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Introduction

Ageing, a time-dependent phenomenon, is accompa-
nied with a decline in homeostatic balance and it is 
mostly inevitable by living organisms. It is a multi-
faceted, heterogeneous, progressive process, interact-
ing at different levels of biological hierarchy – molec-
ular, cellular and tissue level, causing various organs 
to age differently (Jones et  al. 2014). A number of 
age-associated processes have been analyzed, as 
potential drivers of ageing, as they interact with each 
other to maintain homeostasis at different levels of 
organization (Kennedy et  al. 2014). Interactions 
between genetic and epigenetic factors control ageing 
and modulating these factors extend lifespan. Ageing 
poses as the primary risk factor to various chronic 
diseases like type 2 diabetes mellitus (T2DM), Alz-
heimer’s disease (AD), Parkinson’s disease (PD), car-
diovascular disease, cancers, sarcopenia and immune 
system disorders; and as the most significant cause of 
human morbidity and mortality (Aunan et al. 2017). 
Various theories have been proposed in an attempt 
to explain the phenomenon of ageing (López-Otín 
et al. 2013; Sharma and Dkhar 2014; Lipsky and Kin 
2015).

Ageing in itself is an inclusive term for a number 
of biological processes with multiple aspects, which 
have been described by López-Otín et  al. (2013) as 
hallmarks of ageing. Among the hallmarks, the dys-
regulation of mitochondrial function and a gradual 
decline in functioning of nutrient sensing pathways 
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act as antagonistic hallmarks of ageing. These hall-
marks are interconnected as they encroach upon cel-
lular metabolism. They respond to changes in the 
environment − nutrient excess or scarcity, physical 
or chemical stress and exposure to microorganisms. 
Age-related deterioration of one of the above-men-
tioned processes has a profound effect on the other. 
The deregulation of these pathways drives the cell 
towards a senescent state, which contributes to age-
ing phenotype and, eventually, drives the organism 
susceptible to chronic age-related diseases. Thus, tar-
geting metabolic regulation could be an encouraging 
approach towards extending human healthspan and 
lifespan.

Dietary interventions, such as calorie restriction, 
intermittent fasting, usage of CR mimetics, have 
shown to be of great importance in altering mitochon-
drial dysregulation and nutrient sensing pathways in 
ageing organisms, thereby extending their healthspan 
part of lifespan. This review focuses on two of the 
hallmarks of ageing, viz., mitochondrial dysfunction 
and declining function of the nutrient sensing path-
ways, how nutrient sensors regulate mitochondrial 
function and how dietary factors alleviate the ill 
effects of ageing associated with these two hallmarks.

Mitochondrial association during ageing

Mitochondria, as the powerhouse of the cells, pro-
vide the energy requirement for aerobic organisms 
to perform all the activities in the form of adeno-
sine triphosphate (ATP) through the tricarboxylic 
acid (TCA) cycle and the electron transport chain 
(ETC), and are the major sources of intracellular 
reactive oxygen species (ROS). They are also cru-
cial for basic cellular functions, such as redox bal-
ance, signalling transduction, metabolic homeosta-
sis, cell differentiation and senescence. Thus, their 
dysfunction leads to reduction in the ATP produc-
tion, elevated production of ROS, reduced antioxi-
dant resistance and metabolic disorders, including 
various age-related neurological, fibrotic and car-
diovascular diseases (Boengler et  al. 2017; López-
Lluch et  al. 2018; Zhu et al. 2019; Li et  al. 2020). 
ROS, under normal physiological conditions, have 
various important functions in regulating cellular 
metabolism. Hydrogen peroxide (H2O2) and super-
oxide (O2

·−) are two important ROS which act as 

signalling molecules in regulating cell growth, dif-
ferentiation and death, activate mitogenic-activated 
protein and also take part in an organism’s immune 
response against a number of infections. H2O2 helps 
in regulating the expression of a number genes, 
including nuclear factor erythroid-2-related factor 
2 (Nrf2), activator protein (AP-1), cAMP response 
element binding protein (CREB), nuclear fac-
tor kappa B (NF-kB), heat shock factor 1(HSF1), 
hypoxia inducible factor 1(HIF-1), tumour pro-
tein p53 (TP53), neurogenic locus notch homolog 
protein (NOTCH), and specificity protein 1(SP1) 
(Marinho et  al. 2014; Sies 2017). Proteins with 
sulfhydryl groups can be directly affected by ROS 
through the oxidation of their thiol moiety. They 
can also increase the capillary walls’ permeability, 
thereby stimulating glucose transport into the cells 
as well as that of serotonin into platelets (Droge 
2002; Giorgi et al. 2018). However, uninhibited pro-
duction of ROS may incite oxidative damages to the 
major cellular components (proteins, lipids, nucleic 
acids) due to their high reactivity and are, therefore, 
likely to be toxic, mutagenic, or carcinogenic. Free 
radical reaction intermediate products, e.g., perox-
ynitrite and lipid hydroperoxides, can alter various 
components of the cell (Giorgi et al. 2018).

In 1954, the free radical theory of ageing (FRTA) 
was proposed by Denham Harman, linking oxidative 
stress and ageing (Harman 1956). It was later devel-
oped as the mitochondrial free radical theory of age-
ing (MFRTA), stating that mitochondrial dysfunction 
and subjection to subsequently heightened ROS pro-
duction give rise to a vicious loop causing damages 
to cell and its components, consequently leading to 
death (Harman 1972). Though the theory initially 
received not so much enthusiasm, ROS have shown to 
be of great importance during the process of ageing. 
Studies have shown the association of oxidative dam-
ages to  deoxyribonucleic acid (DNA), proteins and 
lipids with uncontrolled production of ROS, impaired 
mitochondrial function and untimely cell death or 
senescence (Sohal and Weindruch 1996; Bokov et al. 
2004). Increased production of ROS has also been 
linked to mitochondrial oxidative damage, accompa-
nied by a decrease in the copy number of mitochon-
dria (Herbener 1976; Yen et al. 1989; Lambert et al. 
2007; Cocheme et  al. 2011). These changes have 
shown to be associated with characteristic features of 
human ageing, such as loss of hair, reduced fat and 
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weight, decrease in the bone density and cardiomyo-
pathy (Trifunovic et al. 2004).

Mitochondrial ROS regulation during ageing

Throughout the life of a cell, there is a constant mito-
chondrial ROS generation, resulting in an age-asso-
ciated chronic oxidative stress, accounting for mito-
chondria being crucial players during ageing (Miquel 
et  al. 1980; Santos et  al. 2013). Complexes of the 
ETC can get assembled into functionally and struc-
turally larger units, also known as ‘respirasomes’, 
that allow minimizing the diffusion distances of sub-
strates for a more effective electron flow through the 
ETC. These supercomplexes have been proposed to 
be linked to an age-dependent destabilization, con-
tributing to the development of an ageing phenotype 
of the mitochondria, especially in post-mitotic tissues 
(Gomez and Hagen 2012). The rate at which these 
ETC complexes are assembled affects the ROS pro-
duction capacity of the mitochondria (Genova et al., 
2015; Moreno-Loshuertos et  al. 2016), suggesting 
that the inability to form large units or their continual 
degradation might be an important factor in bring-
ing about age-associated heightened ROS produc-
tion and oxidative stress (Genova et al. 2015). Mito-
chondrial DNA (mtDNA), mitochondrial enzymes 
and lipids are the primary targets of ROS. Another 
factor favouring the adverse consequences of oxida-
tive stress resulting in the accumulation of damaged 
mtDNA is the close vicinity of the DNA from the 
sites for ROS production in the ETC (Yen et al. 1989; 
Lambert et al. 2007; Cocheme et al. 2011). On con-
trary to their destructive property, ROS, when present 
lower than a level that can be toxic, are essential for 
normal physiological functions and involved in many 
signal transductions, such as regulation of autophagy 
and inflammatory responses (Whitehall et al. 2020).

