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Abstract Before an exotic pathogen can be released
as a classical biological control agent the likely
positive and negative outcomes of that introduction
must be predicted. Host range testing is used to assess
potential damage to non-target plants. To-date 28
species of fungi have been released as classical
biological control agents against weeds world-wide.
These pathogens have been reported infecting only
six non-target plant species outdoors and all of these
incidents were predicted. Many more non-target plant
species developed disease symptoms in glasshouse
tests than in the field. Consequently, data from other
sources are needed to ensure potential agents are not
prematurely rejected. Predictions of pathogen host
range to date have been sufficiently accurate to
prevent unpleasant surprises. Exotic pathogens are a
safe and useful tool for weed control, especially in
natural areas rich in valued non-target species.
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Introduction

Plant pathogens are an excellent tool for the control of
exotic plants that have invaded natural areas. Other tools,
e.g. herbicides and physical removal, often have nega-
tive impacts on non-target organisms and this can be
particularly problematic in natural areas that are rich in
valued, mostly native, non-target plants. Many patho-
gens are extremely host-specific and capable of damag-
ing a target weed without disturbing other vegetation
nearby. Also, pathogens with wind-borne spores can
reach weeds in remote and inaccessible natural areas
where it would be physically difficult and/or prohibi-
tively expensive to apply other methods of control.

For example, in New Zealand, the weed mist
flower (Ageratina riparia (Regel) R. King and H.
Robinson, Asteraceae) invades native forests and
forms dense mats of semi-woody stems that smother
native plants. If herbicide were applied in this
situation the natives would be killed along with the
weed and the weed would then recover faster than
many of the desirable plants, potentially leading to a
worsening of the situation. For herbicide to be
effective there would need to be follow up spraying
over a number of years to reduce the seed bank of
mist flower (Tony McCluggage, personal communi-
cation) and that is a costly option. Also, mist flower
can tolerate some shading and it spreads along river-
banks with the result that it can grow in remote and
inaccessible areas of native forest where it is difficult
to manage (personal observation).

@ Springer



290

J. Barton

Consequently, two highly specific classical biolog-
ical control agents were introduced to New Zealand:
a white smut fungus: Entyloma ageratinae Barreto and
Evans (Ustilaginomycetes) and a gall fly: Proceci-
dochares alani Steyskal (Tephritidae). These agents
successfully reduced the density of mist flower infes-
tations without harming any non-target plants (Barton
et al. 2007). As a result the species diversity of native
plants in monitored plots recovered (as mist flower
cover decreased) until it was at a similar level to that in
plots that remained free of the weed (Barton et al.
2007). The smut fungus spread very quickly (at least
80 km in two years) and infected even small, appar-
ently isolated patches of the weed (Barton et al. 2007).
Thus, these highly specific agents were very beneficial
to the conservation of native plants in a natural
ecosystem.

The key to positive outcomes such as this is to
accurately predict the field host range of the potential
classical biological control agents so that the risks
they pose to non-target plants can be accurately
weighed up against potential benefits. In this paper
the terms ‘costs” and ‘benefits’ will be used in an all-
encompassing way. ‘Costs’ include not just monetary
losses but also potential negative impacts on: the
health of non-target organisms, biodiversity, envi-
ronmental services, and political/public goodwill.
Likewise, benefits include monetary savings (e.g.
through less herbicide use) but also positive impacts
on the heath and vigour of desirable plants (native
and exotic) and the other organisms that interact with
them (including humans).

Given that it will only ever be possible to test a
sub-set of the non-target plants that a biological
control agent could encounter in the field, it is
essential that this sub-set is carefully chosen. Plant
pathologists are fortunate in that Wapshere’s ‘cen-
trifugal phylogenetic method’ for choosing test plants
(Wapshere 1974) was developed just at the time when
biological control of weeds with pathogens began.
Basically, this method states that the non-target plants
most likely to be attacked by a proposed biological
control agent are the closest relatives of its known
host(s). Since the target weed is invariably a known
host, test lists should be weighted with plants in the
same genus, sub-family and family as the weed,
especially those that grow where the pathogen will be
used (Wapshere 1974). The methods used for host
range testing, and the importance placed on various
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types of non-target plants, have changed over time.
However, when it comes to choosing test plants
pathologists have stuck with Wapshere’s method and
have been rewarded with useful data. This issue is
discussed further in Barton (née Frohlich) (2004).
Note that molecular techniques are very quickly
improving our phylogenetic knowledge of plant rela-
tionships, and that that is helping to ensure that test
lists include appropriate species (e.g. Berner 2010).

