011)

are ideal methods facilitating the early establishment

or maintenance of omnivorous predators within the

crop during periods of low prey availability.

Type III and IV phytoseiid mites are among the best

known examples of omnivorous predators feeding on

both prey and plant food (McMurtry and Croft 1997;

McMurtry et al. 2013). Pollen may be used by

phytoseiids as a high-quality alternative food when

prey is limited and/or to supplement their main diet. In

addition, the provision of pollen in the field may be

useful in the early establishment of predatory mite

populations before the arrival of prey (Broufas and

Koveos 2000; Hoy 2011; Nomikou et al. 2003; van

Rijn and Tanigoshi 1999; van Rijn et al. 2002). Mass

culturing certain phytoseiids in the lab may be mainly

based on a pollen diet either in combination with prey

or alone, depending on the species (Denno and Fagan

2003; Gerson et al. 2003; Hoy 2011).

Despite the well-documented high quality of sev-

eral plant pollen species as alternative food for

phytoseiids (McMurtry and Croft 1997; van Rijn and

Tanigoshi 1999) to date we are aware of only one

commercially available product, the narrow-leaved

cattail (Typha angustifolia L.) based NutrimiteTM

(Biobest N.V., Westerlo, Belgium), recommended for

blowing applications to boost generalist phytoseiid

populations in ornamentals, vegetables and plant

nurseries. Cattail pollen (T. angustifolia and Typha

latifolia L.) has been shown to favour the performance

of phytoseiids in terms of intrinsic rates of population

increase (e.g. Broufas and Koveos 2001; Goleva and

Zebitz 2013; Lorenzon et al. 2012; Vangansbeke et al.

2014a). Similar to cattail, other anemophilous plants

(e.g. corn, pine) produce high quantities of light pollen

grains that could be easily collected for use as predator

food. Contrary to entomophilous plant pollen species,

some of which are marketed for plant pollination

purposes (e.g. apple, almond, pear etc.), anemophilous

pollen is cheaper and less labour-intensive to collect

(Goleva and Zebitz 2013) and subsequently, to apply

in the field. On the other hand, besides handling and

storage conditions, genetic variation among plant

species in pollen physical characteristics (e.g. pollen

grain walls) and/or its chemical composition (e.g.

amino acids, proteins, vitamins) may explain recorded

differences in the quality of pollens for phytoseiid

mites (Goleva and Zebitz 2013; Roulston and Cane

2000).

In this study, we assessed the suitability of pollen as

an alternative food source for a phytoseiid mite. We

examined the effects of the pollen of four anemophilous

plant species on the predator’s growth, survival and

reproduction. Our experimental system consisted of the

predatory mite Amblydromalus limonicus (Garman &

McGregor) (Acari: Phytoseiidae), an efficient biological

control agent for the control of thrips and whiteflies in

greenhouse crops (e.g. Hoogerbrugge et al. 2011; Knapp

et al. 2013; van Houten et al. 2008), and the pollen of

corn, pine, olive and cattail plants, dusted on bean leaf

discs under laboratory conditions. To our knowledge,

data on the effects of pollen consumption on the life-

history parameters of this predator is scarce and mainly

focused on cattail (T. latifolia andT. angustifolia) pollen

(e.g. Vangansbeke et al. 2014a, b). Using this system, we

calculated the demographic parameters of the predator

and classified the tested pollen species based on their

suitability for A. limonicus.

Materials and methods

Predatory mites

The main rearing of A. limonicus was established with

adults of the commercially available product Li-

monica� (Koppert BV, Berkel en Rodenrijs, The

Netherlands) and had been maintained on detached

French bean leaves (Phaseolus vulgaris L.) at

26 ± 1 �C and 16:8 (L:D) h. Cattail (T. latifolia)

pollen was provided ad libitum on the leaf surface as a

food source for the mites.

Pollen

Cattail (T. latifolia), olive (Olea europea L.), corn

(Zea mays L., cv. Heleonora X1132R-I424) and
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Calabrian pine (Pinus brutia Ten.) pollens were

collected from flowering plants in Northern Greece,

as described in Broufas and Koveos (2000). Sampled

plants had not been treated with pesticides. Pollen was

air dried for 12 h, sieved (200 mm mesh), and

subsequently stored at -20 �C.

Experiments

Cohorts of predatory mite eggs were obtained by

allowing young (6–8 days old) females from the stock

colony to lay eggs for 12 h on detached bean leaves

placed upside down on wet cotton wool. Cattail pollen

was provided as food during the egg-laying phase.