During ageing, along with the increase in the ROS 
production, there is an associated decline in the anti-
oxidative defense capacity, thereby increasing the 
deteriorating effects of oxidative stress. This succes-
sively leads to the reversible oxidation of the thiol 
groups, disrupting the antioxidative enzyme activ-
ity that can lead to harmful changes in the structure 
and function of various biomolecules (Freitas et  al. 
2016). In Drosophila melanogaster, it was observed 
that overexpression of antioxidative enzymes, such 
as superoxide dismutase (SOD) and catalase, protects 

the DNA from the harmful effects of ROS by decreas-
ing their production, ultimately extending the organ-
ism’s lifespan (Orr and Sohal 1994; Schriner et  al. 
2005). It was also observed that there is a higher 
level of such enzymes with decreased damage to the 
proteins and lipids, and adaptive mechanism of mito-
chondrial cysteine depletion in long-lived mice strains 
and other species (Pamplona et al. 2002; Rebrin and 
Sohal 2004; Moosmann and Behl 2008).

The negative correlation between ROS production 
and lifespan has been shown by various studies where 
hydrogen peroxide diffusing out from mitochondrial 
respiration was measured. Hydrogen peroxide pro-
duction rate was much lower in the mitochondria of 
heart, brain and kidney of long-lived bats than that 
of short- lived shrew species (Brunet-Rossini 2004). 
Similar observation was also found in remarkably 
long-lived naked mole rat as compared to Fisher 344 
rats (Csiszar et al. 2007). However, some studies have 
also shown the opposite results, depicting the posi-
tive correlation between ROS production and lifespan 
extension. In the vascular endothelial cells of long-
lived Ames dwarf mice and their normal littermates, 
the production of hydrogen peroxide was more in the 
long-lived ones than that of the normal counterpart 
(Csiszar et  al. 2008). In Caenorhabditis elegans, no 
effect on overall ROS was seen due to mutations in 
the mitochondria, even though the level of mitochon-
drial superoxide was elevated. In the mentioned study, 
unexpectedly, supplementing antioxidants shortened 
the lifespan of the mutants (Yang et al. 2010). Moreo-
ver, when antioxidative enzymes, like mitochondrial 
SOD2 (manganese superoxide dismutase, MnSOD) 
and glutathione peroxidase-1 (GPx-1), were silenced 
in mice, longevity of the organism was not affected 
despite the rise in level of oxidative stress (Perez et al. 
2009; Zhang et al. 2009). Even so, evidence support-
ing the credibility of the MFRTA outweigh till date. 
Nonetheless, the contradictory observations made 
rather supports the theory known as mitohormesis, 
stating that the mitochondrial ROS in their moderate 
level have the capacity to activate mechanisms com-
pensating protection of cellular organelles from the 
harmful effects of ROS and delay the appearance of 
phenotypes associated with ageing (Ristow and Zarse 
2010). For example, in the case of Drosophila and 
young mice slight increase in the level of ROS have 
been associated with lifespan extension (Csiszar et al. 
2008; Copeland et al. 2009; Basisty et al. 2016). The 
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finding that reducing elevated levels of mitochondrial 
ROS defends old mice from age-associated decline 
also suggests that decreasing ROS levels may help 
in delaying age-related diseases along with lifespan 
extension in ageing mammals (Schriner et  al. 2005; 
Basisty et  al. 2016). In human subjects, administer-
ing antioxidative compounds selegeline and vitamin 
E, singly or in combination, thereby downregulating 
the ROS concentration, have been seen to slow down 
the progression of AD (Sano et  al. 1997). However, 
in PD, vitamin E failed to protect or delay the disease 
progression (Parkinson Study 1993) and was even 
found to be deleterious in some AD patients (Lloret 
et al. 2009).

Mitochondrial dysfunction in ageing

Mitochondrial dysfunction is one of the nine classi-
cal hallmarks of ageing (López-Otin et  al. 2013). It 
is often linked with a number of processes such as 
decrease in the respiratory chain activity, fluxes in the 
TCA cycle, faulty regulation and function of mtDNA, 
elevated ROS level, intracellular calcium level 
changes and decline in the ATP level (de Almeida 
et al. 1989; Petrosillo et al. 2008; Emelyanova et al. 
2018; Rottenberg and Hoek 2017; Li et  al. 2020). 
Various studies have shown that mitochondrial qual-
ity control maintenance is of pivotal importance in 
fending off the process of ageing (Weber and Reichert 
2010; Romanello et  al. 2016). During ageing, there 
is an accumulation of damaged mitochondria with a 
mitochondrial turnover decline via mitophagy inhibi-
tion. Thus, striking a balance between generating new 
mitochondria and eliminating impaired ones is cru-
cial for extending longevity (Chistiakov et  al. 2014; 
Denzer et  al. 2016). Impaired mitochondria release 
apoptogens into the cytoplasm due to the rupturing 
of the outer membrane leading to senescence during 
ageing (Daum et  al. 2013). Mitochondrial dysfunc-
tion also adds to a number of metabolic disorders, 
cancer, neurodegeneration and various other patholo-
gies (Thompson et al. 2015; Vincent et al. 2016; Spi-
nelli et al. 2017; Reeve et al. 2018).

Mitochondria are interconnected dynamically, 
which enables them to share membranes, metabo-
lites, proteins, solutes and electrochemical gradient 
as well (Tilokani et al. 2018). Mitochondrial dynam-
ics is crucial in the regulation of mitochondrial func-
tion, quality control and senescence (Archer 2013). 

It comprises of mitochondrial fission, fusion, move-
ment and interconnection with other various cellular 
organelles, and is regulated by these afore mentioned 
processes through reconstructing the interconnected 
structure and function of mitochondria as a result 
of the nutrient level, signalling molecules and stress 
(Benard and Rossignol 2008; Sharma et  al. 2019). 
Mitochondrial dynamics are deteriorated during age-
ing and in various age-associated diseases as seen 
with the presence of damaged mitochondrial physi-
ology. Mitochondrial fission and fusion are the main 
modulators of mitochondrial dynamics. Mitochon-
drial fission is vital for removing aberrant mitochon-
dria through mitophagy, mitochondrial transport and 
apoptosis via stress-induced hyperfission (Fannjiang 
et  al. 2004; Malena et  al. 2009; Thomenius et  al. 
2011; Mao et  al. 2013). During ageing, some pro-
teins associated with mitochondrial fission are found 
to be dysregulated, possibly leading to the altered 
mitochondrial dynamics in aged organisms. Cytosolic 
dynamin-related protein 1 (DRP1), the main protein 
coordinating mitochondrial fission, was found to be 
downregulated in aged mice skeletal muscle, and in 
human vascular endothelial cells (HUVECs) along 
with mitochondrial fission 1 protein (FIS1) (Mai et al. 
2010; Leduc-Gaudet et al. 2015).