The ability of researchers to predict the field host
range of fungal pathogens to be used for classical
biological control was assessed in Barton (née
Frohlich) (2004). The purpose of this paper is to
briefly summarise the information provided previ-
ously and to update it. In the process, the author
hopes to show that if pathogens continue to be used
judiciously, the benefits of their use as classical
biological control agents in natural areas should far
outweigh the costs.

Overall comparison of ‘pre’ and ‘post’-release
host ranges

All of the fungi which have been released as classical
biological control agents for weed to date (to the
authors’ knowledge) are listed in Table 1. This table is
an updated version of one published in Barton (née
Frohlich) (2004). Note that full Latin names and
authorities of target weeds and pathogens discussed in
this paper are given in Table 1 rather than in the text.
Information on events that have occurred between the
date when the original paper was compiled (February
2003) and the present (April 2011) was obtained by
contacting the researchers who provided data for the
earlier paper (via e-mail) and asking them for relevant
information. Note also that almost all of the informa-
tion in Table 1 about non-target damage outdoors
came from unpublished sources (personal communi-
cations). There have been deliberate searchers for
non-target damage conducted recently in New Zea-
land and Papua New Guinea (see case studies 4 and 5
below for details) but these remains the exception
rather than the rule for reasons given in Barton (née
Frohlich) (2004) and Hopper (2001).

For the purposes of this paper, a biological control
‘project’ is defined as the use of one species of
pathogen to control one weed (or several closely
related weeds) in a single country. Using that definition
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there have been 38 such projects worldwide (Table 1).
These projects involved 28 species of pathogens, all of
them fungi. About 28 weeds or weed complexes were
targeted. The pathogens used as agents originated in 18
different countries and were released in 11 countries.
More than half of them have reduced populations of
their target weed(s) (Charudattan 2005) but their
success (or otherwise) will not be discussed further
here.

Information in the above table that is additional, or
different to, that presented in a similar table in Barton
(née Frohlich) (2004) is provided for the following
weeds/pathogens:

Acacia saligna/Uromycladium tepperianum: See
case study 3 below.

Asparagus  asparagoides/Puccinia  myrsiphylii:
The country of origin of the pathogen was recorded
previously as Brazil. It is actually South Africa
(author error).

Carduus thoermeri/Puccinia carduorum: See case
study 1 below.

Centaurea solstitialis/Puccinia jaceae var. solstit-
ialis: Pathogen was released after data in the
previous paper was compiled.

Mikania micrantha/Puccinia spegazzinii: Pathogen
was released after data in the previous paper was
compiled. Also, see case study 5 below.

Rubus  fruticosus/Phragmidium violaceum: See
case study 4 below.

Non-target damage has been reported outdoors in
only five of the 38 projects worldwide (Table 1).
In the remaining 33 projects, the pathogen released
has either not established or has only been found on
the target weed(s) since release. Note that there were
14 projects in which the target weed was the only
plant damaged by the proposed agent in pre-release
testing. In all of these cases, there was no non-target
damage observed in the field (Table 1).

Two of the five cases of non-target damage outdoors
were recorded during outdoor host range tests, so there
are only three cases of disease symptoms on non-target
plants in natural areas. All three cases were predicted
by pre-release host range testing. That is, the non-target
plants infected by the biological control agents were
rated as ‘susceptible’ to that agent in indoor host range
tests. In all three cases a decision was made to release
the agent anyway because potential benefits were seen

@ Springer

to outweigh potential costs. The details of all five
‘projects’ in which non-target plants were damaged
outdoors are given below. Note that the first three of the
five were discussed at length in Barton (née Frohlich)
(2004) and so only a summary and some new
information are provided here.

Case studies

1. Biological control of Carduus thoermeri
(nodding or musk thistle) with Puccinia
carduorum (rust)

Musk thistle (=C. thoermeri although sometimes also
referred to as Carduus nutans L. ssp. leiophyllus
(Petrovic) Stoj. & Stef.) is native to Europe and Asia
but became a major problem in pastures and range-
lands in the USA where it competes with more
desirable species (Baudoin et al. 1993). The rust
fungus Puccinia carduorum was selected as a
potential classical biological control agent and it
was applied to 63 non-target species in the Astera-
ceae family to test its host range (Politis et al. 1984).
Researchers found that the target weed was the only
plant that suffered severe disease symptoms, however
in the glasshouse some symptoms were also observed
on 16 non-target species, including globe artichoke
(which is grown commercially in the USA) and some
thistles that are native to America. All the plants that
developed disease symptoms were in the same tribe
as the target weed (Politis et al. 1984).