Multiwell tissue culture plates (Corning�), each con-

sisting of either six (3.51 cm in diameter) or 12 cells

(2.21 cm in diameter) were used as experimental units

for adults and juveniles, respectively. Within each cell,

individual mites were transferred on floating bean leaf

discs placed upside down on a cotton wool layer soaked

with water. Twice daily each cell was refilled with

water. A v-shaped plastic shelter (0.5 9 0.5 cm) was

placed on each leaf disc. Pollen grains were offered

ad libitum on each bean disc daily and old pollen grains

were removed to avoid contamination by moulds. All

experiments were conducted in a climate room at

26 ± 1 �C, 16:8 (L:D) h and 60–75 % RH.

Effect of pollen diet on juvenile development

and survival

Eggs laid within 12 h by young females were

individually placed on each leaf disc (1.4 cm in

diameter) of the experimental arena. Upon larval

hatching till adulthood, the developmental stage each

predatory mite had reached, and survival was recorded

at 12-h intervals. For each treatment (pollen species),

31 (for cattail and corn pollen) or 36 (for olive and pine

pollen) replicates were used. Individuals lost or

injured due to improper handling during inspections

were excluded from data analysis.

Effect of pollen diet on adult survival and egg

production

For each pollen treatment, a second group of mites

reared under the same conditions as described above

were used. For this group, the developmental stage of

individuals was recorded every 24 h up to the

deutonymphal stage. Subsequently, the newly molted

adults were sexed and placed in pairs on the leaf discs

(2.0 cm in diameter) of the experimental arenas. Daily,

we recorded the number of eggs laid by each female

throughout her life. After each counting, eggs were

removed. There is a scarcity of published data on the life

history traits ofA. limonicus, specifically on the required

number of successive matings for maximizing female

reproductive success. Therefore, in order to ensure a

continuous availability of sexually active, fertile males

for female insemination, once a week males were

replaced with young individuals (6–8 days old). Young

males were collected from colonies reared on detached

bean leaves, on the same plant pollen as the mites which

they replaced in the experimental treatments.

Effect of pollen diet on sex ratio

Progeny sex ratio during the first couple of days of

phytoseiid oviposition period is male biased and becomes

more or less stable and female biased later on (e.g.

Broufas et al. 2007). Therefore, in order to estimate

progeny sex ratio eggs laid by all females of each

treatment (pollen species) were daily collected starting

from the 4th day (after the onset of egg laying) for 15

consecutive days. These eggs were placed in groups (each

group referring to a different day) on detached bean

leaves as those used for the rearing. Depending on the

treatment, pollen grains were offered ad libitum as food

for the mites. Upon adult emergence, individuals were

sexed. These data were used to calculate an overall sex

ratio value for each pollen tested, which was subsequently

used for the estimation of the demographic parameters.

Life table analysis

Demographic parameters were estimated by combin-

ing data from juvenile development, and adult survival

and egg production. The intrinsic rates of increase (rm)

were estimated by iteratively solving the equation

given by Birch (1948):

Xn

x¼0

e�rmxlxmx ¼ 1

where x is the mean age class, mx the mean number of

female progeny per female at age x, and lx the

probability of survival to age x. Net reproductive rate

(R0 = Rlxmx, number of female offspring produced per

Development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae) 775

123



female), doubling time (DT = ln(2)/rm, number of days

required for the population to double its numbers) and

mean generation time (T = lnR0/rm) were calculated as

described by Southwood and Henderson (2000).

Statistical analysis

Two-way analysis of variance (ANOVA) was used to

evaluate the effect of sex (S) and pollen (P) species on

total developmental time. Since sex (S) significantly

affected developmental time, one-way ANOVA was

subsequently used for each sex and developmental stage

to evaluate the effect of pollen species on developmental

time (SPSS 2011). Student–Newman–Keuls test was

further used to compare means within each sex and

developmental stage as well as total juvenile develop-

ment. Before analyses, all data sets were graphically

(normal Q–Q plot) tested for normality, and for homo-

geneity of variances by Levene’s test. Subsequently, the

non-parametric Kruskal–Wallis test was used to analyze

data not fulfilling the criteria of parametric analysis and

means were separated with Mann–Whitney-U tests. For

each pollen species, the duration of each developmental

stage was compared between sexes with Student t-tests.