Inducing the expression of Drp1 midlife in Dros-
ophila is seen to extend healthspan along with lifes-
pan by enhancing mitochondrial respiration and 
autophagy. Moreover, mitochondrial fragmentation 
induction in the intestine of both C. elegans and 
flies is known for increasing lifespan (Han et  al. 
2017; Rana et  al. 2017). These findings from dif-
ferent models used in ageing studies show that pro-
teins associated mitochondrial fission decline with 
age and suggest regulating the expression of these 
proteins might have lifespan extension properties. 
In contradictory to the above observations, deletion 
of Drp1 ortholog Dmn1p delays ageing in yeast by 
inhibiting mitochondrial fission without hindering 
growth rate or fertility (Scheckhuber et  al. 2007). 
Increasing mitochondrial fission in the skeletal 
muscle of mouse were also found to be associated 
with impairment of insulin signalling and mito-
chondrial dysfunction (Jheng et  al. 2012). There-
fore, increased or decreased mitochondrial function 
by elevating mitochondrial fission depends on the 
type of tissue or the organism (Sharma et al. 2019).
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Membrane-bound dynamin related proteins help 
in attaining fusion of mitochondria. Fusion of mito-
chondrial outer membrane is mediated by mitofusin 
1 (MFN1) and MFN2, and that of inner mitochon-
drial membrane by optic atrophy 1 (OPA1) (Hall 
et  al. 2014) and loss of any of these proteins con-
tribute to hyperfragmented mitochondrial network. 
Mitochondrial fusion helps in exchanging metabo-
lites, membrane potential transmission, elevation 
of the production of ATP, and decreasing ROS pro-
duction, as well as in reducing mitochondrial-endo-
plasmic reticulum Ca2+ transfer, preventing Ca2+ 
induced cell-death (Chen et  al. 2005; Buck et  al. 
2016; Zhao et  al. 2017; Jung et  al. 2018). It also 
alleviates mitochondrial stress through contents 
fusion of partly damaged mitochondria with that of 
healthy ones. Both fission and fusion allow mito-
chondria in adapting to severe nutrient level changes 
allowing more metabolic flexibility. Most studies on 
mitochondrial dynamics suggest that maintenance 
of a balance between fusion and fission might prove 
to be more favourable for an organism to attain a 
healthier mitochondrial network than separately 
promoting or inhibiting either of the two processes 
(Sharma et al. 2019).

Both AMP-activated protein kinase (AMPK) and 
calcineurin-mediated extension of lifespan in C. ele-
gans are suppressed by mitochondrial network frag-
mentation (Burkewitz et  al. 2015). In addition, inacti-
vating dynamin-related protein 1 (Drp1) in C. elegans 
was seen to significantly enhance the insulin signal-
ling ability to extend lifespan, proposing a correla-
tion between extension of lifespan and mitochondrial 
fusion/fission ratio (Yang et  al. 2011). Therefore, it 
suggests that mitochondrial dynamics is involved 
in the regulation of ageing, along with or as a part of 
ageing-related pathways such as insulin and insulin/
insulin-like growth factor-1 (IIS) signalling or AMPK 
pathway (Giorgi et al. 2018). In fungal models, Podos-
pora anserine and Saccharomyces cerevisiae, deletion 
of dynamin-related protein 1 (Dnm1p), mediates fis-
sion and suppresses ageing, thereby extending lifespan 
(Scheckhuber et  al. 2007). However, upregulating the 
expression of Drp1 in Drosophila during midlife have 
shown to extend lifespan, probably through autophagy 
(Rana et al. 2017). These studies suggest that there is 
no specific link between either fusion or fission and life 
expectancy, but rather the regulation of the mitochon-
drial quality control, controlled by fusion and fission, 

which determines the process of ageing (Giorgi et  al. 
2018).

The occurrence of cardiovascular disease increases 
during ageing and is one of the main factors that ulti-
mately lead to the death of an organism (Rapsomaniki 
et  al. 2014). Hyperfragmented mitochondrial network 
and low expression level of optic atrophy 1 (Opa1) are 
associated with failure of the heart in human and mice 
(Chen et al. 2009). Opa1, along with the mitochondrial 
assembly regulatory factor (Marf, Drosophila mitofu-
sin), are also necessary for the proper functioning of 
cardiomyocyte in Drosophila and defects in fusion are 
linked with cardiomyopathy (Dorn and Scorrano 2010). 
In mice, Opa1 unbalanced processing and decreased 
mitochondrial fusion are associated with fragmentation 
leading to heart failure (Wai et  al. 2015). These stud-
ies show that fusion, along with Opa1, is essential for 
the proper functioning of the heart and prevents heart 
failure, and appear to be conserved throughout the three 
species, flies, mice and humans (Giorgi et al. 2018).

AD and PD are the most common age-related neu-
rodegenerative diseases and have been associated to 
mitochondrial dynamics and mitophagy (Chen et  al. 
2009). In AD, amyloid-β (Aβ) is linked to hyper-
fragmentation of mitochondrial network induced by 
Drp1in the disease progression (Reddy et  al. 2017). 
Decreasing the Drp1 level also reduces the production 
level of soluble Aβ, protecting against mitochondrial 
and synaptic toxicities caused by Aβ in the progres-
sion and pathogenesis of AD (Manczak et al. 2016). 
PD is also accompanied by fusion/fission ratio altera-
tions. Fragmentation of the mitochondrial network 
and damaged anterograde axonal transport of mito-
chondria have been observed in the respiratory–chain 
deficient dopaminergic neurons (Sterky et  al. 2011). 
Age-associated degenerative effects also affect mus-
cles leading to muscle wasting. In aged mice, it was 
observed that the intermyofibrillar mitochondria in 
the skeletal muscle were longer and branched, indi-
cating an increase of mitochondrial fusion and/ or 
a decrease of fission (Leduc-Gaudet et  al. 2015). In 
case of human, aged subjects had lower Opa1 level in 
the muscle (Joseph et al. 2012).

Nutrient sensing association during ageing

Organisms are invariably dependent on their abil-
ity to utilize nutrients for growth and metabolic 
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functions. Multiple mechanisms and pathways 
respond to the level of nutrients in order to maintain 
homeostasis and disruption in these mechanisms 
disturbs the equilibrium of the cellular environ-
ment. These pathways exist in all living organisms, 
ranging from bacteria (prokaryotes) to yeast and 
mammals (eukaryotes). Such pathways respond 
to a range of nutrients and hormones to maintain 
coordination of coherent responses in the organ-
ism as a whole (Rosetti 2000). With an increase in 
age, many of the proteins involved in nutrient sens-
ing are downregulated, and thus arises a need to 
actively explore these pathways in order to under-
stand their mechanisms so as to delay the onset of 
metabolic disorders.