The development of disease symptoms on globe
artichoke in the glasshouse could have led to the
rejection of P. carduorum as a biological control
agent. However, fortunately it was known that in
Eurasia it is not uncommon for globe artichokes to
grow near musk thistle plants infected by Puccinia
carduorum yet artichoke had never been recorded as
a host of the rust there (Bruckart et al. 1985). Because
of this contradiction between glasshouse results and
field observations, the researchers were given per-
mission to test the rust outdoors in the USA, outside
of containment. This situation, i.e. the release of a
pathogen in the field in a new area with the intention
of eradicating it if it attacked non-target species
outdoors, is probably unique in the history of
biological control of weeds with pathogens.
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The outdoor trial was conducted over two years
and the plants tested were globe artichoke (Cynara
scolymus) and ten species of native American thistles
(Cirsium species) (Baudoin et al. 1993). The trial was
conducted in an area of Virginia without large stands
of musk thistle so as to facilitate eradication of the
rust if results of the tests were unfavourable (Baudoin
et al. 1993). Over the whole two years, the only non-
target damage recorded was a single pustule of spores
of P. carduorum on one out of 32 globe artichoke
plants tested (Baudoin et al. 1993). It is this single
pustule that has led to the inclusion of this case study
here. This incident was ‘predicted’ by glasshouse
tests and did not occur in a natural ecosystem.

It was concluded that “P. carduorum poses no
threat to the non-target species tested” (Baudoin et al.
1993) and the rust was allowed to spread from the
trial site in Virginia. The agent established in the
USA and it has not been found on any non-target
species in the field since release (W. L. Bruckart,
personal communication).

Note that initially P. carduorum was only wanted
for musk thistle control on the eastern side of the
USA. It was proposed more recently that it should
also be used in the west, specifically in California
(Bruckart 2005). Authorities consequently requested
further testing of seven rare-and-endangered native
North American Cirsium species and four modern
artichoke lines that grow in the Western USA
(Bruckart 2005) and this data has been added to
Table 1. Minor disease symptoms developed on some
of the artichoke cultivars in the glasshouse but not on
the native thistles. The rust could not be maintained
on artichoke, even under optimal glasshouse condi-
tions, and so these results confirmed earlier findings.
Meanwhile, the rust has been naturally moving
westwards in the USA, and it has in fact been found
in California (Bruckart 2005). The permit request has
been pursued despite this so that people can legally
move the rust to where it is needed (Bruckart 2005).

2. Biological control of Parthenium
hysterophorus (Parthenium weed or false
ragweed) with Puccinia melampodii (rust)

Parthenium (Asteraceae) originated in the Neotropics
and has become a problem in rangelands, especially in
tropical areas in northern Australia (Queensland) and
India (Evans et al. 2001). It competes aggressively

with more desirable vegetation, but more importantly,
it causes allergic responses, respiratory problems, and
dermatitis in susceptible people.

The rust Puccinia melampodii was identified as a
potential agent and was applied to 63 non-target
species of relevance to Australia in the glasshouse.
Symptoms developed on six non-target Asteraceous
species: three weedy daisies, a variety of Zinnia
elegans, sunflower (Helianthus annuus), and two
varieties of marigold (Calendula officinalis) that are
commonly available in garden centres in Australia
(and the UK). Authorities decided to release the rust
in Australia because the benefits were perceived to
outweigh the potential costs.

However, prior to decision regarding release of the
pathogen in India, further tests (outdoors, in Austra-
lia) were performed on marigold and sunflower
cultivars grown commercially there. In those outdoor
tests, two Indian cultivars of C. officinalis (different
cultivars to those tested previously) were found to be
quite susceptible to the rust. This is the incident of
‘non-target attack outdoors’ that has led to the
inclusion of this case study.

As a result of these outdoor test results in Australia,
the Project Directorate of Biological Control (the
organisation seeking biocontrol agents for India) and
CABI (the organisation that performed the host range
tests) decided not to apply to the Indian government
for permission to release P. melampodii in India
(Marion Seier and Carol Ellison, personal communi-
cation; see also Barton (née Frohlich) 2004). Puccinia
melampodii was released in Australia in 1999. It has
not been reported from any other non-target plants
since release (L. Morin, personal communication).