Significance levels were a = 0.05 for all tests. Similar

analyses were performed to evaluate the effect of pollen

species on female longevity, duration of pre- and post-

oviposition periods (Kruskal–Wallis test, followed by

Mann–Whitney-U test), total egg production and dura-

tion of oviposition period (one-way ANOVA, followed

by Student–Newman–Keuls test). Survival percentages

and sex ratios were compared among pollen species with

v2 test. All possible pairwise comparisons were per-

formed and type I error was corrected using the

Bonferroni method (Sokal and Rohlf 1995). The Jack-

knife procedure was used to estimate a standard error for

the rm, R0, T and DT values for the different pollens

tested and comparisons were performed by Student–

Newman–Keuls test (Meyer et al. 1986; Sokal and Rohlf

1995).

Results

Effects of pollen diet on juvenile development

and survival

Two-way analysis of variance revealed that there was

a significant effect of sex (S: F = 25.55; df = 1, 108;

P\ 0.001) and pollen (P: F = 4.61, df = 3, 108,

P = 0.011) but not of their interaction (S 9 P:

F = 1.99, df = 3, 108, P = 0.119) on juvenile de-

velopmental time of A. limonicus. Total juvenile

development of males ranged between 6.4 to 6.6 days

depending on pollen treatment, whereas development

of females took longer to complete (6.8–7.9 days,

Table 1). Total developmental time of males and

females was not different when juveniles were fed

with cattail or olive pollen (cattail: t = -1.188,

df = 25, P = 0.246; olive: t = -1.612, df = 29,

P = 0.118), while males emerged faster than females

when juveniles were fed with corn (t = -3.669,

df = 24, P\ 0.05) or pine (t = -3.788, df = 30,

P\ 0.05) pollen (Table 1). Survival of A. limonicus

was relative high (93.9–100 %) for all pollen diets

(Table 2).

Effects of pollen diet on adult longevity and egg

production

Pollen diet during juvenile and adult life significantly

affected the longevity of A. limonicus females which

ranged from 13.9 days on olive pollen to 23.7 days on

cattail pollen (Table 3; Fig. 1). Upon adulthood, it

took the females a short period of time (1.1–2.3 days)

to start laying eggs which, however, was dependent on

pollen diet (Table 3). Subsequently, oviposition peri-

od lasted for 8.7–19.5 days, and females died

3.0–6.7 days after the final egg was laid. Female

longevity averaged 22–24 days on pollen of cattail,

corn and pine, but was substantially shorter on olive

pollen (13.9 days). On the other hand, females

produced a low number of eggs (13.4–16.8 eggs/per

female) on all pollen diets except on cattail pollen

(26.4 eggs/per female) (Table 3). The sex ratio

[females/(females ? males)] of A. limonicus off-

spring was not affected by pollen diet of juveniles

and adults (v2 = 2.46, df = 3, P[ 0.05; 0.64 on

cattail pollen, 0.70 on olive pollen, 0.66 on corn pollen

and 0.61 on pine pollen).

Effects of pollen diet on life-history parameters

Recorded differences in adult longevity and egg

production for the different pollen diets resulted in

considerable variation in calculated values for life-

history parameters ofA. limonicus. The intrinsic rate for

increase (rm) ranged between 0.1415 day-1 for pine
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pollen to 0.2340 day-1 for cattail pollen (Table 4).

Values of net reproductive rate (R0), mean generation

time (T), and doubling time (DT) ranged in a similar

manner to rm among treatments (Table 4). Based on rm
values, pollens tested may be classified from the best

quality to the worst as follows: cattail[ olive[ corn

[ pine.

Discussion

In this study, we assessed the suitability of pollen of

four anemophilous plant species as food for the

predatory mite A. limonicus. We showed that all

tested pollens could be used to efficiently rear this

predator under laboratory conditions. Nevertheless,

Table 1 Developmental time (in days) (mean ± SE) of Amblydromalus limonicus reared on four plant pollen species at 26 ± 1 �C
and 16:8 (L:D) h