Some of the major pathways involved in nutri-
ent sensing are insulin and insulin/insulin-like 
growth factor-1(IGF-1) signalling (IIS) (Kaletsky 
and Murphy 2010), mechanistic target of rapamy-
cin (mTOR) (Hansen et  al. 2007), AMP-activated 
protein kinase (AMPK) (Greer et al. 2007) and sir-
tuins (Polito et al. 2010). When nutrients are avail-
able and stress levels are low, these pathways pro-
mote growth and reproduction. However, under low 
nutrient and high stress conditions, the pathways are 
altered, and as a consequence the cells are directed 
towards energy conservation and maintenance, 
implying that anabolism and catabolism of various 
metabolites are controlled by the nutrient sensing 
pathways. The nutrient-sensing pathways use post-
translational phosphorylation and acetylation modi-
fication of proteins with modulation of gene expres-
sion to regulate energy homeostasis (Steinberg et al. 
2009; Wellen et  al. 2010; Imai et  al. 2010). These 
pathways regulate several cellular processes such 
as protein synthesis, autophagy (Klionsky 2000), 
metabolism (Koubova and Guarente 2003), oxida-
tive stress (Lou et  al. 2017), immunity (Iyer et  al. 
2015) and reproduction (Templeman and Murphy 
2018). The downstream signalling cascades of these 
pathways have been linked to extending lifespan in 
some lower organisms. These pathways cross-regu-
late each other, activating or inhibiting one another 
and their downstream targets. The genes coding 
for nutrient sensing proteins act as key regulators 
of lifespan and are also called “nutrient sensing 
longevity genes” (Mocchegiani 2016). Ageing and 
longevity are highly influenced by these conserved 
longevity pathways (Johnson et al. 2015).

IIS pathway

The IIS pathway is a cell-signalling pathway that 
responds to hormonal signals to control metabolism. 
It is activated by insulin and insulin-like peptide (ILP) 
ligands whose levels are responsive to nutrient avail-
ability and/or sensory information. It forms part of 
the somatotropic axis consisting of growth hormone 
(GH), IGF-1, their receptors and its downstream 
signalling cascade. It is the most conserved nutri-
ent sensing pathway in a wide spectrum of organ-
isms (Kenyon 2005). The first evidence for its role in 
ageing was demonstrated in mutant C. elegans with 
mutations in age-1, phosphatidylinositol 3-kinase 
(PI3K), a downstream effector of insulin/insulin-like 
signalling; and daf-2, the insulin/insulin-like receptor 
(Freidman and Johnson 1988; Kenyon et  al. 1993). 
It was later found that AGE-1, DAF-2 and DAF-
16 are homologues of the human PI3K, insulin and 
IGF-1 transmembrane tyrosine kinase receptor and 
transcription factor, forkhead box O (FoxO), respec-
tively (Kimura et  al. 1997; Lin et  al. 1997). Among 
IIS pathways multiple targets are protein kinase B 
(Akt), and RAS/MAPK pathway. Akt phosphorylates 
targets such as FoxO, causing its dispersal outside the 
nucleus, leading to a decrease in the transcription of 
its target genes (Siddle 2011). In mammals, Akt indi-
rectly regulates TOR complexes by suppressing tuber-
ous sclerosis complex (TSC) 1/TSC2 (Taniguchi et al. 
2006). IIS stimulates the NF-κB pathway, involved 
in immune-inflammatory processes (Gilmore and 
Wolenski 2012). IIS expands lifespan through modu-
lating transcription factors like FoxO and heat shock 
transcription factor-1 (HSF-1) (Tullet et al. 2008).

In mammals, levels of IGF-1, predominantly 
produced by liver cells, are regulated by GH and a 
decline in the level of circulating IGF-1 and GH is 
associated with ageing (Sun et  al. 2013). In long-
lived dwarf Ames (Prop1df) and Snell (Pitdw) mice, 
decrease in levels of IIS is observed correlating it 
with longevity (Brown-Borg et al. 1996). It has been 
found that mice with deficiency of GH and reduced 
levels of IGF-1 demonstrate an increase in lifes-
pan (Coschigano et  al. 2000; Lorenzini et  al. 2014). 
Similar observations on expansion of lifespan due to 
decrease in IIS has been found in Drosophila (Clancy 
et al. 2001). Consequently, mutations and downregu-
lation of targets in these pathways have been associ-
ated with increased longevity (Hadem et  al. 2020). 
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Among humans, various pockets of population like 
Ashkenazi Jewish centenarians and their Japanese 
peers have exhibited variants in the insulin receptor 
gene (Kojima et  al. 2004; Suh et  al. 2008). Moreo-
ver, predictions have been made about the relation 
between low IGF-1 levels and survival in humans 
with exceptional lifespan (Milman et al. 2014). Also, 
a deficiency in growth hormone receptors is linked 
to lower risk of age-associated conditions like cancer 
and diabetes, and a reduction in proteins that play a 
role in ageing (Guevara-Aguirre et al. 2011). Another 
study in Dutch nonagenarians also showed a positive 
correlation between IGF-1 and longevity (van der 
Spoel et al. 2015).

mTOR

The serine/threonine kinase, mTOR belongs to the 
phosphoinositide 3-kinase-related family thatis 
highly conserved among eukaryotes and that can be 
inhibited by the immunosuppressive drug rapamy-
cin (Sabatini et al. 1994). It plays an integral role in 
regulating growth and metabolism in response to 
several upstream cues, including signals from IIS 
and other growth factors, the cellular energy sensor 
AMPK, amino acids, lipids, cholesterol and oxygen 
levels (Saxton and Sabatini 2017). mTOR functions 
in two structurally and functionally distinct multipro-
tein complexes termed TOR complex 1 (mTORC1) 
and TOR complex 2 (mTORC2) (Loewith and Hall 
2011). mTORC1, along with its downstream effectors 
ribosomal protein S6 kinase β1 (S6K1) and eukary-
otic translation initiation factor 4E(e1F4E)-binding 
protein 1(4E-BP), plays a major role in nutrient sens-
ing by regulating cell growth (accumulation of cell 
mass) through coordination of protein anabolism 
(Ma and Blenis 2009), glycolysis (Shi et  al. 2018), 
autophagy (Ganley et al. 2009; Kim et al. 2011) pro-
moting lipid and nucleotide synthesis (Ben-Sahra 
et al. 2013) modulation of the senescence-associated 
secretory phenotype (Laberge et al. 2015).

mTORC1 activity increases during ageing contrib-
uting to age-related obesity supporting the idea that 
intense anabolic activity is responsible for accelerat-
ing ageing and age-related diseases (Yang et al. 2012). 
Enhanced 4E-BP increases translation of peroxisome 
proliferator-activated receptor gamma coactivator 1α 
(PGC-1α), increasing mitochondrial respiration and 
inhibiting autophagy, thereby accelerating ageing 

(Tsai et  al. 2015). However, various studies have 
shown that the mTOR pathway regulates lifespan 
in simple organisms such as yeast, worms and flies 
where mTORC1 was inhibited (Vellai et  al. 2003; 
Kapahi et  al. 2004; Kaeberlin et  al. 2005; Arriola 
Apelo and Lamming 2016). The mTOR complexes 
are inhibited by rapamycin and rapalogs. Rapamy-
cin, an immunosuppressive, anti-fungal drug inhib-
its mTORC1, by forming a complex by binding with 
the small endogenous protein FK506-binding pro-
tein (FKBP) and inhibiting mTORC1 (Shimobayashi 
and Hall 2014). mTORC1 activity is reduced in vital 
organs of Snell dwarf and global GH receptor (GHR) 
gene-disrupted mice (Dominick et al. 2015). In elder 
humans, the inhibition of mTOR has led to improve-
ment in immunoscence and immune functions (Man-
nick et al. 2014).