3. Biological control of Acacia saligna (Port
Jackson willow) with Uromycladium tepperianum
(gall-forming rust)

Acacia saligna is a small tree from Western Australia
that became a major weed in parts of South Africa.
It often forms dense stands at the expense of native
vegetation and is difficult to clear since it coppices
after cutting and regenerates en masse from a large
soil-stored seed-bank after fires (Richardson and
Kluge 2008). One of the worst impacts of the weed
is that it can totally replace areas of natural fynbos
(Morris 1991) a geographically limited and particu-
larly species-rich vegetation-type.
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The rust Uromycladium tepperianum attacks
A. saligna in its native range in Australia and was
proposed as a potential biological control agent.
It causes galling on stems, branches, phyllodes and
reproductive organs and the formation of witches
brooms on branches (Morris 1987). Severely affected
trees seem more susceptible to drought and other
stresses and have higher annual rates of mortality
than uninfected trees (Morris 1997).

The rust has been recorded from a number of
Acacia species in Australia, but testing revealed that
particular isolates of the rust were specific to
particular Acacia species (Morris 1987). Spores from
galls on A. saligna were applied to 23 species of
Acacia and Albizia and Faodherbia albida (Delile) A.
Chev. (=Acacia albida Delile) that had been selected
by a botanist as representative of the various groups
of African acacias. In addition, the rust was applied to
22 Acacia species and a species from a closely related
genus (Paraserianthes lophantha (Willd.) 1. C. Niel-
son) that are native to Australia (=47 non-target
species in total) (Morris 1987). Note that these figures
(and those in the paragraph below) differ from those
provided previously (Barton (née Frohlich) 2004) due
to errors in interpretation made by this author.

In these tests minor symptoms (e.g. necrotic or
chlorotic spots) developed on 11 of the Australian
species, and seedlings of three of the African species
(but not two-year-old plants of these three species),
but no galls or spores were formed and this was
perceived to be a “resistance reaction” (Morris
1987). On six species (all from Australia) there was
some gall development. However, the galls did not
produce spores, grew slowly and remained small and
were often partially necrotic (Morris 1987). These six
species were: Acacia myrtifolia (Smith) Willd.,
A. cyclops Cunn. ex Don, A. rigens Cunn. ex Don,
A. terminalis (Salisb.) J. F. Macbr., A. pulchella R.Br.
and Paraserianthes lophantha (Morris 1987).

The researcher who conducted the host range tests
pointed out that symptoms observed on these five
species in glasshouse-grown seedlings may not
indicate that they would be “natural hosts” of the
U. tepperianum isolate from A. saligna in the field.
He noted that “galls were never observed on
A. pulchella and only one small gall was found on
A. cyclops in south western Australia where the two
species grow in mixed communities with heavily
galled A. saligna (M. J. Morris, pers. obs. in Morris
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(1987)). It was concluded that the only potential
‘cost’ of releasing the U. tepperianum isolate from
A. saligna would be minor damage to a few species of
Australian Acacia, and P. lophantha. This was easily
outweighed by potential benefits from a reduction in
A. saligna populations, so the rust was released in
South Africa in 1987.

Since its release U. tepperianum has occasionally
caused abnormal galls on Acacia cyclops and
Paraserianthes lophantha, as it did in pre-release
testing (M. J. Morris, A. Wood, and J. Hoffmann,
personal communication). As predicted, this only
occurs in South Africa, as in Australia, where the
non-target plants grow in close proximity to heavily
infected A. saligna plants. As in the glasshouse, these
galls are small, slow-to-develop and do not produce
spores (A. Wood, personal communication). Thus,
this non-target attack was correctly predicted.