Pollen species n1 Egg Larva Protonymph Deutonymph Total juvenile

development

Male

T. latifolia 9 1.5 ± 0.17a2 1.2 ± 0.12a3 1.3 ± 0.19a3 1.8 ± 0.19a2 6.4 ± 0.26a2A4

O. europea 10 1.3 ± 0.13a 1.5 ± 0.14a 1.5 ± 0.05a 1.7 ± 0.08a 6.4 ± 0.15a A

Z. mays 13 1.2 ± 0.11a 1.2 ± 0.07a 1.7 ± 0.11b 1.7 ± 0.12a 6.4 ± 0.19aA

P. brutia 20 1.3 ± 0.10a 1.1 ± 0.04a 1.7 ± 0.07b 2.1 ± 0.14a 6.6 ± 0.19aA

F*/v2 ** 0.702* 7.711** 9.537** 1.734* 0.463*

df 3, 48 3 3 3, 48 3, 48

P 0.555 0.052 0.023 0.173 0.710

Female

T. latifolia 18 1.4 ± 0.11a2 1.3 ± 0.09a2 1.6 ± 0.09a3 2.1 ± 0.11a3 6.8 ± 0.21a2A

O. europea 21 1.3 ± 0.08a 1.5 ± 0.11a 1.5 ± 0.10a 2.0 ± 0.06a 6.8 ± 0.16aA

Z. mays 13 1.2 ± 0.09a 1.3 ± 0.12a 1.9 ± 0.06b 2.5 ± 0.13b 7.4 ± 0.21abB

P. brutia 12 1.2 ± 0.10a 1.6 ± 0.08a 2.3 ± 0.26b 2.3 ± 0.19ab 7.9 ± 0.28bB

F*/v2** 1.371* 1.691* 11.870** 11.880** 6.047*

df 3, 60 3, 60 3 3 3, 60

P 0.260 0.179 \0.05 \0.05 0.001

1 Number of individuals that completed development
2 Means followed by the same lowercase letter within the same column and sex are not significantly different (* Student–Newman–

Keuls test, a = 0.05)
3 Means followed by the same lowercase letter within the same column and sex are not significantly different (** non parametric

Kruskal–Wallis and pairwise comparison with Mann–Whitney-U test, a = 0.05)
4 Means corresponding to comparisons between males and females, followed by the same uppercase letter within the same column

and plant pollen species are not significantly different (t test, a = 0.05)

Table 2 Survival percentages (%) of Amblydromalus limonicus reared on four different pollen species at 26 ± 1 �C and 16:8

(L:D) h

Pollen species n1 Percentage (%) of individuals

completing juvenile development

T. latifolia 28 96.4a2

O. europea 33 93.9a

Z. mays 26 100a

P. brutia 33 97.0a

1 Number of individuals tested (individuals lost or injured due to improper handling during inspections were excluded)
2 Percentages followed by the same lowercase letter are not significantly different (v2 test, a = 0.05)
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we recorded an inter-specific variation in the way

pollen affected the performance of this predator,

mainly with regard to female egg production. This

variation is reflected in the calculated intrinsic rates of

population increase which allowed us to classify the

pollen species tested from the best to the worst in

quality for A. limonicus.

To our knowledge, cattail pollen is the only pollen

species already having been assessed for A. limonicus

with regard to intrinsic rates of population increase. In

our study, T. latifolia pollen was shown to be the

superior pollen among those tested resulting in the

highest rm value (0.234 day-1). Vangansbeke et al.

(2014a) reported a slightly higher rm value

(0.262 day-1) when A. limonicus was fed with T.

angustifolia pollen (NutrimiteTM) on bean leaf arenas

at 25 ± 1 �C, while T. latifolia pollen results were

variable in terms of rm values ranging from 0.157 and

Table 3 Longevity (days), fecundity (total number of eggs) and mean pre-oviposition, oviposition and post-oviposition period

(days) (mean ± SE) of Amblydromalus limonicus females reared on four different pollen species at 26 ± 1 �C and 16:8 (L:D) h

Pollen species n1 Longevity Fecundity Pre-oviposition period Oviposition period Post-oviposition period

T. latifolia 32 23.7 ± 2.1a2 26.4 ± 1.7a3 1.1 ± 0.1a2 19.5 ± 1.6a3 3.0 ± 0.8a2

O. europea 48 13.9 ± 0.6b 13.4 ± 0.8b 1.3 ± 0.1ac 8.7 ± 0.5b 3.9 ± 0.4b

Z. mays 33 23.5 ± 1.4a 16.8 ± 1.3b 2.3 ± 0.3b 14.5 ± 1.2c 6.7 ± 1.1b

P. brutia 23 21.9 ± 2.0a 13.5 ± 1.4b 1.8 ± 0.2c 15.9 ± 1.6ac 5.5 ± 1.1b

F*/v2 ** 31.059** 24.197* 22.530** 16.339* 10.119**

df 3 3, 132 3 3, 132 3

P \0.001 \0.001 \0.001 \0.001 \0.05

1 Number of female individuals
2 Means followed by the same lowercase letter within the same column are not significantly different (** non parametric Kruskal–

Wallis and pairwise comparisons with Mann–Whitney-U test, a = 0.05)
3 Means followed by the same lowercase letter within the same column are not significantly different (* Student–Newman–Keuls

test, a = 0.05)
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0.166 day-1 at 23 ± 1 �C on modified Munger cells

and bean leaf discs, respectively (Vangansbeke et al.