mTORC2 controls growth by regulating lipogene-
sis, glucose metabolism (García-Martínez and Alessi 
2008; Yuan et  al. 2012) and the actin cytoskeleton 
(Cybulski and Hall 2009). In mammals, an interaction 
between mTOR and IIS signalling occurs via Akt, as 
it gets activated upon phosphorylation by mTORC2 
(Sarbassov et al. 2005) leading to inhibition of Foxo 
transcription factors (Guertin et  al. 2006). mTORC2 
is also inhibited upon long exposure to rapamycin 
(Sarbassov et al. 2006). Although not much is known 
about the role of mTORC2 in ageing, but in some 
studies it was found that inhibiting mTORC2 may 
play a role in extending lifespan (Yu et al. 2019). In 
male mice, pharmaceutical treatment with acarbose 
and 17α-estradiol extends lifespan due to a boost in 
hepatic mTORC2 signalling (Garatt et al. 2017).

AMPK

A critical sensor of energy status is AMPK, which 
is activated in response to cellular energy depletion. 
AMPK is activated by direct AMP binding or due 
to elevated cellular levels of AMP, ADP, and/or cal-
cium (Hardie et al. 2012, 2016). It is a key regulator 
of energy homeostasis and mitochondrial metabolism 
(Herzig and Shaw 2018). AMPK is a heterotrimeric 
kinase composed of one catalytic subunit α and two 
regulatory subunits β and γ (Steinberg and Kemp 
2009). The catalytic α-subunit contains an important 
residue, Thr-172 located in the N-terminus of the 
kinase domain (Hawley et  al. 1996). In mammals, 
AMPK is activated by upstream kinases, liver kinase 
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B1 (LKB1) (Woods et al. 2003; Shaw et al. 2004) and 
calcium/calmodulin-dependent protein kinase kinase 
2 (CAMKK2) in response to intracellular Ca2+ (Hur-
ley et al. 2005).

Under prolonged conditions of reduced energy, 
AMPK phosphorylatesPGC-1α, class IIA histone 
deacetylases (HDACs) co-activating cAMP response 
element-binding protein (CREB), CREB-regulated 
transcription coactivator-2 (CRTC2) and FoxO path-
ways. AMPK activates processes that results in break-
down of nutrients and produces energy by activating 
the uptake of glucose and fatty acids. AMPK repro-
grammes metabolism through transcriptional regula-
tion of biosynthetic pathways and use of mitochon-
drial substrates as an energy source (Mihaylova and 
Shaw 2011). AMPK controls metabolism at the tran-
scriptional level by phosphorylating sterol regulatory 
element-binding protein 1 (SREBP1) (Li et al. 2011), 
carbohydrate-responsive element-binding protein 
(ChREBP) (Kawaguchi et  al. 2002) and hepatocyte 
nuclear factor 4α (HNF4α) (Hong et al. 2003) which 
are key transcriptional regulators of lipid and glucose 
metabolism. AMPK activates autophagy by inhibit-
ing mTORC1 indirectly by activating TSC2 and rap-
tor (Inoki et al. 2003; Gwinn et al. response pathways 
like AMPK, SIRT).

AMPK plays a role in increasing healthspan by 
regulating inflammation by inhibiting a pro-inflam-
matory transcription factor NF-κB through its down-
stream signalling cascade like SIRT1, PGC-1α, p53, 
and Forkhead box O (FoxO) factors (Salminen et al. 
2011). AMPK extends lifespan by activating ULK1, a 
kinase needed for autophagy and suppressing mTOR 
(Kim et al. 2011). The activation of AMPK has been 
found to be beneficial in age-related pathologies like 
atherosclerosis, T2DM, obesity and other metabolic 
diseases (Day et al. 2017). The role of AMPK in lifes-
pan expansion by anti-ageing small molecules like 
metformin, resveratrol, aspirin and rapamycin has 
also been established as reviewed elsewhere (Burke-
witz et al. 2014).

Sirtuins

Another class of energy sensors are sirtuins, a fam-
ily of NAD+-dependent enzymes that catalyze post-
translational modification of both histone and non-
histone proteins. Since sirtuins are dependent on 
NAD+ for its activity, they are activated during the 

state of fasting or exercise. Sirtuins comprise a uni-
versally conserved family of NAD+-dependent dea-
cetylases and/or ADP-ribosyltransferases found in 
all three domains of life (Frye 2000; Imai et al. 2000; 
Landry et al. 2000). Sirtuins regulate energy metabo-
lism and are modulated by diet. In mammals, the fam-
ily is represented by seven member SIRT1-7, vari-
ably located in different cellular compartments like 
nucleus (SIRT1,2,6,7), mitochondria (SIRT 3,4,5), 
cytoplasm (SIRT 1,2) (Frye 2000). Its targets for 
deacetylation include p53, NF-κB, PGC-1α, eNOS, 
mTORC2 and FoxO3a.

SIRT1 is the most studied among its counterparts. 
SIRT1 deacetylates many of the proteins and enzymes 
involved in metabolic processes (Zhao et  al. 2010). 
SIRT1 regulates gluconeogenesis and glycolysis via 
PGC- 1αby promoting its nuclear localization, in 
laboratory animals and in vitro (Nemoto et al. 2005). 
In addition, it inhibits glycolysis while activating 
gluconeogenesis and fatty acid oxidation in most tis-
sues (Silva and Wahlestedt 2010). PGC-1α lies at the 
center of the energy sensing pathway as it is phospho-
rylated and deacetylated by both AMPK and sirtuins, 
respectively and is a key controller of transcription 
factors to activate gene expression and control mito-
chondrial biogenesis (Rodgers et  al. 2005). Sirtuins 
play a role in a number of age-related degenerative 
conditions like cardiovascular diseases, neurodegen-
erative diseases, cancer and diabetes and can serve as 
a therapeutic target (Hall et al. 2013).

Sirtuins role in lifespan extension was only discov-
ered due to overexpression of Sir2 genes in C.elegans 
(Tissenbaum and Guarente 2001). In mice, the role 
of sirtuins in longevity has been much explored. 
Overexpression of Sirt1 in transgenic mice showed 
features resembling calorie restricted mice like lean 
body, reduced blood cholesterol levels and metaboli-
cally active (Bordone et al. 2007). On the other hand, 
a high fat diet led to loss of Sirt1 in adipose tissues 
in mice (Chalkiadaki and Guarente 2012). In humans, 
undergoing dietary restriction the levels of SIRT1 
increases in the muscles (Civitarese et al. 2007). Sirt3 
is required for the reduction of oxidative damage in 
cochlear cell in calorie restricted mice (Someya et al. 
2010).

There is an important correlation between the 
nutrient and energy sensors. The energy sensors 
(AMPK and Sirtuins) function in the opposite direc-
tion of nutrient sensors (mTOR). Overall, AMPK and 
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sirtuins regulate the catabolism of metabolites and 
inhibit their anabolism. These signalling pathways 
are interconnected as they regulate each other by its 
downstream signalling cascades. Energy sensors play 
a central role in the metabolism of glucose, lipid, pro-
tein and lastly autophagy and mitochondrial homeo-
stasis (Guarente 2011; Houtkeeperet al. 2012; Herzig 
and Shaw 2018). It has been found that the upregula-
tion of these pathways aids towards healthy ageing.