4. Biological control of Rubus fruticosus agg.
(Blackberry) with Phragmidium violaceum (rust)

Blackberry is the common name given to a cluster of
closely related Rubus species called Rubus fruticosus
agg. for convenience. It is from Europe and has
become a serious weed in many countries, including
Australia and New Zealand (Bruzzese and Lane
1996). It grows and spreads vigorously because seed
is spread by fruit eating birds and mammals and it can
also propagate vegetatively from cane tips. Stems are
densely covered with spines (prickles) which are
problematic for grazing animals and humans.
Phragmidium violaceum was chosen as a promis-
ing agent and a mixture of 15 isolates of the rust was
applied to 51 non-target species all in the Rosaceae
family. It caused symptoms on 15 Rubus species and
for several species more than one variety was found
to be susceptible. Note that nine of these 15 species
were targets: i.e. Rubus species that had naturalised in
Australia and were considered unwanted, noxious
weeds (the author missed that fact and erroneously
stated 15 non-target species had been infected
in Barton (née Frohlich) 2004). The remaining six
species were ‘non-targets’. These were: R. rusticanus
Merc. (potentially used in breeding commercial
varieties of blackberry), several unnamed varieties
of ‘brambleberry’, R. gunnianus Hook. (native to
Australia, specifically to Tasmania) and three Rubus
species that are native to New Zealand: Rubus
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australis Forst., R. cissoides A. Cunn., and, R. sch-
midelioides Fritsch (Bruzzese and Hasan 1986a).
Seven other Rubus species native to Australia and
two native to New Zealand were included in these
tests, but were found to be immune or resistant to the
rust (Bruzzese and Hasan 1986a).

The Rubus species native to Australia and New
Zealand that developed symptoms in the original tests
underwent further glasshouse testing in order to
quantify the degree of attack by the rust (Bruzzese
and Hasan 1986b). Note that these are the seven species
recorded as having been tested twice in columns 5
and 6 of Table 1. It was concluded that “damage to
R. gunnianus is likely if the 15 rust isolates tested
were introduced to Australia for biological control of
European blackberry. Damage to R. schmidelioides
and R. cissoides can be expected if the rust reaches New
Zealand, but the rust is unlikely to affect adversely the
other Australian and New Zealand species tested”
(Bruzzese and Hasan 1986b).

Subsequently, it was decided that the rust should
be released in Australia because potential benefits
were seen to outweigh potential costs. Blackberry
itself was perceived to be a potential threat to native
Rubus species, so a decision not to introduce the rust
could also have had negative impacts on them. Note
that the susceptible Rubus species native to Australia
and New Zealand were described as “not economic
plants, nor are they listed as endangered species”
(Bruzzese and Hasan 1986a). In the 25 years since
those words were written attitudes towards native
species have altered dramatically in Australia and
New Zealand and significant damage to such
species would be far less tolerated today (personal
observation).

Phragmidium violaceum appeared in Australia in
1984, and it is assumed that one or more illegal
introductions were made before permission to release
was granted (Evans et al. 2000). The rust first
appeared in New Zealand in 1990 and subsequent
DNA analysis suggests that P. violaceum in New
Zealand originated from Australia, probably via
wind-dispersal of urediniospores across the Tasman
Sea (Gomez et al. 2006). One isolate of the rust (F15)
was deliberately (and legally) released in Australia in
1991 and 1992 but DNA analyses suggest that genes
from this strain were not widely incorporated into the
existing population of the rust in Australia (Evans
et al. 2000).

Between 2000 and 2009 surveys were conducted
in New Zealand to specifically look for non-target
damage from five pathogens that attack weeds there,
including P. violaceum (Waipara et al. 2009). During
that survey, the author found P. violaceum on two out
of 132 Rubus cissoides plants examined. The rust was
not found on any of the 69 plants of R. schmidelioides
that were examined during the same study, despite
this species having been found to be almost as
susceptible in pre-release tests (Bruzzese and Hasan
1986b). The predicted damage observed in the field
on R. cissoides was minor and occurred where this
plant was growing beside heavily infected plants of
the target weed.

Since it first appeared in Australia Phragmidium
violaceum has proved useful for the control of some
weedy Rubus taxa in Australia, but not others (Evans
et al. 2005). It was proposed that more isolates of the
rust should be sourced from Europe in order to
broaden the genetic diversity of the rust population
there (Gomez et al. 2008). In order to collect a broad
a range of P. violaceum isolates that were likely to be
effective against the particular Rubus taxa that are
problematic in Australia a ‘trap garden’ was estab-
lished. This method involved planting various clones
of blackberry collected in Australia, each with a
different DNA phenotype, at the CSIRO European
Laboratory near Montpellier, France where P. viola-
ceum occurs naturally (Morin et al. 2011). This
method proved efficient: eight genetically distinct
isolates of P. violaceum were obtained from the ‘trap’
plants and these were imported into Australia for
host range testing (Morin et al. 2011). The non-target
plants included in these tests were: (1) six commer-
cial blackberry cultivars with R. fruticosus agg. in
their pedigrees; and, (2) five Rubus species native to
Australia (two tested previously and three described
since the original tests were done, L. Morin and
K. J. Evans unpublished data). Two non-target plants
developed disease symptoms: the American thornfree
cultivar of blackberry (which was also susceptible in
earlier tests) and the native species R. moorei (which
was ‘resistant’ to the old isolates) (L. Morin and
K. J. Evans unpublished data). It was concluded that
the new isolates had a similar cost:benefit ratio to the
old ones, and they were released in Australia in 2004.
Rubus cissoides plants were searched for P. violaceum
at two sites in New Zealand in 2008-2009 and they
were found to be free of the rust (Waipara et al. 2009).
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Also, land managers in New Zealand have been
asked to report to the author if they ever encounter
P. violaceum on native Rubus species (Barton et al.
2008), and to date, no-one has done so. Therefore, if
new genetic material has reached New Zealand from
Australia it has not yet resulted in significant damage to
non-target plants here.