2014b) to 0.258 day-1 at 25 ± 1 �C on modified

Munger cells (Nguyen et al. 2015). Such variation may

be related to different experimental conditions and/or

genetic variation among predator (A. limonicus)

populations.

Different pollen species have resulted in variable

oviposition rates of A. limonicus females. Feeding A.

limonicus for three days on sweet pepper pollen on

cucumber leaf discs at 25 �C resulted in 1.5 eggs per

female per day (van Houten et al. 1995), while on

sweet pepper leaf discs oviposition rates ranged from

0.9–1.1 eggs per female per day on sweet corn pollen

to 1.7 eggs per female per day on cattail (T. latifolia)

pollen during a three-day experimental period (Leman

and Messelink 2015). Similar values between 0.21

eggs per female per day on lemon pollen and 2.27 eggs

per female per day on almond pollen have been

reported for A. limonicus by Swirski and Dorzia

(1968) in a ten-day oviposition trial using different

pollen species (castor bean, avocado and Carpobrotus

edulis (L.) L. Bolus pollen were included in the study)

on plastic substrate. In our study, corn pollen on bean

leaf discs promoted high survival and rapid juvenile

growth of A. limonicus, while peak oviposition rate

reached 1.7 eggs per female per day resulting in an

intrinsic rate of increase of 0.170 day-1. On the other

hand, peak oviposition rates for A. limonicus reared on

the other pollen species ranged between 2.6 eggs per

female per day on cattail pollen to 1.5 eggs per female

per day on pine pollen. Besides effects of different

pollen species used and experimental conditions, plant

sap feeding by A. limonicus suggested in a previous

study (Messelink et al. 2006), may have additionally

affected recorded oviposition rates on different sub-

strates. On the other hand, egg cannibalism, which has

been shown to be diet-dependent and to result in

reduced population growth rates of A. limonicus

(Vangansbeke et al. 2014a), may have shaped to a

certain extent the reported results on oviposition rates.

Rearing A. limonicus on natural prey, factitious

food or artificial diet has been shown to result in

comparable intrinsic rates of increase to that recorded

in our study for cattail pollen. The highest rm value

(0.256 day-1) ever reported for A. limonicus has been

reached on two factitious foods, i.e. Ephestia kuehniel-

la Zeller (Lepidoptera: Pyralidae) eggs or Carpogly-

phus lactis (L.) (Acari: Astigmata) (Vangansbeke

et al. 2014a, b), similarly to feeding on natural prey

(Frankliniella occidentalis (Pergande) (Thysanoptera:

Thripidae) larvae) (0.248 day-1) (Vangansbeke et al.

2014b). The rm value for cattail pollen reported here

(0.234 day-1) is lower than the values above, and

higher than the values reported for A. limonicus fed on

Artemia franciscana Kellogg cysts (0.215 day-1) or

on a liquid artificial diet enriched with dry decapsu-

lated A. franciscana cysts (0.212 day-1) (Nguyen

et al. 2015; Vangansbeke et al. 2014b). Based on the

above, we conclude that cattail and olive pollen should

Table 4 Life table parameters of Amblydromalus limonicus reared on four different pollen species at 26 ± 1 �C and 16:8 (L:D) h

Pollen species n Demographic parameters

Intrinsic rate

of increase,

rm (±SE) (day-1)

Net reproductive

rate, R0 (±SE)

(female progeny

per female)

Mean

generation time,

T (±SE) (days)

Doubling tim

of population,

DT (±SE) (days)