Metabolic dysfunctions associated 
with mitochondrial and nutrient sensing 
deregulation

Visceral fat accumulation or obesity during ageing 
poses higher risk of morbidity due to surge in possible 
risk for cardiovascular diseases, T2DM and hyperten-
sion. In obesity-associated diseases like T2DM and 
insulin resistance, lesser expression of mtDNA and 
reduced levels of mitochondrial complexes have been 
observed, indicating dysfunction of mitochondria. 
This affects organs such as liver, muscle and adipose 
tissue, thereby developing metabolic disorders (Patti 
and Corvera 2010). Fatty acid oxidation capacity is 
also reduced due to mitochondrial dysfunction and 
has been proposed to induce liver, muscle and adi-
pose tissue to accumulate lipids, particularly long-
chain fatty acids, which increases resistance to insulin 
(Lowell and Shulman 2005; Hafizi Abu Bakar et  al. 
2015). Increased level of ROS has been observed in 
skeletal muscle of obese individuals due to the accu-
mulation of impaired mitochondria during ageing, 
leading to muscle deterioration (Barbieri et al. 2013). 
Mitochondrial network fragmentation and reduction 
in the mitochondrial membrane potential has been 
linked to reduced mitofusin 2 (Mfn2) expression in 
the skeletal muscle of obese individuals and in T2DM 
patients. Mitofusin proteins are located on the sur-
face of the outer mitochondrial membrane and act in 
the membrane fusion process of mitochondria. The 
reduced expression of Mfn2 plays a crucial role in the 
impairment of mitochondria linked with accumula-
tion of fat (López-Lluch et al. 2018).

In the white adipose tissue, AMPK, among the 
several metabolic regulators, has a critical role in 
metabolic syndrome progression and resistance to 
insulin. Various downstream substrates required for 
the increase in oxidation of lipids and glucose uptake 

are regulated by phosphorylated AMPK, thereby 
resulting in glucose intolerance, obesity and lower 
physical capability in case of insufficient AMPK 
(Steinberg et al. 2010). As regards to its crucial role 
in regulating metabolism and mitochondrial activity, 
a decline in AMPK levels and activity during ageing 
can lead to physiological decline of adipose and other 
tissues in old age (Ruiz et al. 2016).

Regulation of mitochondrial physiology 
by nutrient sensors

Mitochondrial activity, dynamics, biogenesis and 
turnover respond to nutrient availability i.e., nutrient 
excess stimulates fission and nutrient deficiency stim-
ulates fusion (Rambold et al. 2011). It is regulated by 
nutrient sensors such as mTOR, AMPK and sirtuins, 
maintaining an equilibrium of activity according 
to the requirement of the cells (López-Lluch 2017). 
During ageing, an imbalance in this process contrib-
utes to the loss of mitochondrial homeostasis in sar-
copenic muscles, associated with the upregulation of 
mitochondrial fusion in skeletalmuscle (Joseph et al. 
2013).

In conditions of high calorie consumption, 
there is activation of mTOR. Various cellular pro-
cesses − insulin resistance, adipogenesis, inflamma-
tion, tumor formation and angiogenesis also play 
a role in the activation of mTOR (Lee et  al. 2007; 
Laplante and Sabatini 2009). mTOR signalling path-
way is downregulated by AMPK, thereby regulating 
cell bioenergetics, and sirtuins are activated in con-
ditions when there is low amount of energy suchas 
calorie restriction (CR) (López-Lluch et  al. 2018). 
Mitophagy, essential for cell survival is regulated 
by AMPK, mTOR and FoxO3 transcription factors 
(Zhao et  al. 2007; Hirota et  al. 2012). Downregula-
tion of mTOR stimulates mitophagy and upregulation 
of AMPK activates mitochondrial biogenesis, oxida-
tive metabolism, and resistance to oxidative stress 
(Guarente 2014). By modulating autophagy and 
mitophagy, mTORC1 regulates mitochondrial turno-
ver. Through the phosphorylation of inhibitory sites 
of initial mediators unc-51-like kinase 1/2 (ULK-1 
and ULK-2), mTORC1 blocks autophagy, while it is 
induced by AMPK by phosphorylating the activation 
sites of the same initiators (Alers et al. 2012).
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A metabolic shift to β-oxidation, lower respira-
tion rate, and more OXPHOS proteins were found 
in Ames dwarf and GH deficient mice, linking IIS 
signalling and mitochondrial metabolism (Brown-
Borg et al. 2012). The expression of genes involved 
in mitochondrial processes like β-oxidation, TCA 
cycle and glycolysis were found to be higher in Fat-
specific insulin receptor knockout mice (FIRKO) 
with respect to the control mice of same age (Katic 
et al. 2007), implying the role of IIS signalling and 
somatotropic axis in mitochondrial metabolism.

Sirtuins are associated to different important 
features of cell physiology, from the control of 
cell cycle to metabolism and antioxidant defense. 
Their effect on the physiology of mitochondria and 
metabolism of cell has been linked to their impact 
on extension of lifespan. Sirtuins activation and 
mitochondrial biogenesis helps in part of the over-
all effect of CR (Guarente 2013). The aforesaid 
nutrient sensors also regulate the activity of the 
crucial transcription factor, PGC1α, involved in 
the activation of mitochondrial biogenesis.PGC1α 
modulates mitochondrial biogenesis and oxidative 
phosphorylation, balances mitochondrial dynamics, 
and controls the copy number of the mitochondrial 
genome (Gouspillou et al. 2014). It also controls the 
expression of transcription factors involved in mito-
chondrial biogenesis and respiration control, like 
the nuclear respiratory factors 1 and 2 (NRF1 and 
2), mitochondrial transpiration factor A (TFAM) 
or peroxisome-proliferator activated receptor-γ 
(PPARγ) (Martin-Montalvo and de Cabo 2013). 
SIRT3, present in mitochondria having deacety-
lase activity, is stimulated after CR in the skeletal 
muscle and under a high-fat diet, its level decreases 
suggesting a calorie-dependent modulation (Pala-
cios et al. 2009). It takes part in the breaking down 
of lipids and regulation of complexes II, III and IV 
activities of the ETC by deacetylation. It is also 
involved in the modulation of autophagy by FoxO3, 
regulation of Mn-SODactivity and mitochondrial 
dynamics through autosomal dominant optic atro-
phy-1(OPA1) activation (López-Lluch et  al. 2018). 
FoxO proteins take part in the removal of mitochon-
dria and are involved in modulating cell inducing 
several stress-induced genes. Preventing mitochon-
drial dysfunction and improving mitochondrial 
functional quality by CR, polyphenols or exercise 
are associated with FoxO proteins regulation during 

ageing and their modulation by mTOR, AMPK and 
sirtuins (López-Lluch and Navas 2016).