Note that Phragmidium violaceum was discovered
in April 2005 on Himalaya Blackberry (Rubus
armeniacus) in Oregon, USA (Osterbauer et al.
2005). This appears to be an accidental introduction
and is the first official report of the rust in North
America. In Oregon, P. violaceum has so far been
found on invasive Rubus species and one commer-
cially farmed “Everthornless” Thornless Evergreen
Blackberry (Rubus laciniatus) (Osterbauer et al.
2005). These species were susceptible in host range
testing (Bruzzese and Hasan 1986a). The rust has not
been found on Rubus species native to the US or
other cultivated varieties. Therefore, while the rust is
of concern to American horticulturalists who culti-
vate R. laciniatus varieties, its arrival is probably
welcomed by land managers who seek to control
blackberry. Note that DNA analysis conducted in
Australia has shown that the rust that appeared in
Oregon did not originate there (L. Morin, personal
communication).

5. Biological control of Mikania micrantha
(Mikania or mile-a-minute weed) with Puccinia
spegazzinii (Rust)

Mikania is a vigorous, perennial vine that is native
to the neotropics between Mexico and Argentina
(Ellison et al. 2008). It has become an important
invasive weed in many parts of Asia that have a moist,
tropical climate (Ellison et al. 2008). It is known as
mile-a-minute weed because it grows extremely fast
and it is destructive because it can quickly dominate
ecosystems and smother more desirable plants.
Puccinia spegazzinii was selected as a promising
biological control candidate (Ellison et al. 2004). This
rust occurs on M. micrantha throughout the native
range of the plant (Ellison et al. 2008). Cross inocu-
lation studies showed that most (possibly even all)
of the exotic and weedy populations of M. micrantha
are susceptible to one or more isolates of Puccinia
spegazzinii (Ellison et al. 2004). An isolate of
P. spegazzinii collected in Trinidad and Tobago was
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selected for initial host range testing by CABI in the
UK. It was applied to 59 non-target species, of which
33 were from the same family as the target weed (the
Asteraceae) (Ellison et al. 2008). The rust infected and
developed spores on four of the non-target plant
species: Mikania capensis DC., M. cordata (Burm. F.)
Robinson, M. microptera DC., and M. natalensis DC.
(Ellison et al. 2008). Of these, Mikania cordata
supported the most vigorous rust development (Ellison
et al. 2008).

This project is unusual in that the weed is so
widespread that the biological control agent was
wanted by five different regions: China (mainland),
Taiwan, Fiji, India and Papua New Guinea (PNG)
(Ellison and Day 2010). Each region conducted its
own host range tests in addition to those performed in
the UK. Test results were consistent: that is spores
were not produced on any plants in this second round
of testing that were not also shown to be susceptible
in the UK tests.

The species of Mikania found to be susceptible to
P. spegazzinii in host range tests are native to Africa
(M. capensis, M. microptera and M. natalensis) and
to Southeast Asia (M. cordata). There are no native
Mikania species found in India, so risk assessment
there was simple and the rust was released in Assam
(NE India) in 2005 and in the Western Ghats in
Kerala (SW India) in 2006 (Ellison and Day 2010).
Apparently the rust failed to establish in both regions
and the project is not presently active in India
(Ellison and Day 2010).