T. latifolia 32 0.2340a1 (±0.0051) 19.2a (±1.0) 12.7a (±0.2) 2.9a (±0.1)

O. europea 48 0.2001b (±0.0047) 9.3b (±0.5) 11.2b (±0.1) 3.5b (±0.1)

Z. mays 33 0.1700c (±0.0058) 11.1b (±0.8) 14.2c (±0.3) 4.1c (±0.1)

P. brutia 23 0.1415d (±0.0077) 8.4b (±0.9) 15.1d (±0.3) 4.9d (±0.2)

F 42.369 36.361 58.266 29.983

df 3, 130 3, 130 3, 130 3, 130

P \0.001 \0.001 \0.001 \0.001

1 Means followed by the same lowercase letter within the same column are not significantly different (Student–Newman–Keuls test,

a = 0.05)
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be considered as alternative foods for A. limonicus of

high to moderately high quality, respectively, fol-

lowed by corn and pine pollen (rm values: 0.170 and

0.141 day-1, respectively).

Variation in pollen suitability as an alternative food

source has also been shown for several other phyto-

seiid species (e.g. Broufas and Koveos 2000; Goleva

and Zebitz 2013; Kolokytha et al. 2011). Inter-specific

variation in pollen innate characteristics (nutrient

content and/or specific morphological/chemical traits)

as well as species-specific physiological (e.g. diges-

tion mechanisms) or anatomical (e.g. mouthpart

morphology) characteristics of phytoseiid predators

may explain the reported variation in the effects of

different pollen species on life-history traits of differ-

ent phytoseiids (Goleva and Zebitz 2013; Roulston

and Cane 2000; Roulston et al. 2000). With regard to

pollination type, while pollen of anemophilous com-

pared to entomophilous plant pollen is considered to

be of lower nutritional quality (Roulston et al. 2000),

this quality difference was not reflected in the

calculated intrinsic rates of increase for Amblyseius

swirskii Athias-Henriot (Acari: Phytoseiidae) when

fed with several anemophilous and entomophilous

plant pollen species (Goleva and Zebitz 2013). On the

contrary, the considerable intra-pollination type var-

iation was attributed to other pollen-related traits (i.e.

morphological and/or chemical). Similarly, we as-

sume that the recorded variation in our study was

affected by the nutrient content and/or the morphology

of the grains of the pollen species tested. Interestingly,

Goleva and Zebitz (2013) characterised a high number

of pollen species as suitable as, or more suitable for A.

swirskii than cattail pollen. In accordance, we high-

light the need for further investigation of additional

pollen species of even higher quality than cattail

pollen for A. limonicus.

Biological pest control with the use of A. limonicus

requires a series of predator releases in the absence of

alternative and/or supplementary food. Application of

pollen as a supplementary food in the crop may help

sustaining populations of the predatory mite and thus

contribute to the cost effectiveness of biological

control. Pollen application on the terminal leaf of

cucumber plants has been shown by van Rijn et al.

(1999) to improve thrips control. In addition to cattail

pollen, we herein identified three anemophilous pollen

species with variable suitability for A. limonicus. High

quality pollen may be used to minimize A. limonicus

cannibalism in periods of prey decline, but also to

boost predator populations in the presence of prey.

Low quality pollen on the other hand, may sustain A.

limonicus in periods of prey scarcity or when prey is

present, but predator satiation levels are expected to be

lower on this food. Since pollen may also serve as

alternative food for prey (e.g. thrips) in certain cases

the appropriate pollen species for a given predator

should ideally be a food of intermediate to low quality

for the prey, as was recently shown for A. franciscana

cysts evaluated as supplemental food for A. swirskii

against T. angustifolia (Vangansbeke et al. 2015). In

laboratory trials, pine pollen was shown to be the most

suitable pollen species tested for the population

growth of F. occidentalis (Hulshof et al. 2003). Sweet

corn pollen on chrysanthemum leaf discs on the other

hand resulted in a lower oviposition rate of F.

occidentalis compared with cattail pollen, while

providing similar thrips control at low predator

densities when offered as food for A. swirskii in

chrysanthemum greenhouse plants (Leman and Mes-

selink 2015). Therefore, the effects of different pollen

species on both the predator (A. limonicus) and its

main prey (F. occidentalis) should be tested under

realistic greenhouse conditions in order to conclude on

the best combination for efficient pest control. Besides

the pollen species tested in this study, other species or

a combination of pollen species or pollen with

artificial diets may be worthwhile for testing in the

greenhouse to improve biological pest control with A.

limonicus. Furthermore, long-term experiments ex-

tending to several successive generations of the

predator reared on each of the different pollens tested

are required to verify these results before they can be

used in a mass-rearing system.
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