Sestrins, a highly conserved stress-inducible small 
protein, regulate mTORC1 activity through the acti-
vation of AMPK. Inactivation of sestrin gene expres-
sion, in invertebrates, gives rise to various metabolic 
dysfunctions such as oxidative damage, mitochon-
drial dysfunction, accumulation of fat and deteriora-
tion of muscle favouring the acceleration of ageing 
(Lee et al. 2013). Sestrins have been linked to ageing 
through their effect on the rate of mitochondrial turn-
over (Wang et al. 2017). They are also associated with 
the metabolic regulation in mice aiding prolongev-
ity effect. Sestrin proteins are regulated by oxidative 
stress through p53, NRF-2, AP-1 and FoxO and they 
modulate various components that help in decreas-
ing the production of ROS, inducing mitochondrial 
biogenesis and mitophagy, thereby ameliorating oxi-
dative metabolism (Lee et  al. 2013). Through acti-
vating AMPK, the inactivation of sestrins-dependent 
mTORC1 plays a key role in maintaining autophagy 
and in defective mitochondria elimination (Ishihara 
et al. 2013). The levels of sestrins in muscle decline 
during ageing, but the level of sestrin 2 increases in 
mouse muscle in response to insulin and autophagy 
(Lenhare et  al. 2017). Modulated by a number of 
stress factors, sestrins family of proteins, are emerg-
ing as essential metabolic regulators for mitochon-
drial turnover and various age-related complications 
by hormetic response to a mild stress (Wang et  al. 
2017).

Improving healthspan through dietary 
interventions

Impaired mitochondrial function and nutrient sens-
ing are the common denominator in age-related fat 
accumulation leading to metabolic dysfunction. It can 
be said that the contribution of these processes is the 
major contributors in pathogenesis of age-related dis-
eases. Over the period of a century, various methods 
have been used to alleviate the effects of ageing. Die-
tary interventions like calorie restriction (CR), inter-
mittent fasting (IF), physical exercise, and the use of 
certain chemical/nutraceutical agents referred to as 
CR mimetics, are known to alleviate the effects of 
ageing. Several studies have shown that CR increases 
the capacity to extend longevity, affecting both, 
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median and maximum lifespan in different organisms 
from yeasts to mammals (Sharma 2004; Testa et  al. 
2014, Madeo et  al. 2015).CR is a nutritional inter-
vention where one is subjected to a reduced calorie 
intake without resulting into malnutrition. Different 
kinds of dietary interventions regimens are followed 
in studies to analyse and understand the effects in var-
ious animal models as per their lifespan. There is also 
variation in the duration of the time followed for the 
regimen. These include calorie restriction (CR), inter-
mittent fasting (IF) or alternate day fasting, ketogenic 
diet (KD), time restricted feeding (TRF) and diet with 
specific amount of limited nutrients.

Calorie restriction

CR is a dietary restriction regimen where there is 
a 10–50% decrease in the overall calorie intake 
without malnutrition for a particular duration. CR 
increases lifespan when calories are limited by a cer-
tain proportion but can have deleterious effect when 
the restriction percentage is increased beyond 50%. 
Variations in the effects of CR on ageing have been 
reported depending on the time of initiation, dietary 
composition, the duration of regimen, sex and spe-
cies (Weindruch and Sohal 1997). CR has shown to 
have varying effects on different tissues (Arslan-Ergul 
et al. 2016).

The beneficial of CR are modulated through the 
mechanisms of nutrient sensing pathways and func-
tions of mitochondria. Reducing oxidative stress is 
one of the major effects of CR on cellular physiol-
ogy. This can be attained through various mecha-
nisms, including a reduction in the rate of ROS gen-
eration, upregulation in the removal of ROS, thereby 
minimizing their harmful effects, and stimulating the 
repair process to lessen the impact of the damages. 
Various studies have shown that CR regulates redox 
homeostasis through these mentioned processes. 
There is also a lesser production of superoxide radical 
generation by CR (Speakman and Mitchell 2011).

CR helps in removing visceral fats, which is 
harmful due to its pro-inflammatory and diabe-
togenic activity, for healthy ageing (Finkel 2015). It 
also induces autophagy in human tissues, providing 
various anti-ageing effects by stimulation of better-
quality control on organelles, stem cell optimum 
activity promotion, amelioration of immunological 
activities, and malignant transformation prevention 

(Galluzzi et  al. 2015). Efficient autophagic reaction 
also improves various features of disorders associated 
with ageing, such as neurodegeneration, T2DM and 
arteriosclerosis (Levine and Kroemer 2008). CR acti-
vates autophagic responses through nutrient sensors 
such as SIRT1, AMPK, and mTORC1 and combines 
such responses to FoxO1 activation, which maintains 
telomerase activity as well (Makino et al. 2016).

Intermittent fasting

IF is a dietary restriction regime in which organisms 
undergo long hours of fasting and refeedingthat pro-
gressively reduces the total food intake by roughly 
30% in model organisms (Suchiang and Sharma 
2011). It has served as one of the alternatives for tra-
ditional CR. There are various modifications of IF 
including 12 h eating and 12 h fasting, alternate day 
feeding, 5:2 IF (5 days eating followed by 2 days fast-
ing in a week). IF resembles the prehistoric times, 
where food was scarce, and the organisms needed to 
starve until food was available. IF in mice reduces 
inflammation and enhances autophagy by the acti-
vation of transcriptional factors induced by nutrient 
and hormonal signals (Yang et al. 2016; Bagherniya 
et al. 2018). IF also enhances long-term memory con-
solidation and improves physiological health (Dias 
et al. 2021; Zhang et al. 2022). IF upregulates brain-
derived neurotrophic factor (Bdnf) expression in vari-
ous brain regions of rodents (Mattson and Arumugam 
2018; Liu et al. 2019). This can possibly regulate sys-
temic and local anti-ageing effects as Bdnf stimulates 
synaptic plasticity, enhances neurogenesis, promotes 
neurons’ resistance to cell death, modulates appetite, 
improves cardiovascular and gastrointestinal auto-
nomic control systems, and elevates glucose metab-
olism. In addition, IF alleviates various organs from 
ischemic damage, delays neurodegeneration in several 
rodent models, and counteracts or improves the after-
effect of epileptic seizures and neuro-trauma (Longo 
and Mattson 2014; López-Otín et al. 2016). IF shows 
similar effects in humans in other age-related diseases 
(de Cabo and Mattson 2019).

Time restricted feeding

In TRF, the organisms are allowed to feed ad libitum 
during a limited period of 8 h and fasted for the next 
16 h. This cycle of feeding and fasting continues for 
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a longer duration in order to determine its impact on 
the organism. The concept of TRF arose within the 
context of circadian rhythms. In mice, TRF reduces 
adiposity and pro-inflammatory cytokines (Sunda-
ram and Yan 2016), improves insulin resistance and 
hepatic steatosis (Ryan et al. 2013), gives protection 
against obesity, fatty liver disease, insulin resistance, 
hyperinsulinaemia and inflammation (Hatori et  al. 
2012). These positive metabolic effects are medi-
ated by metabolic modulation of mTOR, CREB and 
AMPK pathway (Chaix et  al. 2014). Recent TRF 
trials in humans have allowed a feeding window 
between 4 and 12  h, although a window of < 10  h 
is thought to be optimal based on glycogenolysis, 
fatty acid oxidation, and gluconeogenesis modula-
tions occurring in the absence of dietary glucose 
availability. In a recent study where sedentary adults 
with overweight and obesity restricted their eating to 
an 8-hour ad libitum flexible feeding window; study 
volunteers experienced significant weight reduction 
(Anton et al. 2019).