Mikania cordata occurs naturally in China, PNG,
Solomon Islands and Western Samoa, and so it was
known that P. spegazzinii would overlap in range
with this susceptible non-target plant in its native
range if it were released in China and the Pacific.
Therefore, there was a potential ‘cost’ to releasing the
rust there. In weighing up this cost, it was taken into
account that: (1) glasshouse tests are a worse-case
scenario and disease symptoms that develop in the
field are likely to be less severe (this issue is
discussed further below); (2) if P. spegazzinii were
to attack M. cordata in the field, it is unlikely to cause
the species to become extinct (evolution does not
favour biotrophic pathogens that eradicate their
hosts); (3) the niche occupied by M. cordata includes
altitudes where M. micrantha and P. spegazzinii do
not thrive and these habitats should support popula-
tions of M. cordata that can evade and/or survive the
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rust; and (4) M. micrantha is invading and destroying
habitats where M. cordata occurs, so not releasing
P. spegazzinii as a biological control agent for
M. micrantha would also result in a °‘cost’ to
M. cordata (Ellison et al. 2008).

Puccinia spegazzinii was subsequently released in
China, Taiwan, Fiji and PNG (see Table 1 for dates).
On the Chinese mainland it initially spread from
release sites, but its current status in the field is not
known (Ellison and Day 2010). It has reportedly
established in Taiwan, Fiji and PNG (Ellison and Day
2010).

In December 2010 Puccinia spegazzinii was found
infecting the native species Mikania cordata in the
field in PNG (Ellison and Day 2010). Rust pustules
were found on the leaves of a small population of
M. cordata at a single site (Kiteni Kurika, personal
communication). At this site infected vines of the two
Mikania species (target and non-target) grow “on top
of each other” (Kiteni Kurika, personal communica-
tion). Infection was quite heavy on both plant species,
but on a return visit, there were found to be fewer
plants of the target weed while the native species was
still present in large numbers (despite still being
highly infected). It seems that M. cordata is most
likely to be infected by the rust when it grows in close
proximity to infected M. micrantha. If the rust
successfully reduces populations of M. micrantha,
as appears to be happening in the field already, then
hopefully, there will be fewer areas where such ‘spill-
over’ can occur in future. Researchers in PNG are
continually checking whether the rust is attacking
M. cordata in other areas, especially at the small
number of places where target and non-target plants
grow together (M. Day, personal communication).
This non-target attack was accurately predicted, and
so far it seems that the expectation that M. cordata
that grows in habitats that are unsuitable for
M. micrantha will be able to evade and survive the
rust is being realised.

Expansion of host range under artificial conditions

Pathogens released for the biological control of
weeds have apparently only ever caused damage to
six non-target species outdoors, yet those same agents
damaged 107 non-target species in pre-release tests
conducted indoors (Table 1). Thus, host range tests

under glasshouse conditions have tended to over-
estimate the susceptibility of non-target plants in the
field.

There are two reasons for this: firstly, host range
tests are invariably conducted under conditions
believed to be ‘optimal’ for the pathogen. That is,
before host range tests begin experiments are per-
formed to determine: the temperature range at which
the pathogen is most active, and whether or not it
requires free-moisture to infect its host, and if so,
how long this ‘dew period’ should be (see, as a
typical example, Ellison et al. (2008)). Host range
tests are then conducted within an environment
heavily skewed in the pathogen’s favour so as to
ensure that positive control plants (i.e. the target
weed) become heavily diseased. These ideal condi-
tions are likely to be rare in the field and so test
results in containment present a ‘worse-case-
scenario’. The second reason why indoor tests tend
to over-estimate outdoor damage is that plants used in
tests have often been grown from seed in a
glasshouse. As a result they can have softer, less
pathogen-resistant tissues than cohorts, which have
grown through and survived various hardships,
outdoors (Barton (née Frohlich) 2004).

Additional information useful for risk assessment

When weighing up the costs and benefits of a
potential release, authorities should look at other
information in addition to the results of host range
tests done under artificial conditions. Otherwise,
pathogens that could be useful (and safe) biological
control agents for weeds could be prematurely
rejected.

Examples of additional information being pro-
vided to assist decision makers are plentiful in the
biological control literature, including in the case
studies discussed above. For example, information on
the field host range of a pathogen in its new home can
be gathered through observation of its behaviour in its
old one. It was known that the rust Uromycladium
tepperianum would probably form non-sporulating
galls on some Australian Acacia species in South
Africa, because that is what it does in Australia
(Morris 1987). Likewise, it was thought that Puccinia
carduorum would probably not cause significant
damage to globe artichoke in the field in the USA,
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because it does not attack that species in the field in
its home range in Eurasia (Bruckart et al. 1985).

Another way for researchers to assist decision
makers is to quantify the susceptibility of the non-
target plant(s) with respect to the target plant. This
can be done on the basis of disease severity (e.g.
disease ratings, leaf area infected, reduction in
plant height or weight) or disease incidence (i.e. the
proportion of individual non-target plants infected
compared to the target plants). A good example of
this technique is provided by the second set of tests
conducted on blackberry rust (Phragmidium violace-
um) in order to compare the susceptibility of various
desirable and undesirable Rubus species (Bruzzese
and Hasan 1986b).

Finally, the ideal situation, which is often impos-
sible in practice, is for host testing to be done
outdoors. Probably the best way of doing this is to
export test plants to somewhere where the pathogen
has already been released (as was done with Indian
plants being tested in Australia as part of the
Parthenium project, see above). Tests outdoors could
also be done in the home-range of the pathogen. The
main obstacle to such tests is getting permission to
grow plants from one country outdoors in another,
outside of a quarantine facility. Note that this is
sometimes possible: for example it was done in
France with ‘trap gardens’ of Australian Rubus
species (see above). The situation which is likely to
give the best prediction of post-release behaviour is
unfortunately the one with greatest risk: that is setting
up plots of non-target plants outdoors in the country
where the agent is to be used (as was done with thistle
rust, Puccinia carduorum, in the USA). This is the
ideal experiment in that the organism is being tested
under exactly the conditions it will encounter after
release. However, it is a brave researcher who
undertakes to eradicate a pathogen, especially one
as mobile as a rust, once it has been ‘let out of the
bottle’.

Conclusions: predictability of pathogen host range
and its relevance to the use of pathogens
for classical biological control in natural areas

It was 1971 when the first pathogen was deliberately

released as a classical biological control agent against
a weed (Hasan 1972). Since then, there has not been a
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single reported case of unpredicted non-target dam-
age. While pathologists working in this field deserve
a pat-on-the-back for that, there is no room for
complacency. It is a very serious responsibility to
ensure that the results of biological control projects
reduce, and not add-to, the adverse impacts of exotic
organisms in natural areas.

Researchers recognise this, and in the author’s
experience, they are always looking for data that will
improve the accuracy of their predictions with respect
to non-target attack in the field. Directed surveys for
non-target damage from pathogens released as clas-
sical biological control agents are rare, and published
information even rarer (personal observation). This is
unfortunate as information about non-target impacts
in the field would help refine host-range testing
methods and potentially reduce ‘false positives’.
There are many obstacles to conducting long-term
post-release monitoring studies (Barton (née Frohlich)
2004; Hopper 2001) but it is possible. Retrospective
studies of non-target damage by both pathogens
(Waipara et al. 2009) and invertebrates (Paynter
et al. 2004) have been done in New Zealand. Also,
many such studies have been done with specific
insects introduced to control weeds, especially in the
US (see, for example, papers cited in Louda et al.
(2003) and listed on p. 43 of Hopper (2001)).

Once the fundamental host range of each potential
agent has been determined (through host range testing
of appropriate non-target species indoors) other
information must be added in order to gain a picture
of how it is likely to behave in the field. Examples of
‘other’ information include: the taxonomy, life-cycle
and epidemiology of the agent; the presence/absence
of ‘susceptible’ non-target plants where the agent will
be used, and the vulnerability of those plants; and the
ecology and behaviour of the agent in its native
range. The results presented here show that when all
this information is put together, pathogen host range
in the field can be predicted accurately.

In 2004, pathogens had only been released as
classical biological control agents for weeds in seven
countries: Argentina, Australia, Chile, French Poly-
nesia, New Zealand, South Africa and the USA
(including Hawaii) (Table 1). At that time, the author
said “Given their excellent safety record, it is to be
hoped that more countries will be added to this short
list in the future” (Barton (née Frohlich) 2004). It was
therefore very pleasing to find that as a result of the
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project to control Mile-a-minute-weed (Mikania
micrantha) pathogens have since been released in
four more countries (China (mainland and Taiwan),
Fiji, India and Papua New Guinea, Table 1). It is to
be hoped that more countries will follow in due
course.

The predictions of pathogen host range in the field
that have been made to date have led to appropriate
decisions: the environmental costs of releasing them
have never outweighed the environmental benefits.
Pathogens should be seen as a particularly useful tool
for weed control in natural areas which are rich in
valued non-target species.
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