Ketogenic diet

KD is a dietary regimen, which represents a group 
of diets, comprising of high fat and low carbohy-
drate content. After the application of a KD the body 
switches into starvation mode. In this situation the 
body uses fat as the energy source, and produces 
ketones-β-hydroxybutyrate, acetoacetate and acetone. 
Ketone bodies are lipid driven molecules (beta-oxida-
tion), and they act as alternative substrates for energy 
production during fasting and low-carb diets (Jensen 
et  al. 2020). In KD fed mice, the cardiac cells were 
found to abate oxidative stress, improve mitochon-
drial function and promote autophagic flux (Yu et al. 
2020). KD improves mitochondrial biogenesis via the 
PGC-1α-Sirt3-UCP2 axis (Hasan-Olive et  al. 2019) 
and protein acetylation levels and regulated mTORC1 
signalling, demonstrating that KD extends longevity 
and healthspan in mice (Roberts et  al. 2017). Also 
in rats, KDs change the gene expression levels in 
the CA3 region of hippocampus, which is known to 
impact cognitive abilities during brain ageing (Her-
nandez et al. 2019). These data suggest that KDs have 
the potential to impact the ageing.

Diet with limited amount of specific nutrients

The alternative to aforesaid dietary interventions 
is also gaining popularity as these effects seem to 
have a temporal impact on the organisms (Austad 
and Hoffman 2021). The idea that nutrients and not 
calories were responsible for the beneficial effects of 
dietary restriction has also been studied. Restriction 
of specific components like proteins or rather spe-
cific amino acids have also shown to impart similar 
results independent of CR (Soultoukis and Patridge 
2016). Diets restricted with essential amino acids 
like methionine, tryptophan or threonine and other 
branched chained amino acids (BCAAS) like leucine, 
isoleucine and valine have also been studied in model 
organisms (Xiao et al. 2011; Perrone et al. 2013; Fon-
tana et al. 2016). Such diets also impart its effects via 
the nutrient sensing proteins like mTOR, AMPK and 
GCN2.

CR Mimetics

The implementation of such dietary interventions 
in humans comes with some side effects like lower-
ing of body temperature and a decrease in circulat-
ing sex hormones (Cangemi et al. 2010; Soare et al. 
2011) and/or slow wound healing (Hunt et al. 2012). 
This led to the development of a newer strategy as 
CR mimetics. CR mimetics (CRM) is defined as sub-
stances that mimic the metabolic, hormonal and phys-
iological effects of CR (Ingram and Roth 2015). In 
principle, a successful CRM would increase health-
span and lifespan by targeting the metabolic and 
stress response pathways affected by CR, but with-
out markedly restricting caloric intake. Interestingly, 
some of the known CR mimetics compounds like 
resveratrol and metformin act as activators of energy 
sensors (AMPK and sirtuins) or drugs like Rapamy-
cin inhibit the nutrient sensor mTOR.

Various other compounds also act as CR mimetics 
and help to increase healthspan in humans. Polyphe-
nolic compounds, such as curcumin and resveratrol, 
and nutritional mushrooms like Coriolus versicolor 
and Hericium have strong redox-active properties 
which when ingested in small doses were found to be 
non-toxic in numerous experimental models, includ-
ing humans. However, at high concentrations, these 
compounds exhibited toxic properties, which are 
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harmful to the organism, thereby showing biphasic 
dose response when ingested in hormetic range (Cala-
brese et  al. 2010; Trovato et  al. 2018). These nutra-
ceuticals induce adaptive cellular stress response 
pathways like AMPK, SIRT, FoxO, PGC1α, Nrf2, 
antioxidant response elements (AREs) and heat shock 
response (HSR) (Calabrese et al. 2010; Martel et al. 
2019). Activation of the Nrf2/ARE and HSR together 
reduces amyloid formation in AD, induces cytopro-
tective enzyme heme oxygenase 1(HO-1) and medi-
ates anti-inflammatory effects via the downregulation 
of nuclear factor kappa B (NF-kB), thereby, induc-
ing protection against oxidative stresses that cause a 
wide range of chronic pathologies, including neuro-
degenerative conditions (Yang et al. 2005; Calabrese 
et  al. 2010; Miquel et  al. 2018). Across species, the 
longevity network detects nutrient availability and 
energy status, mitochondrial functional status and 
the production rate of ROS in the mitochondria for 

the regulation of lifespan, by coordinating the infor-
mation with various signalling pathways, including 
the vitagenes. Vitagenes encode for genes, viz. heat 
shock proteins (Hsp) Hsp32, Hsp 70, the thioredoxin 
and the sirtuin protein systems that are involved in 
regulating cellular homeostasis (Calabrese et  al. 
2012). Activation of the vitagenes through hormetic 
CR-mimetics produces molecules like heat shock pro-
teins, glutathione and bilirubin, having anti-oxidative 
and anti-apoptotic activities (Mancuso et  al. 2006; 
Calabrese et al. 2007, 2010; Cornelius et al. 2013).

Conclusions

The intricacy of ageing process is highly complex and 
can only be understood upon analyzing its various 
aspects in a biological network. In the course of age-
ing, the role of mitochondria is regulated by various 

Fig. 1   An overview of mitochondrial regulation by nutri-
ent sensors. Various nutrient sensors regulate mitochondrial 
biogenesis, function and mito/autophagy to avoid the accu-
mulation of impaired mitochondria. Impaired mitochondria 
accumulation is one of the main factors for mitochondrial 
dysfunction during ageing, resulting in a number of age-
related metabolic disorders. Interventions such as CR and CR 

mimetics help in alleviating the ill-effects of dysfunctional 
mitochondria by stimulating mitochondrial biogenesis and 
mito/autophagy. [AMPK, AMP-activated protein kinase; Sirt, 
sirtuins; PGC-1α, peroxisome proliferator-activated recep-
tor gamma coactivator 1α; NRF, nuclear respiratory factors; 
PPARγ, peroxisome-proliferator activated receptor-γ; FoxO, 
forkhead box O; mTOR, mechanistic target of rapamycin]
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nutrient sensors directly, as these sensors control 
mitochondrial functions such as biogenesis, oxida-
tive phosphorylation, autophagy, and mitochondrial 
turnover. Nutrient sensors such as mTOR, AMPK 
and sirtuins influence the expression of their down-
stream target transcription factors to reprogramme 
the signalling network and change the machinery and 
metabolism of the cell (Fig. 1). The identification of 
both deregulated nutrient sensing and mitochondrial 
dysfunction as network hallmark of ageing, opens up 
new avenues in future research in the area of biomedi-
cal gerontology. These processes are interdependent 
and form a network that regulates cellular metabo-
lism and homeostasis during ageing. However, the 
core idea of all ageing research is to attain longevity 
with an extended healthspan. Also, nutrition serves as 
the most convenient way to act upon ageing. Dietary 
interventions act upon both these processes maintain-
ing the metabolic homeostasis as a result of hormetic 
response by various signalling pathways and reducing 
the generation of ROS. Thus, it may prove to be effec-
tive in delaying the onset of age-related disorders. A 
big challenge that lies ahead of researchers is to find 
out the effect of the various interventions on different 
individuals and the optimum level of intervention to 
be followed to attain the goal of extended healthspan 
and lifespan in humans.
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